Development of yeast-based methods to screen for plant cytokinin-binding proteins

You Wang
University of Wollongong

Recommended Citation
Development of Yeast-Based Methods to Screen for Plant
Cytokinin-Binding Proteins

A thesis submitted in fulfillment of the requirement of the award of the
degree of

MASTER OF SCIENCE OF RESEARCH

By

YOU WANG

Bachelor of Science

(Liaoning University China)

Master of Science

(University of Wollongong, Australia)

From

DEPARTMENT OF BIOLOGICAL SCIENCES
THE UNIVERSITY OF WOLLONGONG

2004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER I INTRODUCTION

1.1 CYTOKININS - AN OVERVIEW
1.2 POSSIBLE MECHANISMS OF CYTOKININ FUNCTIONS
1.3 CYTOKININ RECEPTOR CANDIDATES
 1.3.1 Histidine Kinases
 1.3.1.1 CKI1
 1.3.1.2 CRE1 and CRE1-like histidine kinases
1.3.2 Cytokinin-Binding Protein
1.3.3 G-Protein-Coupled Receptor
1.4 CYTOKININ SIGNALLING
 1.4.1 Two-Component Signalling Pathway
 1.4.2 Three Parts of a Two-Component Signalling Pathway in *Arabidopsis*
 1.4.2.1 AHPs
 1.4.2.2 ARRs
1.5 POSSIBILITY OF UNKNOWN CYTOKININ RECEPTORS OR BINDING PROTEINS
1.6 METHODS – AN OVERVIEW
 1.6.1 Methods Used to Search for Hormone Binding Proteins or Receptors
 1.6.1.1 Affinity binding methods
 1.6.1.2 Genetic mutation method
 1.6.1.3 Other methods
 1.6.2 Potential New Methods for Studying Plant Hormone Receptors
1.6.2.1 Two-hybrid and three-hybrid systems in yeast
1.6.2.2 Flow cytometer and FACS
1.7 SUMMARY AND THE AIM OF THIS PROJECT

CHAPTER II SYNTHESIZING THE CONJUGATED BAP COMPOUNDS AND TESTING THEIR BIOACTIVITIES

2.1 INTRODUCTION
2.2 MATERIALS AND METHODS
 2.2.1 Chromatographic Methods
 2.2.2 Synthesis of the Active Ester Derived from Dexamethasone
 2.2.3 Conjugation of Dexamethasone Derivative with a Cytokinin Moiety
 2.2.4 Synthesis of Biotin-BAP Conjugates
 2.2.5 Determination of the Cytokinin Activities of Compounds
 2.2.5.1 Amaranthus betacyanin bioassay
 2.2.5.2 Preparation of the solutions of BAP and all compounds
2.3 RESULTS
 2.3.1 Synthesis of the Active Ester Derived from Dexamethasone
 2.3.2 Conjugations of Dexamethasone and BAP
 2.3.3 Synthesis of Biotin-BAP Conjugates
 2.3.4 The Effect of DMSO on the Bioassay
 2.3.5 The Standard Curve of BAP Activity
 2.3.6 The Cytokinin Activities of the Four Compounds A, B, C and D
 2.3.7 The Competition between BAP and Compounds Related to the BAP-Dexamethasone Conjugates
 2.3.8 The Competition between BAP and Compounds A, B, C and D
 2.3.9 The Cytokinin Activity of BAP-Biotin Conjugates and the Competition between BAP and the Conjugates
2.4 DISCUSSION
 2.4.1 The Synthesis of the Conjugates and Confirmation of Structure
 2.4.2 The Bioassay Results

CHAPTER III DEVELOPMENT OF A THREE-HYBRID SYSTEM TO SCREEN FOR CYTOKININ-BINDING PROTEINS

3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
3.2.1 Bacterial and Yeast Strains 61
3.2.2 Plasmids and cDNA Libraries 62
3.2.3 Bait Compounds 65
3.2.4 Preparation of a Plasmid Library from Phagemid Containing the cDNA Library from *Arabidopsis* 67
3.2.5 Amplification of the Maize cDNA Library in pAD-GAL4-2.1 70
3.2.6 Testing for Auxotrophic Requirements and Function of Reporter Genes of Yeast Strain L40 71
3.2.7 Construction of a Hook Plasmid pWY1 73
3.2.8 Assembling and Testing a Three-Hybrid Screening System in Yeast 76
 3.2.8.1 Transformation of L40 with the hook and fish plasmids 76
 3.2.8.2 Verification of yeast transformants 77
 3.2.8.3 Two-stage screening for adenine or cytokinin binding by detection of transcription factor activation 78
3.3 RESULTS 80
 3.3.1 Conversion of the *Arabidopsis* cDNA Library from Phagemid Form to Plasmid Form 80
 3.3.2 Presence and Quality of the Amplified Maize cDNA Library in pAD-GAL4-2.1 83
 3.3.3 The Auxotrophic Requirements and Reporter Genes of Yeast Strain L40 85
 3.3.3.1 Auxotrophic requirements of L40 yeast strain 85
 3.3.3.2 Suppressing the leakage of *HIS3* reporter gene by presence of 3-AT 85
 3.3.3.3 Positive control: expression of the *LacZ* gene in L40 86
 3.3.4 The Hook Construct in Plasmid pWY1 87
 3.3.5 The Three-Hybrid System Established in Yeast 88
 3.3.5.1 Transformation of L40 with plasmid pWY1 88
 3.3.5.2 Establishment of yeast L40 (pWY1) cell line 89
 3.3.5.3 Transformation of L40 (pWY1) with the *Arabidopsis* cDNA library and maize library plasmids 90
 3.3.5.4 Verification of the two kinds of yeast transformants 91
 3.3.5.5 Screening plant cDNAs using the three-hybrid system in yeast 92
3.4 DISCUSSION 94
 3.4.1 Development of a Three-Hybrid System in Yeast to Seek Cytokinin-Binding Protein(S) 94
 3.4.2 On the Results of Screens that Used the Y-3-H System 98
CHAPTER IV DEVELOPMENT OF A FACS METHOD TO SCREEN FOR CYTOKININ-BINDING PROTEINS

4.1 INTRODUCTION 102

4.2 MATERIALS AND METHODS 104
 4.2.1 Yeast Strain, cDNA Library and Reagents 104
 4.2.2 Incubation with Cytokinin-Biotin Conjugate and Streptavidin-PE 105
 4.2.3 Fluorescence Flow Cytometry and FACS 105

4.3 RESULTS 107
 4.3.1 The Difference of Fluorescence Intensity between the Yeast Cells Dyed with and without BAP-Biotin 107
 4.3.2 Sorting Cells Expressing Plant Proteins 109
 4.3.3 Characterizing Primary Positives 109

4.4 DISCUSSION 111

CHAPTER V CONCLUDING REMARKS 113

LITERATURE CITED 115

APPENDIX 123
ABSTRACT

Cytokinin is an important plant hormone that controls many aspects of plant growth and development. A great amount of research has been done regarding its function and recently some significant process made on its signal transduction pathway. However much remains to be discovered and in particular the identity of cytokinin-binding proteins that function as signal transducing receptors would be valuable information. This study aimed to develop two yeast-based methods, to search for plant cytokinin-binding proteins.

To establish the yeast three-hybrid (Y-3-H) system and fluorescence activated cell sorting (FACS) screening, four different novel 6-benzylamino purine (BAP)-dexamethasone conjugates and two kinds of biotinylated BAP conjugates were synthesized, respectively. The suitability of these specially designed cytokinin derivatives for use in the study of cytokinin-binding proteins were demonstrated by their activities in competing with the proven cytokinin signal molecule BAP in inducing a response in vivo in the Amaranthus bioassay.

The design of the Y-3-H system was based on that reported by Licitra and Liu (1996), with modifications that included use of a different yeast host strain to allow positive selection for the LEU2-containing fish plasmid and creation of a new hook plasmid to make the expression of HIS3 in yeast host L40 useable as a reporter gene. Hybrid plant-animal hormone molecules (baits) created in Chapter II allow the animal hormone moiety to be anchored to a fusion of a DNA binding domain (DBD) with an animal hormone receptor produced by hook plasmid. The DBD can then be held in juxtaposition with a transcriptional activation domain (AD) as part of fusion protein produced by fish plasmids to create a functional bipartite transcription factor, if the
AD is fused with a plant hormone receptor protein. The novel hybrid hormone thus acts as a bridge between the DBD and AD and allows transcription from reporter genes that allow the identification of individual cells in a population transformed with a plant fusion library. Individuals that have received a receptor able to bind plant hormone can then transcribe genes that allow prototrophic growth while the majority of cells are auxotrophs. Such cells can also transcribe the LacZ gene that allows hydrolysis of the substrate 5-Bromo-4-chloro-3-indolylb-D-galactopyranoside (X-gal) to a blue product. The genes that encode the cytokinin-binding proteins can then be recovered from cells with those properties. All the components, as far as could be tested, were verified for their functions before assembling together for test.

A quite different approach, based on the capacity of FACS to recognize and separate microscopic particles, was also used to recover yeast cells that were expressing Arabidopsis cDNAs that increased cytokinin binding. In this screen, the plant proteins did not need to be fusions with a transcriptional AD domain. If any yeast cell expressing cytokinin-binding protein on its outer membrane, FACS should be able to identify the cell from the whole population of cells expressing plant cDNAs by the increased retention of biotinylated BAP (synthesized in Chapter II) and its consequent binding of the fluorescent streptavidin-phycoerythrin (PE). Then the sorted cell can be tested to confirm that its properties are altered by the introduced gene and the identity of the cytokinin-binding protein is revealed by sequencing that gene.

Test screens have been conducted with the two methods. An Arabidopsis cDNA library and a maize cDNA library that were constructed in fusion with a transcription AD have been screened with the Y-3-H method, while some His-independent clones were observed, none of them could activate the other reporter gene LacZ. A non-
fusion cDNA library of *Arabidopsis* screened by the FACS method has resulted in some primary positives that warrant further testing. These results together with possible future improvements of the screen methods have been discussed.
DECLARATION

I certify that this thesis is submitted in accordance with the regulations of the University of Wollongong in fulfillment of the degree of Master of Science by Research. It does not include any material published by any other person, except where due reference is given in the text. The experimental work described in this thesis is original with all collaborations acknowledged and has not been submitted for a degree in any other university.

You Wang
ACKNOWLEDGEMENTS

Firstly, I would like to thank Dr. Ren Zhang for his help and advice throughout my laboratory work and his strong supports and helps when the project was in the trouble and kind correction of my thesis repeatedly. I would like to thank Dr. Peter John for his patient direction and advice for my work done in Canberra and kind correction of this manuscript repeatedly. I really thank Prof. Stuart Letham for his patient explanation and direction in the synthesis of cytokinin conjugates during our collaboration in the work. I thank him for his kind direction about the whole bioassay processes and the kind correction of the synthesis and bioassay part of my thesis repeatedly.

I thank all friendly and kind persons in both Dr. Ren Zhang’s and Dr. Peter John’s labs for their friendships and helps. Especially, I am grateful to Mr. Ruhu Qi and his family for the happy hours in Canberra. I also thank Mr. Song Chen for his help with the experiment of bioassay.

I really thank my parents for their strong supports and encouragement when I was in the difficult time. Due to these, I persisted in completing my study.
ABBREVIATIONS

A$_{542}$ absorbance at 542 nm
A$_{620}$ absorbance at 620 nm
ABRC Arabidopsis Biological Resource Center
AD activation domain
Ade adenine
AHK Arabidopsis histidine protein kinase
AHP Arabidopsis histidine phosphotransfer proteins
APRT adenosine phosphoribosyl transferase
ARR Arabidopsis nuclear response regulator
Asp aspartate
3-AT 3-aminotriazole
BAP benzylaminopurine
bp base pair
CBP cytokinin-binding protein
CDK cyclin-dependent kinase
cDNA complementary DNA
CHASE cyclases/histidine kinases-associated sensory extracellular
C-terminal carboxyl terminal
DBD DNA binding domain
DCHC 1,3-dicyclohexylcarbodiimide
dH$_2$O sterilized water
DMF dimethylformamide
DMSO dimethylsulfoxide
DNA deoxyribonucleic acid
DTT dothiothreitol
EB ethidium bromide
EDTA ethylenediamine tetraacetic acid
EI electron impact
ELISA enzyme-linked immunosorbent assay
ES-MS electrospray mass spectroscopy
FACS fluorescent-activated cell sorting
FITC fluorescein isothiocyanate
g gram
g gravity
GARP glutamic acid-rich protein
GEF guanyl-nucleotide exchange factor
GC-MS gas chromatography-mass spectroscopy
Glu glutamate
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>His</td>
<td>histidine</td>
</tr>
<tr>
<td>Hpt</td>
<td>histidine-containing phosphotransferase</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-like growth factor</td>
</tr>
<tr>
<td>Ile</td>
<td>isoleucine</td>
</tr>
<tr>
<td>IPA</td>
<td>isopentenyl adenosine</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase pair</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolt</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>Leu</td>
<td>leucine</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mAbs</td>
<td>monoclonal antibodies</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>mL</td>
<td>mililiter</td>
</tr>
<tr>
<td>mM</td>
<td>milimole</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-ribonucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectroscopy</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>Na</td>
<td>sodium</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NLSs</td>
<td>nuclear localization signals</td>
</tr>
<tr>
<td>n-PrOH</td>
<td>n-propyl alcohol</td>
</tr>
<tr>
<td>N-terminal</td>
<td>amino terminal</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PE</td>
<td>phycoerythrin</td>
</tr>
<tr>
<td>PGK</td>
<td>phosphoglycerate kinase</td>
</tr>
<tr>
<td>pH</td>
<td>hydrogen ion exponent</td>
</tr>
<tr>
<td>PRPP</td>
<td>5-phospho-1-ribosyl-1-pyrophosphate</td>
</tr>
<tr>
<td>rGR</td>
<td>rat glucocorticoid receptor</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>cycle per minute</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SAM</td>
<td>shoot apical meristem</td>
</tr>
<tr>
<td>SAP</td>
<td>shrimp alkaline phosphatase</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylammonium</td>
</tr>
<tr>
<td>Thr</td>
<td>threonine</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan</td>
</tr>
<tr>
<td>u</td>
<td>unit</td>
</tr>
<tr>
<td>UAS</td>
<td>upstream activating sequence</td>
</tr>
<tr>
<td>Ura</td>
<td>uracil</td>
</tr>
</tbody>
</table>
UV
wol
X-gal
X-gal
Y-2-H
Y-3-H
µF
µg
µL
µM
Ω
ultraviolet
wooden leg
5-Bromo-4-chloro-3-indolylb-D-galactopyranoside
yeast two-hybrid
yeast three-hybrid
microfarad
microgram
microliter
micromole
omega
LIST OF FIGURES

Figure 1.1 The structures of some representative cytokinins 1
Figure 1.2 Two-component signalling systems 14
Figure 1.3 Presumed model for cytokinin signaling pathway 16
Figure 1.4 The structures of type-A and type-B ARRs 18
Figure 1.5 The simplified layout of typical analytical flow cytometry 29
Figure 2.1 Formation of an activated ester derived from dexamethasone for conjugation to BAP with a 10-carbon side chain 33
Figure 2.2 The outline of the proposed synthetic processes of the four dexamethasone-BAP conjugates 34
Figure 2.3 The structures of the four BAP-dexamethasone conjugates 35
Figure 2.4 The structures of the two biotinylated BAP derivatives 36
Figure 2.5 The structures of the four compounds related to A, B and D which lack a steroid moiety 37
Figure 2.6 UV spectra of Compound A and the mixture 46
Figure 2.7 The standard curve of BAP for the bioassay 49
Figure 2.8 The comparison of the cytokinin activity of BAP and that of each compound at the same concentration 50
Figure 3.1 Diagram of (A) a simple Y-2-H system and (B) the form of Y-3-H system that was developed in this study 60
Figure 3.2 Structure map of pWY1 63
Figure 3.3 Structure map of the Arabidopsis cDNA library in the plasmid pACT 64
Figure 3.4 Structure map of the maize cDNA library in the plasmid pAD-GAL4-2.1 65
Figure 3.5 Structures of the four bait compounds (A, B, C, D) and an adenine compound (E) 66
Figure 3.6 The strategy of constructing the new hook plasmid, pWY1 74
Figure 3.7 Electrophoresis of the pooled plasmids isolated from
the cDNA library in pACT after digestion with \textit{Eco}RV and \textit{Xba}I

\textbf{Figure 3.8} Electrophoresis of the plasmids isolated from 24 colonies of the \textit{Arabidopsis} cDNA library after digestion with \textit{Eco}RV and \textit{Bam}HI

\textbf{Figure 3.9} Electrophoresis of the maize cDNAs in pAD-GAL4-2.1 plasmids purified

\textbf{Figure 3.10} Electrophoresis of the samples isolated from the 12 colonies after digestion with \textit{Eco}RI and \textit{Xho}I

\textbf{Figure 3.11} Effect of 3-AT on preventing cell growth due to leakage of \textit{HIS}3

\textbf{Figure 3.12} Growth of L40 and L40 (pSH17-4) on different GMM plates

\textbf{Figure 3.13} Electrophoresis of pEGHBD6 and pRCZ3 after \textit{Sph}I digestion

\textbf{Figure 3.14} Electrophoresis of the two purified DNA fragments (Lane 1 and Lane 2) and the putative pWY1 plasmid digested with \textit{Sph}I, \textit{Xho}I and \textit{Eco}RV (Lane 3, 4 and 5) respectively

\textbf{Figure 3.15} Electrophoresis of extracted plasmids from L40 (pWY1) digested with \textit{Xho}I

\textbf{Figure 3.16} Electrophoresis of the extracted plasmids from five L40 (pWY1+pACT) clones after digestion with \textit{Eco}RV and \textit{Bam}HI

\textbf{Figure 3.17} Electrophoresis of the extracted plasmids from five L40 (pWY1+pAD-GAL4-2.1) clones after digestion with \textit{Eco}RI and \textit{Xho}I

\textbf{Figure 3.18} A summary chart of the sequence of experimental steps that were used in developing a Y-3-H system to screen for cytokinin-binding proteins

\textbf{Figure 4.1} The map of pFL61

\textbf{Figure 4.2} Amount of bound cytokinin, detected indirectly by the amount of attached PE

\textbf{Figure 4.3} Flow cytometric analysis of a yeast clone (Clone 36)
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Histidine kinase-like cytokinin receptor candidates of Arabidopsis</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>The solutions prepared to detect the effect of DMSO on the bioassay</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The solutions prepared to establish the BAP standard curve</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The solutions prepared to detect the activities of the four compounds</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>The solutions prepared to detect the competition between BAP and compounds 1-3</td>
<td>43</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>The solutions prepared to detect the activity of each compound (A, B, C and D) and the competition between BAP and compounds</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>The solutions prepared to detect the biological activity of BAP-biotin conjugates</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>The effect of DMSO on the bioassay</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>The data for the standard curve of BAP in the bioassay</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>The detailed data for the activities of the four compounds shown in Figure 2.8</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Amaranthus betacyanin bioassay of BAP-dexamethasone conjugates</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Amaranthus betacyanin bioassay of compounds (1-3) related to the BAP-dexamethasone conjugates</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>Amaranthus betacyanin bioassay of BAP-dexamethasone conjugates in the presence of BAP</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Amaranthus betacyanin bioassay of BAP-biotin conjugates in the absence and presence of BAP</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Bacterial and yeast strains used in this study</td>
<td>61</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Plasmids used in this study</td>
<td>62</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>The original concentrations of the four conjugates and their proportions in the mixture</td>
<td>67</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>The titer of the λ phagemid library</td>
<td>80</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>The numbers of colonies recovered from the conversions of λ phagemid library into plasmid library</td>
<td>81</td>
</tr>
</tbody>
</table>
Table 3.6 Growth of the L40 cells on different GMM plates 85
Table 3.7 Cell growth of L40 and the cell lines transformed with different plasmids on different GMM plates 89
Table 3.8 Colony numbers of yeast L40 (pWY1+pACT) after transformation with the Arabidopsis cDNA plasmids 90
Table 3.9 Colony numbers of yeast L40 (pWY1+pAD-GAL4-2.1) after transformation with the maize cDNA plasmids 90
Table 3.10 Colony numbers of yeast His-independent L40 (pWY1+pACT) and L40 (pWY1+pAD-GAL4-2.1) cells on GMM plates containing adenine-dexamethasone or the bait conjugate mixture 93
Table 3.11 Comparison between the experimental system in this study and that in Licitra and Liu’s 94
Table 4.1 The recovered numbers of colonies with different fluorescent intensities and the numbers of cells collected by FACS 109