Short-term effects of altering the dietary carbohydrate to fat ratio on circulating leptin and satiety in women

Michelle A. Gordon

University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
SHORT-TERM EFFECTS OF ALTERING THE DIETARY CARBOHYDRATE TO FAT RATIO ON CIRCULATING LEPTIN AND SATIETY IN WOMEN

A thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

MICHELLE A. GORDON, BSc (Honours), MSc (Nutrition & Dietetics)

DEPARTMENT OF BIOMEDICAL SCIENCE

2004
Declaration

I, Michelle A. Gordon, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Biomedical Science, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. All work in this thesis has not been submitted for qualifications at any other academic institution.

Michelle A. Gordon

15th December 2004
Wollongong, Australia
Abstract

Background: Overweight and obesity have reached epidemic proportions and appetite control may be important for its clinical management. Leptin is a plasma protein secreted from adipose tissue that is involved in body weight regulation. The role of leptin in regulating human appetite is not well established. Human feeding studies report that an increased dietary carbohydrate to fat ratio is associated with increased circulating leptin concentrations compared to a decreased dietary carbohydrate to fat ratio. These investigations have generally used diets with extreme variations in macronutrient intake that do not represent normal patterns of consumption. Whether less extreme variations in macronutrient intake have similar effects on circulating leptin and whether there is a relationship with satiety under these conditions is not established. The overall aim of this research was to determine the potential clinical relevance of the effects of altering the dietary carbohydrate to fat ratio on circulating leptin concentrations.

Methods: Three short-term controlled human feeding studies were conducted involving 68 female subjects (age 37 ± 9 (SD) yrs, BMI 26.8 ± 4.1 kg/m^2). Study 1 and Study 2 were single-blind parallel design trials where realistic high carbohydrate (carbohydrate:fat= 60:20) or high fat (carbohydrate:fat= 40:40) isocaloric diets were provided. Study 3 was a double-blind cross-over trial where high carbohydrate (carbohydrate:fat= 60:20) and extreme high fat (carbohydrate:fat= 25:55) diets were provided. The primary outcomes were fasting leptin concentrations and subjective satiety measured on a multi-dimensional and single-dimension visual analogue scales. In Study 3 ad libitum intake was also assessed at a post-intervention buffet breakfast. Two-way repeated measures analysis of variance was used to analyse the effect of the intervention diets over time on the outcome measures.
Results: There was no between group difference in fasting leptin concentrations when realistic high carbohydrate and high fat controlled diets were consumed in Study 1 and Study 2 (p>0.4). This finding was similar when leptin concentrations were adjusted for body composition. Within subjects, changes in recent dietary carbohydrate and fat intake predicted a decrease in leptin concentrations during the intervention, but effects were small. A weak linear relationship between leptin concentrations and subjective satiety score was detected in Study 1 (p=0.06), but no relationship was detected in Study 2 and Study 3 (p>0.7). In Study 3 the more extreme high fat diet reduced leptin concentrations by 21% relative to the high carbohydrate diet (time*diet interaction, p<0.01). There was no influence of this difference in leptin concentration on *ad libitum* energy or macronutrient intake at the buffet breakfast (95% CI for difference in energy intake -411kJ to 190kJ).

Conclusions: Circulating leptin concentrations are influenced by dietary carbohydrate to fat ratio such that decreasing the carbohydrate content of the diet results in decreased circulating leptin concentrations. However, the potential clinical relevance of this finding to the management of overweight and obesity is likely to be limited as i) extreme dietary patterns are necessary to detect this effect, ii) leptin concentrations were not related to subjective satiety score and iii) differences in leptin concentrations did not influence *ad libitum* food intake. Further research is necessary to confirm these findings over longer time frames, with different subject groups, twenty four hour blood sampling and *ad libitum* intake over the entire day.
Acknowledgements

I would like to thank many people for their significant contribution to this thesis.

Firstly, I extend my sincerest gratitude to my academic supervisors and mentors Associate Professor Arthur Jenkins and Professor Linda Tapsell. Thank you for being a constant source of wisdom, guidance and support. I am indebted to you for giving me your advice at all possible and impossible times. Without your trust in my abilities and support in the concurrent completion of my MSc and PhD, this thesis would not have been possible.

To my colleagues and friends in the Department of Biomedical Science, thank you for providing a challenging yet welcoming environment for learning. My warmest thanks go to my fellow PhD students for sharing many moments in the office, laboratory, bar and coffee cart. To Nicole Smede and Nola Hurt thank you for your assistance in making things happen.

Thank you to all members of my research teams. To Dr Brin Grenyer for his expert advice about the psychological aspects of the trials and Sr Sheena McGhee for her support and calm demeanour, thank you. A special thanks to all the women who participated in the studies.

I gratefully acknowledge the financial support of the NH&MRC for providing the grant for this research. I thank the University of Wollongong for my scholarship, and the Smart Foods Centre, Metabolic Research Centre and Department of Biomedical Science for their assistance with conference attendance. Thank you to my supervisors for giving me their support in attending eight national and two international conferences.

To my friends who have heard about my thesis many more times than is healthy, thank you for being there and for believing in me. A special thanks go to Jacqui, Vince, Nigel, Janelle and Trace for their encouragement and help with editing.

The last word of thanks must go to my dear family who have been with me every step of the way and without whom the opportunities that lay before me would not be possible.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BIA</td>
<td>Bioelectrical impedance analysis</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholecystokinin</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>DH</td>
<td>Diet history</td>
</tr>
<tr>
<td>DR</td>
<td>Dietary restraint</td>
</tr>
<tr>
<td>DXA</td>
<td>Dual energy x-ray absorptiometry</td>
</tr>
<tr>
<td>FR</td>
<td>Food record</td>
</tr>
<tr>
<td>%E</td>
<td>Percentage of energy</td>
</tr>
<tr>
<td>GI</td>
<td>Glycemic index</td>
</tr>
<tr>
<td>GLP-1</td>
<td>Glucagon like peptide-1</td>
</tr>
<tr>
<td>HC</td>
<td>High carbohydrate</td>
</tr>
<tr>
<td>HF</td>
<td>High fat</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acid</td>
</tr>
<tr>
<td>NPY</td>
<td>Neuropeptide Y</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>TFEQ</td>
<td>Three factor eating questionnaire</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual analogue scale</td>
</tr>
<tr>
<td>VMH</td>
<td>Ventromedial hypothalamus</td>
</tr>
</tbody>
</table>
Thesis publications and conference abstracts

Table of Contents

Declaration………………………………………………………………………………………i
Abstract………………………………………………………………………………………………ii
Acknowledgements………………………………………………………………………………iv
List of Abbreviations……………………………………………………………………………v
Thesis publications and conference abstracts………………………………………………vi
Table of Contents………………………………………………………………………………vii
List of Tables……………………………………………………………………………………xiv
List of Figures……………………………………………………………………………………xvi

Chapter 1: Introduction

1.1 Scope of thesis ...1
1.2 Overweight and obesity ..1
 1.2.1 Definition...1
 1.2.2 Prevalence ..1
 1.2.3 Implications ..2
 1.2.4 Aetiology ...3
 1.2.5 Clinical management ..4
1.3 Dietary carbohydrate to fat ratio ..5
 1.3.1 Recommended intakes ...5
 1.3.2 Dietary carbohydrate ..6
 1.3.3 Dietary fat ...9
1.4 Appetite regulation ..10
 1.4.1 Terminology ..10
 1.4.2 Psychological appetite regulation ...10
 1.4.3 Physiological appetite regulation ...11
 1.4.4 Macronutrients and satiety ...13
 1.4.5 Macronutrient preferences ...14
Chapter 2: Methodology

2.1 Studying the diet and disease relationship ... 32
 2.1.1 Study population ... 32
 2.1.2 Subject compliance ... 33
 2.1.3 Blinding to intervention .. 33
 2.1.4 Intervention efficacy ... 34
2.2 Dietary intake assessment .. 34
 2.2.1 Diet history interview ... 34
 2.2.2 Food records ... 36
 2.2.3 Dietary underreporting ... 37
2.3 Body composition assessment .. 38
 2.3.1 Dual energy x-ray absorptiometry .. 38
 2.3.2 Bioelectric impedance analysis .. 39
2.4 Satiety assessment ... 40
 2.4.1 Subjective satiety scales .. 41
 2.4.2 Ad libitum food intake .. 42
2.5 Circulating leptin concentrations .. 43
 2.5.1 Blood collection ... 43
 2.5.2 Body composition adjustment .. 44
2.6 Dietary restraint score

2.6.1 Three factor eating questionnaire

Chapter 3: Human feeding study 1

3.1 Rationale

3.2 Aims & hypotheses

3.3 Methods

- 3.3.1 Subjects
- 3.3.2 Experimental protocol
- 3.3.3 Menstrual cycle data
- 3.3.4 Anthropometric data
- 3.3.5 Body composition data
- 3.3.6 Dietary intake data
- 3.3.7 Intervention diet
- 3.3.8 Subjective satiety evaluation
- 3.3.9 Biochemical analysis
- 3.3.10 Statistical analysis

3.4 Results

- 3.4.1 Subject characteristics
- 3.4.2 Menstrual cycle data
- 3.4.3 Diet history intake
- 3.4.4 Food record dietary intake
- 3.4.5 Diet history and food record differences
- 3.4.6 Intervention dietary intake
- 3.4.7 Intervention and 24hr food record differences
- 3.4.8 Leptin and body fat relationship
- 3.4.9 Serum leptin concentration
- 3.4.10 Serum leptin adjusted for body fat
- 3.4.11 Dietary predictors of adjusted leptin
- 3.4.12 Serum insulin concentration
Chapter 4: Human feeding study 2

4.1 Rationale ... 77
4.2 Aims & hypotheses ... 78
4.3 Methods ... 79
 4.3.1 Subjects .. 79
 4.3.2 Experimental protocol .. 80
 4.3.3 Dietary restraint .. 81
 4.3.4 Anthropometric data ... 81
 4.3.5 Body composition data .. 81
 4.3.6 Dietary intake data .. 81
 4.3.7 Intervention diet .. 82
 4.3.8 Subjective satiety evaluation 83
 4.3.9 Biochemical analysis .. 83
 4.3.10 Statistical analysis .. 83
4.4 Results ... 84
 4.4.1 Subject characteristics .. 84
 4.4.2 Menstrual cycle data ... 84
 4.4.3 Diet history intake .. 85
 4.4.4 Dietary restraint .. 86
 4.4.5 Food record intake .. 86
 4.4.6 Diet history and food record differences 88
 4.4.7 Intervention dietary intake 88
 4.4.8 Intervention and food record differences 89
Chapter 5: Human feeding study 3

5.1 Rationale ... 110
5.2 Aims & hypotheses ... 111
5.3 Methods ... 112
 5.3.1 Subjects .. 112
 5.3.2 Experimental protocol ... 113
 5.3.3 Anthropometric data ... 114
 5.3.4 Bioelectric impedance analysis 114
 5.3.5 Dietary intake data .. 114
 5.3.6 Intervention diet .. 115
 5.3.7 Sensory evaluation .. 116
 5.3.8 Buffet breakfast ... 117
 5.3.9 Subjective satiety evaluation 118
 5.3.10 Biochemical analysis .. 119
 5.3.11 Statistical analysis ... 119
5.4 Results ..119
 5.4.1 Subject characteristics ..119
 5.4.2 Menstrual cycle data ..121
 5.4.3 Diet history intake ...121
 5.4.4 Dietary restraint ...122
 5.4.5 Food record intake ..123
 5.4.6 Intervention dietary intake ..124
 5.4.7 Intervention and food record differences ..125
 5.4.8 Sensory evaluation ..125
 5.4.9 Ad libitum breakfast intake ..126
 5.4.10 Debriefing questionnaire ...128
 5.4.11 Leptin and body fat relationship ..128
 5.4.12 Serum leptin concentrations ...129
 5.4.13 Dietary predictors of leptin ...129
 5.4.14 Serum insulin concentrations ..130
 5.4.15 Serum glucose concentrations ..131
 5.4.16 Subjective satiety score, multi-dimensional scale132
 5.4.17 Subjective satiety score, single dimension scales132
 5.4.18 Subjective satiety and ad-libitum intake133
 5.4.19 Dietary restraint, leptin and subjective satiety134
 5.4.20 Serum leptin and satiety, multi-dimensional scale134
 5.4.21 Serum leptin and satiety, single dimension scales135
5.5 Discussion ..135
5.6 Conclusions ..145

Chapter 6: Summary and conclusions

6.1 Potential clinical relevance of research findings146
 6.1.1 Realistic dietary carbohydrate to fat ratio and circulating leptin147
 6.1.2 Extreme dietary carbohydrate to fat ratio and circulating leptin148
 6.1.3 Mechanisms of macronutrient effects on circulating leptin149
6.1.4 Circulating leptin concentrations and subjective satiety 150
6.1.5 Circulating leptin concentrations and ad libitum intake 151
6.2 Limitations of research .. 151
6.3 Conclusions ... 152
6.4 Future research directions ... 152

Chapter 7: References

7.1 Cited references .. 154

Appendix 1: Human feeding study 1

Appendix 2: Human feeding study 2

Appendix 3: Human feeding study 3
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Study 1: Intervention diet composition</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Study 1: Intervention meal plan</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Study 1: Subject characteristics</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Study 1: Menstrual cycle data</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Study 1: Habitual dietary intake</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Study 1: Day 0 dietary intake</td>
<td>59</td>
</tr>
<tr>
<td>3.7</td>
<td>Study 1: Day 0 and habitual intake difference</td>
<td>59</td>
</tr>
<tr>
<td>3.8</td>
<td>Study 1: Intervention dietary intake</td>
<td>60</td>
</tr>
<tr>
<td>3.9</td>
<td>Study 1: Intervention and Day 0 intake differences</td>
<td>61</td>
</tr>
<tr>
<td>3.10</td>
<td>Study 1: Post-hoc dietary predictors of serum leptin</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Study 2: Intervention diet composition</td>
<td>82</td>
</tr>
<tr>
<td>4.2</td>
<td>Study 2: Intervention drink composition</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>Study 2: Subject characteristics</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>Study 2: Habitual dietary intake</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>Study 2: Restrained and unrestrained eaters characteristics</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Study 2: Restrained and unrestrained eaters habitual diet</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>Study 2: Day 0 dietary intake</td>
<td>87</td>
</tr>
<tr>
<td>4.8</td>
<td>Study 2: Day 0 and habitual intake difference</td>
<td>88</td>
</tr>
<tr>
<td>4.9</td>
<td>Study 2: Part 1 and Part 2 dietary intake</td>
<td>89</td>
</tr>
<tr>
<td>4.10</td>
<td>Study 2: Intervention dietary intake</td>
<td>89</td>
</tr>
<tr>
<td>4.11</td>
<td>Study 2: Intervention and Day 0 intake difference</td>
<td>90</td>
</tr>
<tr>
<td>4.12</td>
<td>Study 2: Post-hoc dietary predictors of serum leptin</td>
<td>93</td>
</tr>
<tr>
<td>4.13</td>
<td>Study 2: Leptin and satiety, restrained and unrestrained eaters</td>
<td>101</td>
</tr>
<tr>
<td>5.1</td>
<td>Study 3: Intervention diet composition</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Study 3: Intervention meal plan</td>
<td>116</td>
</tr>
<tr>
<td>5.3</td>
<td>Study 3: Sensory properties of milkshake formulas</td>
<td>117</td>
</tr>
<tr>
<td>5.4</td>
<td>Study 3: Buffet breakfast foods</td>
<td>118</td>
</tr>
<tr>
<td>5.5</td>
<td>Study 3: Subject characteristics</td>
<td>120</td>
</tr>
<tr>
<td>5.6</td>
<td>Study 3: Habitual dietary intake</td>
<td>121</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.7</td>
<td>Study 3: Restrained and unrestrained eaters characteristics</td>
<td>122</td>
</tr>
<tr>
<td>5.8</td>
<td>Study 3: Restrained and unrestrained eaters habitual diet</td>
<td>123</td>
</tr>
<tr>
<td>5.9</td>
<td>Study 3: Day 0 dietary intake</td>
<td>124</td>
</tr>
<tr>
<td>5.10</td>
<td>Study 3: Intervention dietary intake</td>
<td>125</td>
</tr>
<tr>
<td>5.11</td>
<td>Study 3: Sensory evaluation of milkshake formulas</td>
<td>126</td>
</tr>
<tr>
<td>5.12</td>
<td>Study 3: Ad libitum breakfast intake</td>
<td>127</td>
</tr>
<tr>
<td>5.13</td>
<td>Study 3: Post-buffet satiety ratings</td>
<td>127</td>
</tr>
<tr>
<td>5.14</td>
<td>Study 3: Post-hoc dietary predictors of serum leptin</td>
<td>130</td>
</tr>
<tr>
<td>5.15</td>
<td>Study 3: Relationship between satiety and dietary intake</td>
<td>133</td>
</tr>
<tr>
<td>5.16</td>
<td>Study 3: Leptin and satiety, restrained and unrestrained eaters</td>
<td>134</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Hypothesised relationship between dietary carbohydrate, circulating leptin and satiety…………………………………………………………31

2.1 Harris-Benedict equation…………………………………………………….37

3.1 Study 1: Experimental timeline………………………………………..50

3.2 Study 1: Serum leptin and body fat relationship…………………..61

3.3 Study 1: Serum leptin concentrations over time…………………...62

3.4 Study 1: Serum leptin adjusted for body fat over time………….63

3.5 Study 1: Serum insulin concentrations over time…………………..64

3.6 Study 1: Serum insulin and leptin relationship…………………..65

3.7 Study 1: Serum glucose concentrations over time………………..66

3.8 Study 1: Satiety score over time………………………………………..67

3.9 Study 1: Serum leptin and satiety relationship…………………..67

4.1 Study 2: Experimental timeline………………………………………..81

4.2 Study 2: Serum leptin and body fat relationship…………………..90

4.3 Study 2: Serum leptin concentrations over time, parts…………91

4.4 Study 2: Serum leptin concentrations over time, diets…………92

4.5 Study 2: Serum leptin adjusted for body fat over time………….93

4.6 Study 2: Serum insulin concentrations over time…………………..94

4.7 Study 2: Serum insulin and leptin relationship…………………..95

4.8 Study 2: Serum glucose concentrations over time………………..95

4.9 Study 2: Satiety score over time………………………………………..96

4.10 Study 2: Hunger score over time……………………………………..97

4.11 Study 2: Fullness score over time……………………………………..97

4.12 Study 2: Desire to eat score over time………………………………98

4.13 Study 2: Prospective consumption score over time………………99

4.14 Study 2: Average satiety score over time, parts…………………..100

4.15 Study 2: Average satiety score over time, diets…………………..100
4.16 Study 2: Serum leptin and satiety relationship, multi-dimensional satiety scale..102
4.17 Study 2: Serum leptin and satiety relationship, single dimension satiety scale.. 102
5.1 Study 3: Experimental timeline...113
5.2 Study 3: Serum leptin and body fat relationship...............................128
5.3 Study 3: Serum leptin concentrations over time, diets...................129
5.4 Study 3: Serum insulin concentrations over time............................130
5.5 Study 3: Serum glucose concentrations over time...........................131
5.6 Study 3: Average satiety score over time, multi-dimension............ 132
5.7 Study 3: Average satiety score over time, single dimension........... 133
5.8 Study 3: Serum leptin and satiety relationship, multi-dimensional satiety scale.. 134
5.9 Study 3: Serum leptin and satiety relationship, single dimension satiety scale.. 135