Age-related human nuclear cataract. Blindness due to inexorable protein deterioration

R Truscott
University of Wollongong, rjwt@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/ihmri

Part of the Medicine and Health Sciences Commons

Recommended Citation
https://ro.uow.edu.au/ihmri/391

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Age-related human nuclear cataract. Blindness due to inexorable protein deterioration

Abstract
Abstract from the 2013 European Association for Vision and Eye Research Conference, 18-21 September 2013, Nice, France.

Keywords
protein, inexorable, due, blindness, deterioration, cataract, age, nuclear, human, related

Disciplines
Medicine and Health Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/ihmri/391
3765

You have free access to this content

Age-related human nuclear cataract. Blindness due to inexorable protein deterioration

1. R TRUSCOTT

Article first published online: 6 AUG 2013

DOI: 10.1111/j.1755-3768.2013.3765.x

2013 Acta Ophthalmologica

Issue

Acta Ophthalmologica

Special Issue: Abstracts from the 2013 European Association for Vision and Eye Research Conference

Volume 91, Issue Supplement s252, page 0, August 2013

Additional Information

How to Cite


Author Information

University of Wollongong, Illawarra Health and Medical Research Institute, Wollongong

Publication History
Abstract

Nuclear cataract stems from the inexorable breakdown of long-lived macromolecules in the human lens. Although this realization is new, the overall framework is now quite clear. Racemisation, deamidation and truncation are the main drivers of protein denaturation and some amino acids are particularly susceptible to age-related decomposition. Understanding these processes leads to a conclusion that the prospects for reversing lens opacification are remote. Since age-related cataract appears to be inevitable, future strategies for slowing cataract formation may depend on a detailed examination of people who retain clear lenses into their eighth and ninth decades.

More content like this

Find more content:

- like this article

Find more content written by:

- R TRUSCOTT