The role of a subsurface lime-fly ash barrier in the mitigation of acid sulphate soils

Laura J. Banasiak

University of Wollongong, lbanasia@uow.edu.au

Recommended Citation
THE ROLE OF A SUBSURFACE LIME-FLY ASH BARRIER IN
THE MITIGATION OF ACID SULPHATE SOILS

A thesis submitted in fulfillment of the requirements for the award of the degree

MASTERS OF ENGINEERING - RESEARCH

From

UNIVERSITY OF WOLLONGONG

By

LAURA JOAN BANASIAK
B. Env. Sci. (Hons)

FACULTY OF ENGINEERING
2004
DECLARATION

I, Laura J. Banasiak, declare that this thesis, submitted in fulfilment of the requirements for the award of Masters of Civil Engineering, in the Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for any qualifications at any other academic institution.

Laura B. Banasiak
21 December 2004
ACKNOWLEDGEMENTS

The success of this research can be partly attributed to the assistance of many people. Firstly, I would like to thank Professor Buddhima Indraratna, my supervisor, for his constant support and encouragement. He has assisted me in acquiring additional skills and knowledge relating to my research and has been a constant source of information and his expertise has been beneficial to my progress. I now have a greater sense of confidence in regards to my academic abilities.

I would also like to thank Roy Lawrie (NSW Department of Agriculture), David Clark and Robert Clark (Clarks Mining Services), John Boers (J. & M. Boers) for their technical advice and in-field assistance. Thank you to the staff led by Graham Lancaster at the Southern Cross University Environmental Analysis Laboratory for performing part of the water chemical testing. Thankyou to Greg Thompson and staff of Allen, Price and Associates for the surveying of the lime-fly ash barrier field site.

Thanks to the technical staff and students at the University of Wollongong, Faculty of Engineering for their assistance. Special thanks to Bob Rowlan for his tireless help, knowledge and long days in the field and to Joanne George for her constant support in the Environmental Engineering Laboratory. I would also like to thank Ian Kirby, Ian Bridge, Ian Frew, Norm Gal, Mark Rigoni, Marcus Morgan and Alexandra Golab.

Without the support of local landholders this project would not have been possible. I would like to thank Neil and Kay Lord, Harris, the Forsyth Family for generously providing me with field sites.

Thank you to all my family for their support and encouragement throughout the completion of this thesis. Special thanks to my grandma and field work helper Joan Cowell who helped me and provided me with constant entertainment that made fieldwork more enjoyable. My grandpa Bill Cowell also deserves special thanks for his nifty gadgets that made field work just that little bit easier.
The effectiveness of using a sub-surface lime-fly ash barrier to reduce the oxidation of a pyritic soil layer and to improve groundwater and surface water quality was investigated for land affected by acid sulphate soils near Berry in southeastern NSW, Australia. Prior to the installation of the lime-fly ash barrier, groundwater and surface water analyses indicated a highly acidic environment. High concentrations of dissolved aluminium, total iron and sulphate in the groundwater were a result of falling groundwater tables and biotic oxidation. Traditional management techniques of groundwater manipulation, via floodgates or weirs, would be rendered ineffective in arresting biotic oxidation where the pyrite layer is submerged.

The study combined field and laboratory analysis in order to determine the feasibility of the lime-fly ash barrier at the study site. A comprehensive field study incorporated the installation of piezometers and observation wells to determine the level of the phreatic surface along with the monitoring of water quality parameters at the site of the lime-fly ash barrier, and also floodgate sites and the site of the self-regulating tilting weir. The installation of the lime-fly ash barrier was undertaken by the pumping of a slurry through boreholes via pressure pumping.

The subsurface lime-fly ash barrier, as an acid sulphate soil remediation technique, was shown to significantly improve groundwater quality. Groundwater pH increased to values between 4.5 and 5.5. The concentration of the pyritic oxidation products, acidic cations Al^{3+} and Fe_{total}, basic cations Ca^{2+} and Mg^{2+} and anions Cl^- and SO_4^{2-}, also, on average decreased in the groundwater after the installation of the lime-fly ash barrier. A comparison between the average groundwater table elevations before and after the installation of the barrier also indicated a perched water table, which would reduce the exposure of pyritic soil to oxygen, and in turn reduce pyritic oxidation and the generation of acidic products.

The Lime-fly ash barrier is effective in remediating acid sulphate soils in areas in which floodgates and weirs cannot be installed. A comparison of the result shows that the lime-fly ash barrier had greater success in increasing the groundwater pH than the self-regulating tilting weir. The lime-fly ash barrier treats acid sulphate soils and...
the related environmental problems before they occur, whereas, the floodgates treat the pyrite oxidation products generated after they have been discharged into the flood mitigation drains. Significantly greater concentrations of Al^{3+}, Fe_{total} and SO_4^{2-} were found in the groundwater at the floodgate sites.
TABLE OF CONTENTS

DECLARATION.. II

ACKNOWLEDGEMENTS.. III

ABSTRACT.. IV

TABLE OF CONTENTS .. VI

LIST OF FIGURES.. XIII

LIST OF TABLES.. XX

LIST OF PLATES.. XXI

CHAPTER 1 INTRODUCTION ... 1

1.1 General Background ... 1
1.2 Purpose of Study ... 1
1.3 Research Aims ... 2
1.4 Thesis Structure .. 3
1.4.1 Part I: Literature Review .. 3
1.4.2 Part II: Field trial of Sub-surface Lime-Fly ash Barrier 3
1.4.3 The impact of the Sub-surface Lime Fly ash Barrier on groundwater and
 surface water quality ... 4
1.4.4 Conclusions and Recommendations .. 4

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Introduction .. 5
2.2 Introduction to Acid Sulphate Soils ... 5
2.2.1 Formation of Pyrite .. 6
2.2.2 Distribution of Acid Sulphate Soils ... 10
2.3 Properties of Acid Sulphate Soils .. 12
2.3.1 Oxidation of Pyrite .. 12
2.3.2 Physical Properties of Acid Sulphate Soils ... 18
2.3.3 Oxidation Products ... 19
2.3.4 Acid Drainage .. 21
2.3.5 Release of Metals .. 22
2.4 Problems Associated with Acid Sulphate Soils 24
2.4.1 Impacts on aquaculture environment .. 24
2.4.2 Impacts on terrestrial plant life .. 26
2.4.3 Engineering problems ... 27
2.5 Hydrological Dynamics of Acid Sulphate Soils 28
2.5.1 Subsurface Water Flow ... 28
2.5.2 Hydrological Interactions .. 29
2.5.3 Effect of prolonged wet and dry periods on floodplain hydrology 30
2.5.4 Artificial Drainage ... 32
2.5.5 One-way floodgates ... 33
2.5.6 Tidal Buffering ... 34
2.6 Management and Rehabilitation of Acid Sulphate Soils... 35
2.6.1 Oxidation and Leaching .. 37
2.6.2 Removal of Pyritic Material ... 37
2.6.3 Acid Neutralisation ... 37
2.6.4 Liming .. 37
2.6.5 Permeable Reactive Barriers .. 38
2.6.5.1 Calcareous Reactive Barriers ... 39
2.6.5.2 Other materials .. 40
2.7 Review Previous Research into the Use of Lime and/or Fly Ash for the Improvement of Soils ... 40
2.7.1 Lime Columns ... 41
2.7.2 Studies using Lime and/or Fly ash ... 41
2.7.3 Sub-surface Chemical Injections using lime and/or Fly ash 43
2.8 Review of Previous Acid Sulphate Soil Rehabilitation Research and Management Strategies Relevant to this Current Study ... 44
2.8.1 V-notch Weirs ... 44
2.8.2 Self-regulating tilting weir ... 47
2.8.3 Modification of Floodgates .. 50
2.8.4 The role of anaerobic oxidation ... 53
2.9 Implications for Current Research ... 55

CHAPTER 3 PROPERTIES OF GROUTS AND GROUTING THEORY RELEVANT TO SUB-SURFACE LIME-FLY ASH BARRIER INSTALLATION ... 57

3.1 Introduction ... 57
3.2 Grouting Principles ... 57
3.2.1 Introduction to Grouting .. 57
3.3 Properties of Grouts .. 57
3.3.1 Groutability ... 58
3.4 Requirements for Grouts .. 59
3.5 Constituents and Use of Grout Fluids .. 59
3.5.1 Lime ... 59
3.5.2 Fly Ash .. 61
3.6 Theoretical Analysis of the Radical Flow of Grout in a soil .. 61
3.6.1 Plane of Weakness Theory ... 61
3.6.2 Allowable injection pressures .. 63
3.6.3 Radial (lateral) flow from an injection borehole ... 64
3.7 Implications for the Current Research ... 68

CHAPTER 4.0 FIELD STUDY SITE INFORMATION AND MONITORING DETAILS ... 69

4.1 Introduction .. 69
4.2 Study site location ... 70
4.2.1 Geology and Geomorphology .. 71
4.3 Field Equipment and Monitoring ... 80
4.3.1 Lime-fly ash barrier Study Site Evacuation Characteristics and Site
Table of Contents

Topographic Survey .. 80
4.3.2 Installation of Observation Holes ... 84
4.3.3 Water Quality Monitoring ... 85
4.3.3.1 pH, Electrical conductivity, Temperature and groundwater table Elevation .. 85
4.3.3.2 Chloride and Sulphate Concentration ... 87
4.3.3.3 Determination of cations ... 87
4.3.4 Construction and Installation of Piezometers 88
4.4 Soil Investigations .. 91
4.4.1 Soil Sampling Methods .. 91
DESCRIPTION .. 91
4.4.2 Results and Discussion .. 93
4.4.2.1 Soil pH .. 93
4.4.2.2 Soil Electrical Conductivity ... 94
4.4.2.3 Soil Total Actual Acidity .. 95
4.4.2.4 Soil Inorganic Reduced Sulphur (%Ser) 96
4.4.2.5 Soil Sulphate and Chloride Concentrations 97
4.5 Climate Conditions .. 99
4.6 Site Weather Conditions .. 99
4.6.1 Rainfall ... 99
4.6.2 Southern Oscillation Index (SOI) .. 104
4.7 Implications for Acid Sulphate Soils .. 106

CHAPTER 5.0 LIME-FLY ASH BARRIER FIELD TRIALS 107

5.1 Introduction ... 107
5.2 Grout Selection and Injection Pressure ... 107
5.3 Injection Equipment ... 108
5.4 Preliminary Test Injections ... 109
5.5 Installation of the Lime-Fly Ash Barrier ... 112
5.5.1 Drilling of injection holes .. 112
5.5.2 Mixing of lime-fly ash/water slurry ... 112
5.5.3 Injection of lime-fly ash/water slurry ... 113
5.6 Evaluation of the Lime-Fly Ash Barrier in the Field 114

CHAPTER 6.0 GROUND WATER DYNAMICS BEFORE AND AFTER THE INSTALLATION OF THE LIME-FLY ASH BARRIER 115

6.1 Introduction ... 115
6.2 Groundwater elevation characteristics during the study period 115
6.2.1 Relationship between groundwater table elevation and pyritic soil Oxidation ... 119
6.3 Pre-Barrier groundwater dynamics .. 120
6.4 Post-barrier groundwater dynamics ... 122
6.5 Comparison Between Pre- and Post Barrier Groundwater Dynamics ... 123
6.6 Conclusions .. 124

CHAPTER 7.0 DRAIN WATER AND GROUNDWATER QUALITY AT THE SITE OF THE LIME-FLY ASH BARRIER .. 126
LIST OF FIGURES

Figure 2.1: Environmental Conditions required for pyrite accumulation (Naylor et al., 1995) ... 9
Figure 2.2: Risk map of acid sulphate soils within coastal NSW (Naylor et al., 1995) ... 13
Figure 2.3: Influence of oxygen concentration on bacteria activity (Jaynes et al, 1984) ... 15
Figure 2.4: Influence of temperature on bacterial activity (Jaynes et al., 1984) 16
Figure 2.5: Influence of pH on bacteria activity (Jaynes et al., 1984) 16
Figure 2.6: Sequence of mineral reactions for biological pyrite oxidation, showing relationships between oxidising agents, catalysts and mineral products (Nordstorm, 1982) ... 18
Figure 2.7: Idealised Eh-pH diagram for the Fe-S-O system (van Breeman, 1976). 21
Figure 2.8: Generation of acidic water by drainage (Drever, 1997) 22
Figure 2.9: Relationship between pH and concentrations of [Al$^{3+}$] and [Fe$^{3+}$] (Indraratna, Sullivan and Nethery, 1995) 24
Figure 2.10: Groundwater elevation at 10 m (dot) and 90 m (square) from the drain, with the rainfall and evapotranspiration per day for the 1997-1998 period (Indraratna et al., 2001) ... 32
Figure 2.11: Artificial drainage scheme for an acid sulphate soil affected floodplain (Naylor et al., 1993) ... 33
Figure 2.12: Impact of one-way floodgates on groundwater elevation under normal (a) and flood (b) conditions (Glamore, 2003 adapted from Indraratna et al., 2002) 34
Figure 2.13: Cross-sectional view of the permeable reactive barrier process (Gavaskar, 1999) ... 38
Figure 2.14: Effect of additives on pH levels of colluvium (Indraratna, 1996) 42
Figure 2.15: Location of weirs, floodgate and piezometers at the study site (Blunden, 2000) ... 46
Figure 2.16: Comparison of the average groundwater elevation at a transect prior to and proceeding weir installation, also showing the maximum and minimum groundwater elevation and standard error bars (Indraratna et al, 2001) 47
Figure 2.17: Post-weir groundwater elevations following the installation of the Self-Regulating Tilting Weir (Earnshaw, 2001) 49
Figure 2.18: pH values for sampling points C1, C10, C20 and C50 during the sampling period (Earnshaw, 2001) ... 49
Figure 2.19: total Fe(a) and Total Al (b) concentration at sampling point C1 during the sampling period (Earnshaw, 2001) ... 50
Figure 2.20: In situ drain water pH readings taken immediately before and after floodgate modifications (Days 296-314) (Glamore, 2003) 52
Figure 2.21: Soluble aluminium and iron concentrations following floodgate modifications with rainfall (Glamore, 2003) 53
Figure 3.1: Formation of calcium silicate around soil particles (van Impe, 1989) 60
Figure 4.1: Location of the study site .. 70
Figure 4.2: Landforms of the Shoalhaven River deltaic estuarine plains (Umitsu et al., 2001) ... 72
Figure 4.3: Evolution of the lower Shoalhaven floodplain (Roy, 1984) 74
Figure 4.4: Geomorphology of the Shoalhaven River Catchment 9roy, 1984) 75
Figure 4.5: Location and distribution of Acid Sulphate Soils 75
Figure 4.6: Location of Floodgate and Weir sites in relation to Lime-fly ash barrier study site ... 81
Figure 4.7: Digital Elevation Map (DEM) of Broughton Creek floodplain 82
Figure 4.8: Topographic survey of Lime-fly ash barrier study site 83
Figure 4.9: Layout of the Study site showing location of observation holes and piezometers ... 86
Figure 4.10: Design Layout of Piezometers ... 89
Figure 4.11: Change in soil pH with depth at Lime-fly ash Barrier Site 93
Figure 4.12: Change in soil Electrical Conductivity with depth at the Lime-fly ash Barrier site ... 94
Figure 4.13: Change in Soil Total Actual Acidity (TAA) with depth at the Lime-fly ash barrier site .. 96
Figure 4.14: Change in Soil % Sulphur with depth at Lime-fly ash barrier site 97
Figure 4.15: Change in Soil C1- and SO42- concentration with depth at the Lime-fly ash barrier site ... 98
Figure 4.16: Change in Soil C10:SO42- ratio with depth at Lime-fly ash barrier site .. 98
Figure 4.17a: Daily rainfall pre-barrier .. 100
Figure 4.17b: Daily rainfall post-barrier .. 100
Figure 4.18: Monthly rainfall measured at the site compared to the long-term monthly average. Data labelled with an ‘N’ was recorded at the Nowra Treatment Works Station. Long-term average data was missing for some months during study period .. 102
Figure 4.19a: Distribution of rainfall intensities for the pre-barrier period … 103
Figure 4.19b: Distribution of rainfall intensities for the post-barrier period…… 104
Figure 4.20: SOI for the study period .. 105
Figure 6.1: Average groundwater elevation at the Lime-fly ash Barrier Site during the study period .. 116
Figure 6.2a: Groundwater table elevations at transect B, C, D and E during the study period .. 117
Figure 6.2b: Groundwater table elevations at transect F, G, H and I during the study period .. 118
Figure 6.3: Groundwater elevation profile at Transect C showing positive and negative gradients .. 119
Figure 6.4: Groundwater table elevations at OH8 and OH28 during the study period .. 120
Figure 6.5: Pre- and Post –barrier average groundwater table elevations at the Lime-fly ash Barrier site .. 124
Figure 7.1: Drain water pH readings along the flood mitigation drain near the lime-fly ash barrier site .. 127
Figure 7.2: Drain water pH readings upstream, middle and downstream of lime-fly ash barrier site .. 128
Figure 7.3: Drain water conductivity readings along the flood mitigation drain near the lime-fly ash barrier site .. 129
Figure 7.4: Drain water conductivity readings upstream, middle and downstream of lime-fly ash barrier site .. 130
Figure 7.5: Dissolved inorganic monomeric A1^{3+} concentrations in drain water upstream, middle and downstream of the lime-fly ash barrier site. Average concentrations are also shown .. 131
Figure 7.5: Total dissolved iron concentrations in drain water upstream, middle and downstream of the lime-fly ash barrier site. Average concentrations are also shown

Figure 7.6: Soluble cation concentrations upstream, middle and downstream of lime fly ash barrier site. Average drain water concentrations are also shown

Figure 7.7: Dissolved chloride concentrations upstream, middle and downstream of lime-fly ash barrier site. Average concentrations are also shown

Figure 7.8: Dissolved sulphate concentrations upstream, middle and downstream of lime-fly ash barrier site. Average concentrations are also shown

Figure 7.9: Chloride: sulphate ratio upstream, middle and downstream of lime-fly ash barrier site. Average concentrations are also shown

Figure 7.10: Average groundwater pH measured during the study period at the lime-fly ash barrier study site

Figure 7.11: Average groundwater pH in OH1 and OH2 measured at the lime-fly ash barrier study site

Figure 7.12: Average groundwater electrical conductivity measured during the study period at the lime-fly ash barrier study site

Figure 7.13: Average concentration of dissolved inorganic aluminium in the groundwater at the lime-fly ash barrier study site

Figure 7.14: Concentration of dissolved inorganic aluminium in the groundwater in OH29 and OH30 at the lime-fly ash barrier study site

Figure 7.15: Poor correlation between groundwater pH and dissolved monomeric aluminium concentrations

Figure 7.16: Average total dissolved iron in groundwater at the lime-fly ash barrier study site

Figure 7.17: Total dissolved iron in OH1, OH17, OH18, OH24 and OH31

Figure 7.18: Average concentration of Ca\(^{2+}\) in groundwater at the lime-fly ash barrier study site

Figure 7.19: Average concentration of Mg\(^{2+}\) in groundwater at the lime-fly ash barrier study site

Figure 7.20: Average Chloride: sulphate ratio in the groundwater at the lime-fly ash barrier study site

Figure 8.1: Creek water pH readings taken from Floodgate Sites

Figure 8.2: Drain water pH readings taken from Floodgate Sites

Figure 8.3: Drain water pH readings taken from Weir Sites

Figure 8.4: Creek water electrical conductivity readings taken from Floodgate Sites

Figure 8.5: Drain water electrical conductivity readings taken from Floodgate Sites

Figure 8.6: Drain water electrical conductivity readings taken from Weir Sites

Figure 8.7: Dissolved inorganic monomeric A1\(^{3+}\) concentrations in creek water measured at the Floodgate Sites

Figure 8.8: Dissolved inorganic monomeric A1\(^{3+}\) concentrations in drain water measured at the Floodgate Sites

Figure 8.9: Dissolved inorganic monomeric A1\(^{3+}\) concentrations in drain water measured at the Weir Sites

Figure 8.10: Total dissolved iron concentrations in creek water measured at the Floodgate Sites

Figure 8.11: Total dissolved iron concentrations in drain water – Floodgate Sites
Figure 8.12: Total dissolved iron concentrations in drain water measured at the Weir Sites
Figure 8.13: Soluble calcium concentrations in creek water measured at the Floodgate sites
Figure 8.14: Soluble calcium concentrations in drain water measured at the Floodgate Sites
Figure 8.15: Soluble calcium concentrations in drain water measured at the Weir Sites
Figure 8.16: Soluble magnesium concentration in creek water measured at the Floodgate sites
Figure 8.17: Soluble magnesium concentrations in drain water measured at the Floodgate Sites
Figure 8.18: Soluble magnesium concentrations in drain water measured at the Weir sites
Figure 8.19: Dissolved chloride concentrations measured in creek water at the Floodgate Sites
Figure 8.20: Dissolved chloride concentrations measured in drain water at the Floodgate Sites
Figure 8.21: Dissolved chloride concentrations measured in drain water at the Weir Sites
Figure 8.22: Creek water dissolved sulphate concentrations from Floodgate Sites
Figure 8.23: Dissolved sulphate concentrations in drain water at the Floodgate Sites
Figure 8.24: Dissolved sulphate concentrations in drain water at the Weir Sites
Figure 8.25: Chloride: sulphate ratios from creek water at the Floodgate Sites
Figure 8.26: Chloride: sulphate ratios in drain water at the Floodgate Sites
Figure 8.27: Chloride: sulphate ratios in drain water at the Weir Sites
Figure 8.28: pH readings in groundwater taken from the Floodgate Sites
Figure 8.29: pH readings in groundwater taken from Weir sites
Figure 8.30: Electrical conductivity in groundwater taken from the Floodgate Sites
Figure 8.31: Electrical conductivity in groundwater taken from the Weir Sites
Figure 8.32: Dissolved inorganic monomeric Al$^{3+}$ concentrations in groundwater at the Floodgate Sites
Figure 8.33: Dissolved inorganic monomeric Al$^{3+}$ concentrations in groundwater at the Weir Sites
Figure 8.34: Total dissolved iron concentrations in groundwater at the Floodgate Sites
Figure 8.35: Total dissolved iron concentrations in groundwater at the Weir Sites
Figure 8.36: Soluble calcium concentrations in groundwater at the Floodgate Sites
Figure 8.37: Soluble calcium concentrations in groundwater at the Weir Sites
Figure 8.38: Soluble magnesium concentrations in groundwater at the Floodgate Sites
Figure 8.39: Soluble magnesium concentrations in groundwater at the Weir Sites
Figure 8.40: Dissolved chloride concentration in groundwater at the Floodgate Sites
Figure 8.41: Dissolved chloride concentrations in groundwater at the Weir Sites
Figure 8.42: Dissolved sulphate concentrations in groundwater at the Floodgate Sites
Figure 8.43: Dissolved sulphate concentrations in groundwater at the Weir Sites
Figure 8.44: Chloride: sulphate ratio in groundwater at the Floodgate Sites
Figure 8.45: Chloride: sulphate ratio in groundwater at the Weir Sites............ 185
LIST OF TABLES

Table 2.1: Calculated worldwide distribution of acid sulphate soils (brinkman, 1982) .. 11
Table 2.2: Physical properties of potential acid sulphate soil layer 9blunden and Indraratna, 2000) ... 19
Table 2.3: Most Probable Number of iron oxidising bacteria (Thiobacillus ferrooxidans) and pH analysis results for soil sample from columns containing the lime chemical barrier (Rudens, 2001) ... 55
Table 4.1: Piezometer Dimensions ... 89
Table 4.2: Preliminary Investigations Borehole 1 – Lime-fly ash barrier injection site ... 92
Table 4.3: Summary of significant rainfall events during study period. # - Rainfall data was not available for Berry Masonic Village or Nowra Treatment Works …101
Table 6.1: Pre-barrier groundwater table elevations measured at the Lime-fly ash Barrier Study Site during the study period 120
Table 6.2: Post-barrier groundwater table elevations measured at the Lime-fly ash Barrier Study Site during the study period 122
Table 9.1: Comparison between water quality parameters measured at the Lime-fly ash Barrier Study Site and those measured at the Floodgate and Weir Study Sites 189
A.2: Total Actual Acidity (TAA), Sulphur, pH, electrical conductivity (EC), Chloride and Sulphate soil data ... 222
B.1: Precipitation Data .. 223
B.2: Monthly Long Term Averages ... 233
B.3: Southern Oscillation Index Data .. 233
C.1: Water Quality Data (pH, electrical conductivity, groundwater table elevation, temperature), Anion and Cation Results .. 234
D.1: Floodgate Sites ... 268
D.2: Weir Sites .. 277
LIST OF PLATES

Plate 2.1: High v-notch Weir ... 45
Plate 2.2: Self-Regulating Tilting Weir (built in 2000 by UOW Acid Sulphate Soils Research Team) ... 47
Plate 2.3: Modified two-way Floodgate .. 52
Plate 4.2: Flood mitigation drain at the lime-fly ash barrier study site looking
downstream. Drain width is approximately 5m 76
Plate 4.3: Flood mitigation drain at the lime-fly ash barrier study site looking
upstream. Note close proximity of study site to Coolangatta Road 77
Plate 4.4: Tidal restricting floodgate installed on flood mitigation drain in the
Broughton Creek Estuary. Floodgate (a-FG1), modified floodgate is located
downstream from the Lime Injection Site. Floodgates (b-FG2), (c-FG3) and (d-FG4)
are the other floodgates monitored during this study 79
Plate 4.5: Constructed Observation pipe .. 84
Plate 4.6: Installation of observation Holes by the author 85
Plate 4.7: Piezometers and close up of piezometer tip (filter section) 90
Plate 4.8: Drilling of Piezometer Holes ... 90
Plate 5.1: Injection equipment including Mixing tank, grout pump, mixing motor and
pressure regulator .. 108
Plate 5.2: Original design of Injection Pipe. Note one set of packers 109
Plate 5.3: Modified tip of injection pipe .. 110
Plate 5.4: Modified design of injection pipe. Not the two sets of packers 110
Plate 5.5: Trench showing section of lime-fly ash barrier at 1m below ground surface.
Grout at upper right hand corner form an adjacent injection hole 111
Plate 5.6: Excavated section of barrier (from preliminary injections) 112
Plate 5.7: Mixing of lime-fly ash/water slurry 113
Plate 5.8: Testing of injection pipe ... 114
Plate 6.1: Lime-fly ash Barrier Study Site after a high intensity rainfall event (Day 125) ... 122
Plate 7.1: Iron oxide flocculation in flood mitigation drain adjacent to lime-fly ash barrier study site... 134