Organizational readiness assessment framework and model for knowledge management

S. Nagarajan
Vickram College of Engineering Enathi, India

K. Ganesh
Tata Consultancy Services Limited, India

Balan Sundarakani
National University of Singapore, balan@uow.edu.au

Publication Details
Organisational readiness assessment framework and model for knowledge management – application for manufacturing supply chain

S. Nagarajan
Department of Mechanical Engineering, Vickram College of Engineering Enathi, Sivagangai, Madurai – 630561, India
E-mail: arsnagarajan@yahoo.com E-mail: arsnagrajan@gmail.com

K. Ganesh*
Integrated Supply Chain, Manufacturing Industry Solutions Unit, Tata Consultancy Services Limited, Vikhroli West, Mumbai – 400079, India
E-mail: gan.k@tcs.com E-mail: kog@iitm.ac.in
*Corresponding author

Balan Sundarakani
The Logistics Institute – Asia Pacific, National University of Singapore, Block E3A, Level 3, 7 Engineering Drive 1, 117574, Singapore
E-mail: tlibs@nus.edu.sg

Abstract: Organisations need to concede that changes are happening and should acclimatise to them. Readiness is allied with change. Readiness is based on a subjective feeling or a perceived ability. Readiness tends to be conceptualised as a state where a person/organisation is assessed as ready or not ready. This paper highlights on importance of the readiness of organisation towards the knowledge management (KM) solution and a readiness assessment approach has been developed to access the readiness of people, process and technology before the adoption of KM. The element ‘people’ includes customers as a key member and the framework has developed with the perspective of customer relationship. A readiness assessment framework and approach for KM has been devised for a case study of textile machinery manufacturing organisation and it is also generalised for typical manufacturing industry of India.

Keywords: knowledge management; KM; readiness assessment framework and model; customer relationship; textile machinery manufacturing organisation.

Biographical notes: S. Nagarajan is currently working as an Assistant Professor in the Department of Mechanical Engineering and an Administrative Officer at Vickram College of Engineering, Sivagangai, India. He obtained his Bachelor’s degree in Mechanical Engineering and his Master’s degree in Thermal Engineering from Thiagarajar College of Engineering, Madurai, India. He is currently pursuing his Doctoral research at Anna University, Tiruchirappalli, India. His research interests include knowledge management, supply chain analytics and decision support system. He has published several papers in leading international conferences.

K. Ganesh is currently working as an Assistant Consultant in Manufacturing Industry Solutions Unit at Tata Consultancy Services, Limited, Mumbai. He obtained his Doctorate degree from IIT Madras. His research interests lie in the application of meta-heuristics and decision making tools to logistics management and sustainable supply chain. His consulting areas include supply chain network design and optimisation. He has published several papers in leading research journals such as the European Journal of Operational Research and International Journal of Advanced Manufacturing Technology.

Balan Sundarakani is the Manager at The Logistics Institute Asia Pacific. He worked as a Faculty at National Institute of Technology, India and Hindustan University, India before joining at The Logistics Institute. He obtained his MEng (Distinction) in Industrial Engineering from National Institute of Technology, Trichy and his PhD in Supply Chain Management from Indian Institute of Technology, Roorkee, India. As a Project Manager, he successfully completed research and consulting projects for IBM, EDB and DHL.

1 History of knowledge management

The term ‘knowledge management (KM)’ was coined by Mr. Karl Wiig in 1986 at a conference in Switzerland. He stated that KM is a systematic, explicit and deliberate building, renewal and application of knowledge to maximise an enterprise’s knowledge related effectiveness – returns from its knowledge assets. But later, Nonaka (1991) mapped the term KM in the management literature. The famous quote ‘knowledge creating companies’ was emphasised and established by Nonaka (1991). The transformation of knowledge is explained in Figure 1.

The major inspirations were drawn through the inspiration from the KM practices of firms like Matsushita and Canon. Nonaka and Takeuchi (1995) have produced a classic work in KM by expanding the theme of the ‘knowledge creating companies’. Leonard-Barton (1995) has triggered the KM revolution with a different theme called ‘wellsprings of knowledge’.

The KM practices of Chaparral Steel motivated the work of Leonard-Barton (1995). Post 1995, there has been factually a detonation in the literature on KM, including articles, books and journals. In the year 1996, the Strategic Management Journal published a special issue on KM. The Journal of Knowledge Management was launched in the year 1998.

Management consultancies like KPMG, Ernst & Young, etc., bestowed their part through several KM surveys (KPMG, 1998) and distinguishing leaders in KM (MAKE, 1998) among organisations. Many firms appointed chief knowledge officers (CKO) at the
organisational level, similar to chief financial officers and chief information officers. The academia also witnesses the appointment of a ‘professor of knowledge’ in the University of California.

Gamble and Blackwell (2001) depicted KM in different dimension and stated that KM draws from a wide range of disciplines and technologies including, cognitive science, expert systems, library and information science, organisational science and network technology. Thus, KM came into sight as a discipline in itself.

Figure 1 Transformation of knowledge
2 Objectives and usefulness of KM

The primary objective behind the KM initiative is to capture the explicit and tacit knowledge about people, skills, processes, markets, competitors, customers, suppliers, organisation, environment, policies, procedures, regulation, legislation, etc., that exist in the organisation in a structured manner and store the same as the organisation’s asset available to all employees on a ‘who need what basis’. The forms of knowledge are clearly depicted in Figure 2.

Figure 2 Forms of knowledge

- **TACIT**
 - Physical dimension
 - Carpenter, chef, musician, surgeon, mechanic, athlete, driver, tailor, actor, etc.
 - Cognitive dimension
 - Psychiatrist, teacher, chess player, astrologer, architect, director

- **EXPLICIT**
 - Books, flowcharts, pictures, designs, algorithms, graphs, patents, technical reports, recipes, etc.
 - Knowledge that has been articulated in the form of words, sentences, pictures, audio, video, and material.

Knowledge, that is not articulated, but actionable. All of one’s knowledge rests in a tacit dimension.

The application of this knowledge in the workplace is to reuse knowledge to reduce rework, redeploy knowledge to leverage best practices and transfer skills and behaviours and repurpose knowledge to drive innovation and achieve business benefits.

KM also helps in tracking and retaining knowledge and information within the organisation to provide it to the appropriate audiences in the most effective manner for which it is important to develop a knowledge-sharing culture and mechanisms to support it. The critical business benefits of KM are improved ability to capture and manage intellectual assets, effective dissemination of knowledge through collaboration, greater agility in responding to market and regulatory change and improved knowledge continuity during organisational change.
3 Need for readiness assessment for KM

In order for KM to deliver value to the organisation it is essential for the organisation to develop a number of pillars/dimensions. The KM strategy should ideally convert itself into actions in all areas.

The primary target for KM will be creation, dissemination and exploitation. However, it has to be very strongly supported by all the enablers to realise the desired value. This is clearly depicted in the Figure 3 below.

Figure 3 Value chain of KM (see online version for colours)

The strategy stage for KM will begin with a review of the organisation’s goals and objectives for KM. Once the objectives are understood, it leads to the development of knowledge components, which describes what the organisation needs to know to accomplish its goals. Next to the opportunity and gap analysis, the state of readiness called knowledge maturity for any organisation that can be achieved by systematically addressing and reviewing the critical three pillars of KM – people, process and technology (von Krogh et al., 2001; Nonaka et al., 2002; Siemieniuch and Sinclair, 2004).

The aim is to reach a state where it gets entrenched in the business processes, by incessantly promoting the KM readiness. It is thus apparent that it is a path of continuous improvement and must be administrated by a strong readiness review approach, which has the ability to assess and benchmark the various aspects of people, process and technology in a holistic manner. Readers can refer to Chen and Huang (2007) and Mrayyan et al. (2007) to understand the organisational readiness.

This review determines how well the organisation is positioned to adopt KM. In order to develop a sense of direction, the readiness assessment outcome should give an indication on how organisation needs to adapt when the KM initiative is rolled out. This research focuses on the development of readiness assessment framework and approach. The study has taken the case of the Indian textile machinery manufacturing industry and the readiness assessment framework and approach was developed for a typical organisation and it is also generalised for engineering manufacturing industry. The research gap and the plan for the case study are indicated in Figure 4. The research design for the plan is detailed in Figure 5.
Figure 4 Research gap and plan

Research gap

Need to

- Identify the subcomponents of three knowledge management (KM) pillars
- Development of generic readiness assessment framework involving the subcomponents of KM pillars

Need to

- Identification of impact of subcomponents of three KM pillars for organisational readiness of KM

Figure 5 Research design

Research design

Organisational readiness for KM solution

Step 1: Pillar and readiness framework

- Phase 1.1: Identification of subcomponents of three KM pillars
- Phase 1.2: Development of organisational readiness framework

Approach: Semi-structured interview

Step 2: Subcomponent impact for readiness

- Phase 2.1: Identification of impact of subcomponents of three KM pillars for organisational readiness of KM
4 Case study – Indian textile machinery manufacturing industry

The Indian textile industry is the second largest in the world. Indian textiles also account for 38% of the country’s total exports of nearly $45 billion and are therefore, a very important industry. The textile industry is the single largest foreign exchange earner for India. Currently, it accounts for about 8% of GDP, 20% of the industrial production and over 30% of export earnings of India. It generates employment opportunities for approximately 38 million workers directly and 54.85 million workers indirectly (60% of them are women) and it is the second largest employment providing sector after agriculture.

Cotton remains the most significant raw material and India is the second largest producer of the fibre in the world. Other fibres used are silk, jute, wool and man-made fibres. Currently, India has the second highest spindleage in the world after China. India’s contribution in world production of cotton textiles was about 15%. There are approximately 1,200 medium to large scale textile mills in India. India has 34 million cotton textile spindles for manufacturing cotton yarn. Approximately 120 companies manufacture the complete range of textile machinery. India has 3% share in the export production of clothing. State of Gujarat and Tamil Nadu, the two largest textile manufacturing states of India. USA is known to be the largest purchaser of Indian textiles. Also India has a marked presence in United Arab Emirates (UAE), Saudi Arabia, Canada, Bangladesh, China, Turkey and Japan.

Textile machinery is used in the fabrication and processing of fabrics, textiles and other woven and non-woven materials. The major product segments under the head ‘textile machinery’ include textile processing machinery and textile working machinery. The further classification of these two segments may be done as fibre-fabric machinery (cleaning and opening machinery, carding and combing machinery, drawing and rowing frames, spinning and twisting frames, yarn winding machines, yarn preparing machines and other fibre-to-fabric machines), fabric machinery (weaving machinery, knitting machinery and other fabric machinery) and other textile machinery (bleaching, mercerising and dyeing machinery, textile printing machinery, textile finishing machinery and other complete textile machinery) and textile machinery parts and accessories.

The case organisation established in 1962, is currently one of the three global companies to manufacture the entire range of textile machinery and is the topmost manufacturer of textile machinery in India. The case organisation has a market share of around 60% in the spinning machinery textile industry in India and located in South India, the state of Tamil Nadu. The case organisation was the first Indian company to introduce the automatic bale plucking machine which surpassed any other bale plucking machine in the world. There are at least 20 domestic companies offering textile machinery in India and the major suppliers other than the case organisation are located in northern regions. Approximately USD80 million in Indian textile machinery is exported to other developing countries. World production of manufactured textile fibre is projected to rise over 62 million metric tons in 2012. Overall growth rise is because of demand for textile fibres used in upholstery, household furnishings and apparel and floor coverings. The recent development is also in the field of medical textiles, geotextiles, agrotextiles and protective textiles. This case organisation decided to implement the KM solution to improve the productivity and to enhance the position of organisation. The case
organisation is traditional and the readiness for any new change is a great challenge. So, there is a need to understand the readiness of the organisation towards the initiative of implementation of KM solution. The readiness assessment model is devised for this case organisation and it is then generalised for manufacturing industry of India.

5 Readiness assessment model

Step 1 Pillar and readiness framework

Step 1 includes two phases:

Phase 1.1 Identification of subcomponents of three KM pillars

Organisations seek to develop a competitive advantage in market through reduction of lead time, reduction in cost and improved productivity. However, the market environment is dynamic and the issues of globalisation, rapid technology diffusion and dearth of quality human capital resources require an exemplar shift in the approach towards strategy management and development. In an economy where the only certainty is uncertainty, the one certain resource of lasting competitive advantage is knowledge. KM seeks to improve an organisation’s usefulness by leveraging the knowledge it has, to improve its core proficiency. When markets shift, technology flourishes, competitors proliferates and products become superseded, successful organisation are those that constantly create new knowledge, propagate it widely throughout the organisation and quickly exemplify it in new technologies and products. Success in such a highly dynamic environment requires that organisations are more receptive to their customers, more agile in the way they do business and more focused on core competencies through the support of people, process and technology. It is evident that all the three drivers along with its subcomponents are solely responsible for the readiness of organisation towards the implementation of KM (Figure 6).

Figure 6 Drivers of KM for organisational readiness
<table>
<thead>
<tr>
<th>SNo.</th>
<th>Knowledge components</th>
<th>Objective</th>
<th>Function / CSD</th>
<th>Owner</th>
<th>Gap</th>
<th>Reason for gap</th>
<th>Solution for the gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cost of materials, man and machine</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Currently no structured database is available that can provide such information</td>
<td>X</td>
<td>X</td>
<td>Database - cost</td>
</tr>
<tr>
<td>2</td>
<td>Latest industry trends in accounting & costing</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Currently no structured database is available that can provide such information</td>
<td>X</td>
<td>X</td>
<td>Industry analysis</td>
</tr>
<tr>
<td>3</td>
<td>Machine price data, application details, operations data, ratios</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Data though available, is not captured or stored in a structured manner</td>
<td>X</td>
<td></td>
<td>Product database</td>
</tr>
<tr>
<td>4</td>
<td>Order to cash process, procure to pay process</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Processes not documented properly and not stored in a structured manner</td>
<td>X</td>
<td></td>
<td>Standard operating procedures (SOPs)</td>
</tr>
<tr>
<td>5</td>
<td>Finance act(s), state legislations</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Not easily accessible</td>
<td>X</td>
<td></td>
<td>Document library</td>
</tr>
<tr>
<td>6</td>
<td>Classification of accounts – capital and revenue, income and expenditure, taxation data (central excise, sales tax, income tax, TAX reporter</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Data though available, is not captured or stored in a structured manner</td>
<td>X</td>
<td></td>
<td>Records library</td>
</tr>
<tr>
<td>7</td>
<td>Management and technical institutes</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Key contacts not available</td>
<td>X</td>
<td></td>
<td>Database - institutes</td>
</tr>
<tr>
<td>8</td>
<td>Technical newsletter / business / economy related articles / analysis / surveys / journals / periodicals / animal reports</td>
<td>Functional</td>
<td>Finance and accounts</td>
<td>Single point access to all resources not available</td>
<td>X</td>
<td>X</td>
<td>Technical information centre</td>
</tr>
</tbody>
</table>
These activities define the ‘knowledge-creating’ company, whose sole business is continuous innovation. This paper highlights on importance of the readiness of organisation towards the KM solution and a readiness assessment approach has been developed to access the readiness of people, process and technology before the adoption of KM. The element ‘people’ includes customers as a key member and the framework has developed with the perspective of customer relationship.

The subcomponents of three KM pillars such as people, process and technology has been derived and categorised based on semi-structured interview. For an improved clarity, categorisations of computable characteristic of the three above-mentioned pillars are arrived through a semi-structured interview conducted with the case organisation and also with various other manufacturing industries of India. The semi-structured interview was conducted for 85 executives of the case organisation and 43 higher executives of various manufacturing industry in India.

Based on the semi-structured interview, the subcomponents of three KM pillars towards the organisational readiness are identified. The critical subcomponents are: people: skills, leadership, culture/structure and exploitation; process: processes, measures, explicit knowledge and tacit knowledge; and technology: knowledge centres and infrastructure. The sample of semi-structured interview is shown in Table 1.

Phase 1.2 Development of organisational readiness framework

Based on the weightage for the questions in the semi-structured interview, the conceptual and logical development has been devised and the readiness assessment framework is developed and depicted in Figure 7.

People: Skills, leadership, culture/structure and exploitation – these address the ‘mindset’ and relate to attributes of assessing community and civilisation. People element also includes customers.

Process: Processes, measures, explicit knowledge and tacit knowledge – these are the facilitators for people to strap up the knowledge in a standardised way across the organisation.

Technology: Knowledge centres and infrastructure – these address the enablers and facilities which help people and process to bind the utmost out of the KM initiative.

To deal with the needs for an organisation’s KM readiness, one needs to consider that it is time dependent and would be pretentious with any change in the basic subcomponents of the three critical pillars people, process and technology.

Hence, the subcomponents under each pillar must be viewed in lieu with context of organisation and a suitable set of subcomponents under each pillar would need to be defined for different organisations and also for different readiness levels.

The benchmark values for each subcomponent of the three KM pillars are identified based on the semi-structured interview and the benchmark values for each subcomponent are depicted in Figure 8.
Figure 7 Readiness assessment framework with importance weightage

Figure 8 Benchmark values for subcomponents based on semi-structured interviews (see online version for colours)
Step 2 Subcomponent impact for readiness

In this step, a questionnaire based Delphi study is conducted to understand the impact of subcomponents of three KM pillars for the organisational readiness compared to benchmark values.

Phase 2.1 Identification of impact of subcomponents of three KM pillars for organisational readiness of KM

A readiness assessment approach assesses the exact status of where organisation stands currently with respect to the three critical success pillars called people, process and technology for KM based on benchmark values for organisational readiness. The approach involved a survey of all the functional areas in the form of a readiness assessment questionnaire and validation of the responses based on the analysis. A Delphi study has been aimed and conducted with the middle and senior management executives of the case study – textile machinery manufacturing organisation through a questionnaire (Appendix). Two rounds of Delphi study based on the developed questionnaire were conducted for 85 executives of the case organisation. The survey involves ten questions that aimed at providing a quick check of where an organisation comes along ten subcomponents under three critical success pillars.

The scores are arrived by calculating the mean and standard deviation of all response weightage. The weightage of each subcomponent is calculated as follows:

\[
\text{Weightage for each component} = \frac{\text{Summation of the weightage of each component for all responses}}{\text{Summation of maximum scale of each component for all responses}}
\]

The weightage for the case study is indicated in Figure 9.

Figure 9 Case study values for each subcomponents of three KM pillars for organisation readiness (see online version for colours)

The ranks are converted to relative percentage by dividing each rank, by the total of all ranks for the group of measures/characteristic. This approach is similar to the method used in Pareto analysis wherein problem frequencies are converted to percentages to
show relative performance. The percentages better highlight differences in the importance of the characteristic. The assessment outcome is purely based on individual perception of how knowledge is being managed in their respective areas and should be used for planning and implementing KM at an organisation. This assessment is also only an indication of where organisation stands as of today in terms of the critical pillars that contribute to the KM.

The comparison of case study values against the benchmark values is depicted in Figure 10.

Figure 10 Readiness assessment outcome – comparison of case study and benchmark values (see online version for colours)

5 Results discussion and managerial implications for case study of textile machinery manufacturing organisation

The outcome of the readiness assessment for textile machinery manufacturing organisation is:

- Organisation has a compelling knowledge vision and strategy, actively promoted by the top management that clearly articulates how KM contributes to achieving organisational objectives. This is highly evident from the fact that the assessment outcome shows around 50–60% for leadership.

- Another aspect that is highlighted in the assessment outcome is that the organisation has a fairly good technological infrastructure to support an initiative like KM. Even in the existing scenario, important information can be found/shared on the intranet.

- Organisation also portrays a fairly good level of exploitation of knowledge. It is being seen that knowledge and experiences are converted into projects or initiatives that help the organisation’s growth.
• The primary obstacle to KM in the organisation comes from explicit knowledge and tacit knowledge. These are pretty low in the organisation and thus shows that the organisation does not maintain any knowledge inventory and also that there is no clear ownership of knowledge entities that is readily accessible across the organisation. Further, though the organisation has a rich pool of domain experts with key knowledge, there is no mechanism in place to codify, capture and use this for the organisation.

• One aspect that would need concentration on is the knowledge centres to coordinate knowledge repositories and act as focal point for provision of information to support key decision making and business functions. It is expected that the proposed KM-cell will address this aspect.

• In a nutshell, compared to the other subcomponents, availability of knowledge (explicit and tacit) is a weak area that needs to be addressed immediately. KM initiatives thus need to prioritise in developing these areas first and subsequently move to other subcomponents. Further, areas like leadership and technology are comparatively better, organisation thus needs to leverage on these aspects to maximise the momentum for KM.

• Some of the other aspects that needs attention from the KM initiative at the organisation would be:
 a measurement and management of intellectual capital in a systematic way and publish regular reports to stakeholders
 b development systematic process for gathering, organising, exploiting and protecting key knowledge assets
 c creation of culture of knowledge sharing across departmental boundaries
 d identification and assignment of specific knowledge roles and ensure that all senior managers and professionals are trained in KM techniques.

• Overall, there is a positive attitude towards the KM initiative across the organisation with a lot of expectations. The same kind of enthusiasm needs to be sustained by ensuring that the expectation is met to the maximum possible extent from the implementation of KM.

6 Conclusions

KM is all about the ability of organisations to leverage the intellectual assets quickly and accurately. To achieve successful KM, a readiness assessment approach is vital to investigate an organisation’s knowledge ‘health’. The readiness assessment approach provides an evidence based assessment of where the organisation needs to focus before the implementation of KM effort. It can reveal the organisation’s needs, strengths, weaknesses, opportunities, threats and risks towards the implementation of KM. As many methodologies of readiness assessment approach suggested in most of the previous research were very general and aimed at company-wide uses, it may not be appropriate for companies as a generic format. In this paper, a systematic readiness assessment approach is proposed.
The readiness assessment approach will address the organisation’s KM awareness level, analyse its knowledge support processes, its structures and roles, and identify the key business areas that serve as the targets for the KM initiatives. The readiness assessment approach helps the organisation to develop KM strategies that linked to its business strategies. The organisation will be able to set the criteria for choosing the appropriate knowledge that it planned to pursue and formulate plans to capture and share it.

Also the organisation will be able to plan effectively for future KM activities. It successfully develops a detailed KM project plan towards the organisation readiness to reserve appropriate resources and manpower for project implementation and monitor the progress of various KM activities.

KM is still in its infancy in India. Very few companies have appointed dedicated personnel to take responsibility of KM. In most firms KM has been tagged on to somebody’s existing responsibilities, often resulting in a step-motherly treatment. But this situation cannot last given the increasing competitive business environment in India. KM is no longer a luxury for Indian companies. It is a necessity that can make all the difference between survival and an early demise.

References

Appendix

KM readiness assessment questionnaire

This set of ten questions provides a quick check of where the organisation is along the ten characteristic of three critical success pillars such as people, process and technology. The ratings score vary from 1 to 10, where 1 is doing nothing at all and 10 is the best.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Leadership: relates to vision, mission and values towards KM</td>
<td></td>
</tr>
<tr>
<td>Does your organisation have a convincing knowledge vision, mission and</td>
<td>1 2</td>
</tr>
<tr>
<td>strategy, actively promoted by your top management that clearly</td>
<td>3 4</td>
</tr>
<tr>
<td>articulates how knowledge management contributes to achieving</td>
<td>5 6</td>
</tr>
<tr>
<td>organisational objectives?</td>
<td>7 8</td>
</tr>
<tr>
<td>2 Measures: relates to quantification of knowledge</td>
<td></td>
</tr>
<tr>
<td>Does your organisation measure and manage its intellectual capital in a</td>
<td>1 2</td>
</tr>
<tr>
<td>methodical way and publish regular reports to its internal and external</td>
<td>3 4</td>
</tr>
<tr>
<td>stakeholders?</td>
<td>5 6</td>
</tr>
<tr>
<td>3 Processes: relates to capture of knowledge</td>
<td></td>
</tr>
<tr>
<td>Does your organisation have systematic processes for capturing or</td>
<td>1 2</td>
</tr>
<tr>
<td>gathering, organising, exploiting and protecting key knowledge assets,</td>
<td>3 4</td>
</tr>
<tr>
<td>including those from internal and external sources?</td>
<td>5 6</td>
</tr>
<tr>
<td>4 Explicit knowledge: relates to store of knowledge</td>
<td></td>
</tr>
<tr>
<td>Is there a meticulously maintained knowledge inventory with a</td>
<td>1 2</td>
</tr>
<tr>
<td>structured thesaurus or knowledge tree and clear ownership of knowledge</td>
<td>3 4</td>
</tr>
<tr>
<td>entities that is readily accessible across the organisation?</td>
<td>5 6</td>
</tr>
<tr>
<td>5 Tacit knowledge: relates to codification of tacit knowledge</td>
<td></td>
</tr>
<tr>
<td>Do you know who are the best experts in different domains of key</td>
<td>1 2</td>
</tr>
<tr>
<td>knowledge within the industry and do you have in place mechanisms to</td>
<td>3 4</td>
</tr>
<tr>
<td>codify their tacit knowledge into an explicit format?</td>
<td>5 6</td>
</tr>
<tr>
<td>6 Culture/structure: relates to encouragement towards KM</td>
<td></td>
</tr>
<tr>
<td>Is knowledge sharing across departmental boundaries actively</td>
<td>1 2</td>
</tr>
<tr>
<td>encouraged and rewarded? Do workplace settings and format of meetings</td>
<td>3 4</td>
</tr>
<tr>
<td>encourage informal knowledge exchange?</td>
<td>5 6</td>
</tr>
<tr>
<td>Question</td>
<td>Score</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 7 Knowledge centres: relates to facilitations for KM
Are there librarians or information management staff that coordinate knowledge repositories and act as focal points for provision of information to support key decision making? | 1 2 3 4 5 6 7 8 9 10 |
| 8 Exploitation: relates to innovation from KM
Are your knowledge and experiences packaged into products or services that helps your organisation’s growth? | 1 2 3 4 5 6 7 8 9 10 |
| 9 Skills: relates to team for KM
Have specific knowledge roles been identified and assigned and are all senior managers and professionals trained in knowledge management techniques? | 1 2 3 4 5 6 7 8 9 10 |
| 10 Infrastructure: relates to technical support for KM
Can all important information be quickly found by new users on your intranet (or similar network)? | 1 2 3 4 5 6 7 8 9 10 |