Electrophysiological correlates of interference control in the Eriksen task

Samantha J. Broyd
University of Wollongong, sbroyd@uow.edu.au

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
ELECTROPHYSIOLOGICAL CORRELATES OF
INTERFERENCE CONTROL IN THE ERIKSEN TASK

A thesis submitted in fulfilment of the requirements
for the award of the degree

DOCTOR OF PHILOSOPHY

from the

UNIVERSITY OF WOLLONGONG

by

SAMANTHA J. BROYD, BPsc(Hons)

SCHOOL OF PSYCHOLOGY

2008
I, Samantha J. Broyd, declare that this thesis, submitted in fulfilment of the requirements of the award of Doctor of Philosophy, in the School of Psychology, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Samantha J. Broyd
21st July 2008
Acknowledgments

First and foremost, I would like to thank my two thesis supervisors – Dr. Stuart Johnstone and Associate Professor Steven Roodenrys for their constant support and guidance throughout this thesis. Special thanks are due to Dr. Stuart Johnstone for his wisdom, his patience, and his guidance in all things electrophysiological and I particularly thank Associate Professor Steven Roodenrys for his perspicacious advice concerning the research process, and his assistance with the complexities of human cognition.

I thank the University of Wollongong for supporting this research through the provision of resources and scholarship. I am indebted to Rodney Davies and David Brewster for their programming support and expertise, and to Geoff Fisher for his technical knowledge and help.

A very big thank you must also go to my partner, Daniel Plumb, for his enduring love and patience, his constant encouragement, and for keeping me focused throughout my PhD. Thank you to my brothers, Benjamin and Peter Broyd for many an impromptu comedy routine during my study breaks, and a special thank you to my mum, Catherine Martin, who has always been a source of strength and inspiration. Thank you to my friends and postgraduate predecessors, Dr. Janette Smith and Dr. Aneta Dimoska for their astute advice and invaluable support. Finally, I must thank my dear postgraduate friends and colleagues, Carlie Lawrence, Dr. Leila Heckel, Robert Battisti, and Rebecca Zuchetti without whom my candidature would not have been the same; and my exercise buddies, Ching-I Hsu and Desley Hennessy, who accompanied me to the gym, to the pool or for a run (even in the pouring rain) in an attempt to preserve my sanity.
Abstract

This thesis examined conflict monitoring in the Eriksen task in which participants must respond to a centrally positioned target arrow and ignore simultaneously presented distractors that flank the target. Distractors were either associated with a response congruent to the target, in conflict with the target, or, in a neutral condition, not associated with a response, instead producing only perceptual interference. This thesis extended on previous Eriksen research by systematically investigating the effect of varying the level of response conflict and task difficulty on stimulus processing in six studies and clarifying the functional role of ERP components elicited in the Eriksen task. Specifically, this was achieved by (a) varying the number of flanking distractors and, (b) the level of response conflict by using different permutations of incongruent distractors, (c) reducing target stimulus perceptibility through degradation, (d) utilising both valid and invalid information to increase response preparation and make conflict monitoring more difficult, and (e) providing feedback in a speeded version of the task. In all six studies, two N2 components were clearly delineated – the first of which was increased to stimuli requiring enhanced feature detection processes (N2a), while the second N2 component (N2b) was consistently observed to increase following the detection of response conflict. The P3 component, rarely considered in the Eriksen paradigm, was reduced at parietal sites and increased in latency as the discriminability of the target amongst the distractors became more difficult. The results suggest that the P3 component may reflect stimulus evaluation processes and equivocation related to the ease of target identification and concurrent response selection processes imperative for accurate task performance. This thesis also utilised digital filtering to clarify time-domain ERP results in terms of the relative contributions of activity in the alpha, theta and delta frequency ranges. Event-related theta oscillations contributed significantly to the morphology of the two N2 components reflecting allocation of focused attentional resources following the detection of perceptual (theta N2a) or response conflict (theta N2b). Activity in both theta and delta frequency ranges was robustly observed to contribute to the P3 component. An increased theta response at frontal sites was observed along with increases in task difficulty likely indexing the activation of anterior attentional resources. The results also suggest that the parietal delta P3 component reflects a refined form of equivocation, sensitive to the perceptibility of the target, and concomitant with the relative ease of accurate response selection. This thesis has clarified successful conflict monitoring and task performance in the Eriksen task, and the relationship with stimulus-locked ERP components in the time and frequency domains. The results suggest that the second frontally maximal N2
component reflects successful conflict monitoring, while the P3 component most probably reflects equivocation arising from difficult target identification and accurate response selection, rather than response conflict per se.
Overview

The successful inhibition of distracting or task-irrelevant information and the selective attention to task-relevant information is pertinent for goal-directed activity, and more generally a requisite for socially appropriate, adaptive and efficacious behaviour in everyday life. For example, distracting and irrelevant sensory information must be inhibited when one is driving, attempting to cross a road, or even when one is attempting to learn in a classroom or lecture theatre. Interference control involves not only the suppression of task-irrelevant sensory/cognitive information, but also the inhibition of inappropriate and conflicting response tendencies. Surprisingly, the area of interference control and associated conflict monitoring has received rather limited scientific attention. It was, therefore, the primary aim of this thesis to systematically investigate brain electrical activity correlates of interference control. In particular, this thesis aimed to clarify the functional interpretations of the N2 and P3 event-related potential (ERP) components, with a lesser focus on the earlier, sensory N1 and P2 components. To accomplish this, this thesis employed the Eriksen flanker task as a measure of interference control and conflict monitoring, in which distracting sensory information is associated with a conflicting and task-irrelevant response that must be inhibited and replaced with the correct target response. Specifically, this thesis experimentally manipulated the perceptual characteristics of the stimuli to increase conflict monitoring and interference control requirements by (a) varying the number of distractors (Study 1, Chapter 4), (b) varying the level of response conflict created by the incongruent distractors (Study 2, Chapter 5), and (c) degrading the target stimulus (Study 3, Chapter 6; Study 4, Chapter 7). Study 5 (Chapter 8) investigated the relationship between response preparation and conflict monitoring by introducing informative cues that either correctly or incorrectly identified the target in the subsequent trial. Finally, task difficulty was increased in a speeded version of the Eriksen task in which an adaptive algorithm provided feedback about individual response times (Study 6, Chapter 9).

A secondary aim of this thesis was to investigate the contributions of event-related alpha (8-13 Hz), theta (4-8 Hz) and delta (0.1-4 Hz) oscillations to the time-domain N2 and P3 components. These underlying frequency are an important consideration for electrophysiological research, and provides an invaluable insight into the underlying neural and functional mechanisms that give rise to the ERP. Frequency-specific event-related oscillations are sensitive to experimental manipulations of cognitive processes, and underlie variations in the morphology of the time-domain ERP components.
Indeed, event-related oscillations highlight the heterogenous nature and multi-frequency component structure of time-domain ERP components, particularly the P3. Event-related theta oscillations are thought to contribute primarily to the time-domain N2 component, while the morphology of the P3 component is primarily a function of event-related theta and delta components. In accord with the notion that ERPs reflects the superposition of time-locked EEG rhythms, and as part of a subsidiary investigation, this thesis explored the relative contribution of event-related alpha, theta and delta oscillations to the N2 and P3 components elicited in the Eriksen task.

The first three chapters of this thesis provide a comprehensive literature review on event-related potentials (Chapter 1), inhibition, interference control and conflict monitoring (Chapter 2), and ERP indices of these psychological processes (Chapter 3).

Study 1 (Chapter 4) investigated the effect of varying the number of distractors from zero, to two to four in a simple Eriksen task design in twenty-two adult participants. The inclusion of a neutral stimulus allowed independent comparison and topographic analysis of ERP components associated with the facilitatory effects of congruent distractors and the interference created by incongruent distractors. Target-alone (zero distractors) stimuli were included to ascertain the level of perceptual interference created by the distractors. ERP components measured in the first four studies of this thesis were the N1, P2a, P2b, N2a, N2b and P3, while all but the P2a component were also examined in the final two studies of this thesis. Congruent distractors were found to facilitate RT, while an interference effect of the incongruent distractors (incongruent>neutral) on task performance was evident both in reaction time (RT) data and error rate. In accord with previous research in the Eriksen task, two N2 components were elicited. The first, the N2a, was largest to neutral stimuli, thought to reflect the perceptual disparity of neutral distractors when compared with the prevailing arrow features that comprise the congruent and incongruent stimulus types. The second component, the N2b was enhanced to incongruent stimuli, and likely reflects the detection of response conflict. Both the N2a and N2b were clearly differentiated in the theta frequency. Theta N2b increased to incongruent stimuli signifying the activation of cognitive control mechanisms. The perceptual novelty of the neutral distractors relative to the arrows in congruent and incongruent stimuli was thought to have resulted in increased time-domain P3 amplitudes. Although, increased stimulus evaluation of incongruent stimuli was evidenced by longer P3 latencies. The morphology of the P3 component was largely a function of theta and delta oscillations, where delta P3 showed close correspondence with time-domain findings. In contrast,
increased frontal theta P3 amplitudes to incongruent stimuli suggested the activation of anterior attentional resources with increases in task difficulty to facilitate accurate responses.

Study 2 (Chapter 5) aimed to replicate and extend upon the findings of the first study, and to investigate the effect of varying the level of response conflict through permutations of the distractors to create two additional stimulus types of high and low incongruence. A topographic analysis of ERP data from twenty-two participants compared neutral stimuli with congruent stimuli and all three levels of incongruent stimuli, while an additional analysis compared completely incongruent with highly incongruent stimuli, which were in turn compared with stimuli of low incongruence. Increases in the level of response conflict were concomitant with increased RTs, error rates and N2b amplitude. The feature detection mechanism activated by perceptual deviance and reflected in the N2a as proposed in Study 1 was confirmed in Study 2. Increases in the allocation of attentional resources related to perceptual deviance was highlighted by a larger theta N2a response to neutral stimuli, while theta N2b was again increased to incongruent stimuli reflecting an increase in attentional control. Furthermore, P3 was reduced to all levels of incongruent stimuli, although larger to completely incongruent than highly incongruent stimuli. These findings, along with those of Study 1, suggest that P3 may reflect the ease with which the target may be identified amongst the simultaneously presented distractors. Similarly, delta P3 was reduced to all incongruent stimulus types, and may reflect a refined version of this equivocation. In contrast, theta P3 was again increased at frontal sites for completely incongruent and highly incongruent stimuli, reaffirming the activation of anterior attentional resources with increased task difficulty.

The effect of target degradation on conflict monitoring processes was investigated in Study 3 (Chapter 6), through the random removal of 50% of the pixels that made up the target and their relocation in the surrounding target space. ERP and behavioural data from twenty-five adults to equiprobable degraded and non-degraded trials were compared for target-alone, neutral, congruent and incongruent stimuli. Characteristic facilitation effects of the congruent distractors, and interference created by the incongruent distractors, were evident in error rate and RT data. Target degradation increased RTs and error rates, particularly for incongruent stimuli. However, despite strong behavioural findings there was little evidence of an effect of degradation on ERP components, and curiously, some of the seemingly robust effects of the distractors disappeared. Specifically, although the N2a component was increased to neutral
stimuli, it was not modulated by target degradation. Further, in contrast to predictions, the N2b and P3 components were not affected by target degradation nor did they show previously observed effects to the incongruent distractors, although P3 was increased at frontocentral sites to incongruent stimuli. Despite limited ERP differences between stimulus types in the time-domain, theta N2a was increased to neutral stimuli, while theta N2b was increased to incongruent stimuli reflecting attentional control following the detection of perceptual deviance (N2a) and response conflict (N2b). Further, theta P3 was increased at central sites, while a reduced delta P3 in the degraded condition suggests this component is sensitive to target perceptibility. The results of this study were rather curious, and were in contrast to several findings in Study 1 and 2. It is feasible that the random presentation of degraded trials amongst non-degraded trials may have required participants to alternate between two different task strategies resulting in a blurring of ERP effects. This possibility is examined in Study 4.

Accordingly, Study 4 (Chapter 7) aimed to elucidate potential effects of target degradation on response conflict processes by presenting equiprobable degraded stimuli in a blocked design. Forty adults took part in this study; the order of presentation of degraded stimulus blocks was counterbalanced across participants such that twenty participants first received two blocks of non-degraded stimuli, and twenty participants first received two blocks of degraded stimuli. As it was hypothesised that the order of presentation might influence task performance due to the perceptually demanding nature of the degraded condition, behavioural analyses and topographic analysis of ERP components compared each stimulus type in both degradation conditions, taking block order into consideration. Congruent distractors were again observed to facilitate task performance. In contrast, RT and error rates were greater to incongruent relative to neutral stimuli, and increased for degraded compared with non-degraded target-alone stimuli. Moreover RT was increased for degraded neutral stimuli when compared to degraded congruent and incongruent stimulus types. In this study, aside from the initial stimulus register, the N1, all other ERP components were sensitive to target degradation. On degraded trials, feature detection processes were delayed and conflict monitoring enhanced, evidenced by a delayed N2a and an increased N2b respectively. Further, reduced target perceptibility on degraded trials elicited smaller P3 amplitudes, including to target-alone stimuli, corroborating previous evidence suggesting this component is sensitive to the ease with which the target may be accurately identified. A delayed P3 peak to incongruent stimuli reflected augmented stimulus evaluation processes activated by the perceptual complexity of this stimulus type. Corroborating evidence of a perceptual deviance and
conflict monitoring interpretation of the N2a and N2b components respectively was also found in this study. A larger theta N2a highlighted increased attentional control for neutral stimuli, particularly in the degraded condition, while theta N2b was enhanced to incongruent stimuli signifying the activation of a cognitive control mechanism with response conflict. Further, larger time-domain P3 amplitudes at frontocentral sites to incongruent stimuli point to the activation of increased attentional control pertinent for accurate response selection. This frontocentral activation was correlated with similar increases in theta and delta P3, while delta P3 was also reduced to congruent and incongruent stimuli.

As the first four studies manipulate the perceptual characteristics of the Eriksen stimuli, it was the aim of Study 5 (Chapter 8) to investigate task difficulty in the context of varying levels of preparatory processing on subsequent conflict monitoring processes and interference control. In this study, thirty adult participants were presented with either a Specific cue, which correctly predicted the subsequent target stimulus on 80% of trials (Valid cue; and therefore incorrectly predicted the target on 20% of trials; Invalid cue), or a Non-specific cue that provided no information about the ensuing stimulus. It was hypothesised that Valid cues would facilitate preparation of the correct response and therefore reduce the level of conflict monitoring required on the subsequent trial. In contrast, preparatory processes associated with Invalid cues were expected to require suppression, increasing the level of response inhibition required on the subsequent trial, and influencing associated conflict monitoring processes. Non-specific cues were introduced as a control condition, and were presented on one third of the total number of trials. An enhanced CNV following Specific cues suggested that these cues effectively engaged preparatory processes. Invalid and Non-specific cues enhanced the N2a component to neutral stimuli, indicative of a feature detection mechanism activated by perceptual conflict between the cue and target. Theta N2a was similarly increased to neutral stimuli, and especially so following Invalid cues. Valid cues tended to reduce the N2b component, which again was largest to incongruent stimuli, while theta N2b was enhanced to incongruent stimuli, most likely reflecting the activation of cognitive control following the detection of response conflict. The time-domain P3 was reduced to incongruent stimuli and following Non-specific cues suggesting that this component does reflect uncertainty about accurate response selection. Interestingly, although theta P3 was larger at frontal sites to incongruent stimuli, a global reduction was observed to Invalidly cued incongruent stimuli. Further, delta P3 was reduced to incongruent stimuli, while a central increase was observed to
Invalidly cued neutral stimuli substantiating a perceptual rather than inhibitory interpretation of this component.

The final study of this thesis (Chapter 9) aimed to increase task difficulty through the introduction of a speeded response requirement, and to investigate successful and unsuccessful conflict monitoring on correct and incorrect trials respectively. In this study, an adaptive algorithm dynamically adjusted the performance of twenty-one adult participants so that the speeded response requirement was upheld, and a 20% error rate achieved. In fact, this error rate was only achieved for incongruent stimuli, and subsequent ERP analysis compared the effect of trial accuracy on the processing of this stimulus type. RTs were longer on incorrect trials, while typical effects of facilitation and interference of the congruent and incongruent distractors were observed, although the interference effect (incongruent>neutral RT) was reduced on incorrect trials. The N2a component was the first temporally to demonstrate sensitivity to response accuracy, reduced in amplitude on incorrect trials. This component was also enhanced to neutral stimuli, illustrating the activation of a feature detection mechanism with perceptual conflict. Further, N2b amplitude increased with the detection of response conflict, reflecting the activation of conflict monitoring processes. The aforementioned time-domain N2a and N2b effects were also evident in event-related theta oscillations (theta N2a and theta N2b respectively). Moreover, the time-domain N2b component was enhanced at frontal sites and increased in latency on incorrect trials. Theta N2b was also increased to incongruent stimuli, and incorrect compared with correct trials. As mean RT preceded the N2b peak on incorrect trials, this suggested that conflict monitoring processes were engaged neither sufficiently nor with enough speed, thus failing to ensure accurate response selection. Similarly subsequent stimulus evaluation processes were belated on incorrect trials concomitant with a delayed P3, the peak of which also fell after mean RT. On correct trials, P3 amplitudes were increased to congruent and target-alone relative to neutral stimuli, reflecting an association between the magnitude of this components and the ease of target identification. Importantly, although P3 latency was increased to correct incongruent stimuli, it peaked before the mean RT, reflecting efficacious stimulus evaluation. On correct incongruent trials, theta P3 was increased at frontal sites while delta P3 was reduced, highlighting the multicomponent structure of the P3 component. Frontal theta P3 likely reflects an anterior attentional system activated by task difficulty, while delta P3 reflects equivocation dependent on the difficulty of target identification.
An overall summary of the findings of this thesis, and suggestions for future research, are delimited in Chapter 10. Functional interpretations of ERP components elicited in the Eriksen task are discussed, with particular focus given to the N2a, N2b and P3 components. Further, the contribution of event-related alpha, theta and delta oscillations to the time-domain N2a, N2b and P3 components are also considered with reference to the functional interpretations of event-related oscillations in each activity band. It is concluded that the N2a component reflects feature detection processes activated by perceptual conflict, while the N2b component is an index of conflict monitoring on successful trials. Importantly, each study of this thesis aimed to illuminate a functional interpretation of the P3 component in the context of an Eriksen task. The results suggest that P3 reflects the careful identification and considered evaluation of the target, amongst competing and contemporaneous distractors, influencing accurate response selection and modulated by target perceptibility and task difficulty.
Table of Contents

Acknowledgments ... i
Abstract ... ii
Overview .. iv
Table of Contents ... xi
Table of Figures ... xviii
Table of Tables .. xxiv
Abbreviations used in the text .. xxviii

1 Introduction to Event-related Potentials 1
 1.1 Chapter Aims ... 1
 1.2 The event-related potential (ERP) 1
 1.3 The electroencephalogram (EEG) 2
 1.4 ERP components ... 2
 1.4.1 N1 ... 2
 1.4.2 P2 ... 3
 1.4.3 N2 ... 4
 1.4.4 P3 ... 6
 1.4.5 Slow wave ... 11
 1.5 Response-locked ERP components 12
 1.5.1 ERN .. 13
 1.5.2 Pe ... 14
 1.6 Caveats of ERP research ... 14
 1.7 Decomposition of ERP data ... 15
 1.7.1 Digital filtering ... 15
 1.7.2 Fourier transform and Short-time Fourier transform analysis 16
 1.7.3 Wavelet transform analysis 17
 1.7.4 Decomposition of stimulus- and response-locked evoked potentials 17
 1.7.5 Functional interpretations of event-related frequency activity 18
 1.7.6 Summary .. 19
 1.8 Decomposition of ERP data via statistical procedures 19
 1.8.1 Principle component analysis (PCA) 19
 1.8.2 Independent component analysis (ICA) 21
 1.9 Chapter summary .. 21

2 Inhibition and conflict monitoring 23
 2.1 Chapter Aims ... 23
 2.2 Inhibition ... 23
2.3 Interference control... 24
2.4 Response conflict ... 25
2.5 Theoretical models of response conflict ... 25
 2.5.1 Continuous flow model ... 25
 2.5.2 The variable criterion theory ... 26
 2.5.3 Dual-process architecture of flanker effects ... 26
 2.5.4 The conflict monitoring hypothesis ... 27
2.6 The Eriksen flanker task ... 29
 2.6.1 Stimuli in the Eriksen task... 30
 2.6.2 Visual angle subtended by stimuli .. 30
 2.6.3 Stimulus onset asynchrony (SOA).. 30
 2.6.4 Stimulus Probability .. 31
 2.6.5 Neutral condition... 31
2.7 Chapter summary ... 32

3 ERP indices of response conflict and inhibitory processes 33
 3.1 Chapter aims .. 33
 3.2 The Eriksen flanker task ... 33
 3.2.1 Performance indices of response conflict in the Eriksen task................... 33
 3.2.1.1 Summary and discussion of behavioral indices of response conflict 40
 3.2.2 EMG investigation of response competition in the Eriksen task 41
 3.2.3 ERP investigation of interference control in the Eriksen task 42
 3.2.3.1 Response-locked ERP components in the Eriksen task....... 50
 3.2.3.2 Summary and discussion of ERP findings within the Eriksen task 52
 3.2.4 Imaging studies using the Eriksen flanker task... 55
 3.2.4.1 Summary and discussion of fMRI findings within the Eriksen task 59
 3.3 Other tasks measuring behavioural inhibition... 60
 3.3.1 Go/Nogo task.. 60
 3.3.2 Stop-signal task .. 62
 3.3.3 Posner task ... 63
 3.3.4 Stroop task .. 64
 3.3.5 Simon task .. 65
 3.4 Chapter summary ... 65

4 Study 1: ERP indices of interference control in an Eriksen task: Is there an
effect of the number of distractors? ... 69
 4.1 Introduction ... 69
 4.2 Method .. 72
 4.2.1 Participants ... 72
4.2.2 Stimuli ... 73
4.2.3 Procedure .. 73
4.2.4 Electrophysiological recording .. 74
4.2.5 Data extraction ... 75
4.2.6 Data analysis ... 79
4.3 Results .. 81
 4.3.1 Task performance .. 81
 4.3.2 ERP time-domain analyses .. 81
 4.3.3 ERP frequency analysis ... 87
 4.3.3.1 Alpha (8 - 13 Hz) .. 87
 4.3.3.2 Theta (4 - 8 Hz) ... 88
 4.3.3.3 Delta (0.1 - 4 Hz) .. 90
4.4 Discussion ... 93
 4.4.1 ERP time-domain stimulus effects .. 93
 4.4.2 ERP time-domain distractor effects .. 95
 4.4.2.1 A comparison of the two and four distractor conditions 95
 4.4.2.2 Perceptual interference effect - Target-alone stimuli in comparison to neutral stimuli with two and four distractors .. 95
 4.4.3 ERP frequency analysis .. 96
 4.4.4 Conclusions ... 98

5 Study 2: An investigation of the effect of varying the level of incongruence in an Eriksen Flanker task ... 100
 5.1 Introduction ... 100
 5.2 Method .. 103
 5.2.1 Participants .. 103
 5.2.2 Stimuli .. 103
 5.2.3 Procedure ... 104
 5.2.4 Electrophysiological recording ... 104
 5.2.5 Data extraction .. 105
 5.2.6 Data analysis .. 107
 5.3 Results .. 110
 5.3.1 Task performance .. 110
 5.3.2 ERP time-domain analyses ... 111
 5.3.3 ERP frequency analysis .. 115
 5.3.3.1 Alpha (8 - 13 Hz) ... 115
 5.3.3.2 Theta (4 - 8 Hz) ... 117
 5.3.3.3 Delta (0.1 - 4 Hz) .. 118
5.4 Discussion .. 118
5.4.1 Effects of stimulus type on task performance .. 118
5.4.2 Effects of stimulus type on ERP time-domain components 123
5.4.3 Effects of stimulus type on ERP frequency components 126
5.4.4 Conclusions .. 128

6 Study 3: An investigation of the effect of stimulus degradation in an Eriksen Flanker task ... 131

6.1 Introduction ... 131
6.1.1 Target perceptibility effects on performance ... 132
6.1.2 Target perceptibility effects on ERP components 132
6.1.3 Stimulus discrimination effects on the P3 .. 134
6.1.4 Stimulus degradation in the Eriksen flanker task 135
6.1.5 Target perceptibility and event-related oscillations 135
6.2 Method .. 137
6.2.1 Participants ... 137
6.2.2 Stimuli ... 137
6.2.3 Procedure ... 138
6.2.4 Electrophysiological recording ... 138
6.2.5 Data extraction .. 139
6.2.6 Data analysis .. 143
6.3 Results.. 144
6.3.1 Task performance ... 144
6.3.2 Time-domain ERP analyses ... 145
6.3.3 ERP frequency analysis .. 149
 6.3.3.1 Alpha (8 - 13 Hz) ... 149
 6.3.3.2 Theta (4 - 8 Hz) .. 150
 6.3.3.3 Delta (0.1 - 4 Hz) ... 152
6.4 Discussion .. 155
6.4.1 Task performance ... 155
6.4.2 Effects of Stimulus type and Degradation on ERP components in the time-domain ... 156
6.4.3 Effects of Stimulus type and Degradation on event-related frequency components ... 159
6.4.4 Conclusions .. 160

7 Study 4: An investigation of stimulus degradation in an Eriksen Flanker task using a blocked design ... 163

7.1 Introduction .. 163
7.2 Method .. 164
 7.2.1 Participants .. 164
 7.2.2 Stimuli .. 164
 7.2.3 Procedure .. 165
 7.2.4 Electrophysiological recording .. 165
 7.2.5 Data extraction ... 165
 7.2.6 Data analysis .. 166
7.3 Results .. 171
 7.3.1 Task performance .. 171
 7.3.2 Time-domain ERP analyses ... 172
 7.3.3 ERP frequency analysis .. 178
 7.3.3.1 Alpha (8 - 13 Hz) .. 178
 7.3.3.2 Theta (4 - 8 Hz) .. 179
 7.3.3.3 Delta (0.1 - 4 Hz) .. 181
7.4 Discussion .. 185
 7.4.1 Task performance .. 185
 7.4.2 Time-domain ERP effects ... 186
 7.4.3 ERP frequency analysis .. 189
 7.4.4 Behavioural and ERP effects of task order ... 191
 7.4.5 Conclusions .. 192

8 Study 5: An investigation of response anticipation, preparation and conflict in a modified Eriksen Flanker task ... 195
8.1 Introduction .. 195
 8.1.1 Effects of informative cueing on RT .. 196
 8.1.2 ERP and fMRI findings in variants of the Posner task 196
 8.1.3 The present study ... 200
8.2 Method ... 204
 8.2.1 Participants .. 204
 8.2.2 Stimuli .. 204
 8.2.3 Procedure .. 205
 8.2.4 Electrophysiological recording .. 206
 8.2.5 Data extraction ... 206
 8.2.6 Data analysis .. 208
8.3 Results .. 213
 8.3.1 Task performance .. 213
 8.3.2 Time-domain ERP results ... 214
 8.3.2.1 ERPs to the Cue stimulus ... 214
10.2 Functional significance of ERP components elicited in an Eriksen task..... 274
10.3 The contributions of event-related activity in alpha, theta and delta frequency bands .. 283
10.4 Electrophysiological correlates of information processing in the Eriksen task:
 Implications for models of interference control .. 287
10.5 Future directions .. 291
10.6 Final conclusions ... 295

11 References ... 297
12 Appendix A.. 324
13 Appendix B.. 326
14 Appendix C.. 328
15 Appendix D.. 330
16 Appendix E.. 333
17 Appendix F.. 337
Table of Figures

Figure 4.1. A schematic of Study 1 stimuli ... 73
Figure 4.2. Varimax-rotated components extracted from Study 1 data. Numbers (1-8) show order in which the factors were extracted. ... 77
Figure 4.3. Grand mean raw ERP and reconstructed (virtual) ERP comparison for midline sites. Solid lines represent raw data; dashed lines show the reconstructed ERP data. Vertical bar indicates stimulus onset. Amplitude in μV and time in ms are shown. Pearson r correlations between raw and reconstructed grand mean ERPs for midline sites are shown in the inserted table. 77
Figure 4.4. Grand mean ERPs for neutral, congruent and incongruent stimulus types averaged across two and four distractors. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. Components of interest are shown at site of maximum amplitude. Similar components were quantified in subsequent studies in this thesis... 78
Figure 4.5. Grand mean ERPs for neutral, congruent and incongruent stimulus types in the two and four distractor condition. The two distractor condition is represented by solid lines and the four distractor condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz.......... 82
Figure 4.6. Grand mean ERPs for single, neutral stimuli with two distractors and neutral stimuli with four distractors. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. .. 83
Figure 4.7. Grand mean ERPs in the alpha frequency (8-13 Hz) for neutral, congruent and incongruent stimuli in the two and four distractor conditions. The two distractor condition is represented by solid lines and the four distractor condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz, time in ms is marked below Pz. The N2b component is marked at Cz, similar components were quantified in subsequent studies in this thesis89
Figure 4.8. Grand mean ERPs in the theta frequency (4-8 Hz) and incongruent stimuli in the two and four distractor conditions. The two distractor condition is represented by solid lines and the four distractor condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz, time in ms is marked below Pz. The N2a and N2b components are marked at Cz, similar components were quantified in subsequent studies in this thesis 89
Figure 4.9. Grand mean ERPs in the delta frequency (0.1-4 Hz) and incongruent stimuli in the two and four distractor conditions. The two distractor condition is represented by solid lines and the four distractor condition, by dashed lines.
Vertical bars indicate stimulus onset. Amplitude and the P3 component are shown at Cz, and time in ms is shown under Pz. Similar components were quantified in subsequent studies.

Figure 5.1. A schematic of all Study 2 stimuli.

Figure 5.2. Varimax-rotated components extracted from Study 2 data. Numbers (1-7) show order in which the factors were extracted.

Figure 5.3. Grand mean original ERP and reconstructed ERP comparison for midline sites. Solid lines represent original data, dashed lines show the reconstructed ERP data. Vertical bar indicates stimulus onset. Amplitude in μV and time in ms are shown. Pearson r correlations between raw and reconstructed grand mean ERPs for midline sites are shown in the inserted table.

Figure 5.4. Grand mean ERPs for neutral, congruent, CI, HI and LI stimuli. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. Similar components to Study 1 were quantified.

Figure 5.5. Grand mean ERPs for CI, HI and LI stimuli. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz.

Figure 5.6. Mean reaction times (a) and error rates (b) for neutral, congruent, CI, HI and LI stimuli.

Figure 5.7. Grand mean ERPs in the alpha frequency (8-13 Hz) for (a) neutral, congruent, CI, HI and LI stimuli, and (b) CI, HI and LI stimuli only. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown beneath Pz.

Figure 5.8. Grand mean ERPs in the theta frequency (4-8 Hz) for (a) neutral, congruent, CI, HI and LI stimuli, and (b) CI, HI and LI stimuli only. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown beneath Pz.

Figure 5.9. Grand mean ERPs in the delta frequency (0.1-4 Hz) for (a) neutral, congruent, CI, HI and LI stimuli, and (b) CI, HI and LI stimuli only. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown beneath Pz.

Figure 6.1. Varimax-rotated components extracted from Study 3 data. Numbers (1-6) show order in which the factors were extracted.

Figure 6.2. Grand mean original ERP and reconstructed ERP comparison for midline sites. Solid lines represent original data, dashed lines show the reconstructed ERP data. Vertical bar indicates stimulus onset. Amplitude in μV and time in ms are shown. Pearson r correlations between raw and reconstructed grand mean ERPs for midline sites are shown in the inserted table.
Figure 6.3. Grand mean ERPs for neutral, congruent and incongruent stimulus types in the degraded and non-degraded condition. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. 141

Figure 6.4. Grand mean ERPs for target-alone stimuli in the non-degraded and degraded condition. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. 142

Figure 6.5. Mean reaction time in ms (a) and error rate as a percentage (b) for all target-alone (T-A), neutral (N), congruent (C) and incongruent (I) stimuli in the degraded (D) and non-degraded (N-D) conditions. Solid lines indicate the non-degraded condition, while dashed lines represent the degraded condition. 145

Figure 6.6. Grand mean ERPs in the alpha frequency (8-13Hz) for neutral, congruent and incongruent stimuli in degraded and non-degraded conditions. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. 151

Figure 6.7. Grand mean ERPs in the theta frequency (4-8 Hz) for neutral, congruent and incongruent stimuli in degraded and non-degraded conditions. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. 151

Figure 6.8. Grand mean ERPs in the delta frequency (0.1-4 Hz) for neutral, congruent and incongruent stimuli in degraded and non-degraded conditions. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. 152

Figure 7.1. Varimax-rotated components extracted from Study 4 data. Numbers (1-5) show order in which the factors were extracted. 167

Figure 7.2. Grand mean original ERP and reconstructed ERP comparison for midline sites. Solid lines represent original data, dashed lines show the reconstructed ERP data. Vertical bar indicates stimulus onset. Amplitude in μV and time in ms are shown. Pearson r correlations between raw and reconstructed grand mean ERPs for midline sites are shown in the inserted table. 167

Figure 7.3. Grand mean ERPs for neutral, congruent and incongruent stimuli in the degraded and non-degraded condition. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. 169
Figure 7.4. Grand mean ERPs for target-alone stimuli in the non-degraded and degraded condition. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. ... 170

Figure 7.5. Mean reaction time in ms (a) and error rate as a percentage (b) for all target-alone (T-A), neutral (N), congruent (C) and incongruent (I) stimuli in the degraded (D) and non-degraded (ND) conditions. Solid lines indicate the non-degraded condition, while the dashed line represents the degraded condition. 172

Figure 7.6. Grand mean ERPs in the alpha frequency (8-13 Hz) for neutral, congruent and incongruent stimuli in degraded and non-degraded conditions. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. ... 180

Figure 7.7. Grand mean ERPs in the theta frequency (4-8 Hz) for neutral, congruent and incongruent stimuli in degraded and non-degraded conditions. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. ... 180

Figure 7.8. Grand mean ERPs in the delta frequency (0.1-4 Hz) for neutral, congruent and incongruent stimuli in degraded and non-degraded conditions. The non-degraded condition is represented by solid lines and the degraded condition by dashed lines. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. ... 181

Figure 8.1. Varimax-rotated components extracted from Study 5 data. Numbers (1-6) show order in which the factors were extracted. .. 207

Figure 8.2. Grand mean original ERP and reconstructed ERP comparison for midline sites. Solid lines represent original data, dashed lines show the reconstructed ERP data. Vertical bar indicates cue onset, and arrow marked S2 indicates the imperative stimulus onset. Amplitude in μV and time in ms are shown. Pearson r correlations between raw and reconstructed grand mean ERPs for midline sites are shown in the inserted table. ... 207

Figure 8.3. Grand mean ERPs for Non-specific and Specific cues. S1-N1, S1-P2 components and CNV are marked at Cz. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. ... 209

Figure 8.4. Grand mean ERPs for neutral, congruent and incongruent stimulus types in the Non-specific cue condition. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. ... 210
Figure 8.5. Grand mean ERPs for neutral, congruent and incongruent stimulus types in the Valid cue condition. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. .. 211

Figure 8.6. Grand mean ERPs for neutral, congruent and incongruent stimulus types in the Invalid cue condition. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. .. 212

Figure 8.7. Mean reaction time in ms (a) and error rate as a percentage (b) for neutral, congruent and incongruent stimuli in the Non-specific (NS; solid line), Valid cue (V; dashed line) and Invalid cue (IV; dotted line) conditions.......................... 214

Figure 8.8. Grand mean ERPs in the alpha frequency (8-13 Hz) for neutral, congruent and incongruent stimuli in the (a) Non-specific, (b) Valid and (c) Invalid cue conditions. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz. .. 223

Figure 8.9. Grand mean ERPs in the theta frequency (4-8 Hz) for neutral, congruent and incongruent stimuli in the (a) Non-specific, (b) Valid and (c) Invalid cue conditions. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz.. 224

Figure 8.10. Grand mean ERPs in the delta frequency (0.1-4 Hz) for neutral, congruent and incongruent stimuli in the (a) Non-specific, (b) Valid and (c) Invalid cue conditions. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown below Pz.. 225

Figure 9.1. Varimax-rotated components extracted from Study 6 data. Numbers (1-6) show order in which the factors were extracted. .. 245

Figure 9.2. Grand mean original ERP and reconstructed ERP comparison for midline sites. Solid lines represent original data, dashed lines show the reconstructed ERP data. Vertical bar indicates cue onset. Amplitude in μV and time in ms are shown. Pearson r correlations between raw and reconstructed grand mean ERPs for midline sites are shown in the inserted table. The original and reconstructed ERP data correlated significantly, all p < .01... 246

Figure 9.3. Grand mean ERPs for neutral, congruent and incongruent stimuli. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. 247

Figure 9.4. Grand mean ERPs for target-alone and neutral stimuli. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz........ 248

Figure 9.5. Grand mean ERPs for correct incongruent and incorrect incongruent trials. Vertical bars indicate stimulus onset. Amplitude in μV and time in ms are shown at Cz. .. 249
Figure 9.6. Mean correct and incorrect reaction times (a) and mean error rate and omission error rate (b) for target-alone, neutral, congruent and incongruent stimuli. .. 252

Figure 9.7. Grand mean ERPs in the alpha frequency (8-13 Hz) for (a) neutral, congruent and incongruent stimuli and (b) correct and incorrect incongruent trials. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown beneath Pz... 256

Figure 9.8. Grand mean ERPs in the theta frequency (4-8 Hz) for (a) neutral, congruent and incongruent stimuli and (b) correct and incorrect incongruent trials. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown beneath Pz.. 257

Figure 9.9. Grand mean ERPs in the delta frequency (0.1-4 Hz) for (a) neutral, congruent and incongruent stimuli and (b) correct and incorrect incongruent trials. Vertical bars indicate stimulus onset. Amplitude in μV is shown at Cz and time in ms is shown beneath Pz.. 258
Table of Tables

Table 4.1. Search latencies and sites of peak detection for all components and mean latency for each stimulus type ... 79
Table 4.2. Mean and range in ms for reaction time data and error rates as a percentage. Standard deviations are shown in brackets.............................. 81
Table 4.3 Significant effects for the N1 component .. 84
Table 4.4. Significant effects for the P2a component ... 85
Table 4.5. Significant effects for the P2b component ... 85
Table 4.6. Significant effects for the N2a component ... 86
Table 4.7. Significant effects for the N2b component ... 87
Table 4.8. Significant effects for the P3 component ... 88
Table 4.9. Significant effects for N2a in the time-domain, and in alpha and theta frequency bands ... 91
Table 4.10. Significant effects for N2b in the time-domain, and in alpha and theta frequency bands ... 91
Table 4.11. Significant effects for the P3 in the time-domain, and in alpha, theta and delta frequency bands .. 92
Table 5.1. Search latencies and sites of peak detection for all components and mean latency for each stimulus type ... 107
Table 5.2. Mean and range in ms for reaction time data and error rates as a percentage for each stimulus type. Standard deviations are shown in brackets 110
Table 5.3. Significant effects for the N1 component ... 112
Table 5.4. Significant effects for the P2a component ... 112
Table 5.5. Significant effects for the P2b component ... 113
Table 5.6. Significant effects for the N2a component ... 113
Table 5.7. Significant effects for the N2b component ... 114
Table 5.8. Significant effects for the P3 component ... 115
Table 5.9. Significant effects for the N2a component in the time-domain, and in alpha and theta frequency bands ... 120
Table 5.10. Significant effects for the N2b component in the time-domain, and in alpha and theta frequency bands ... 121
Table 5.11. Significant effects for the P3 component in the time-domain, and in alpha, theta and delta frequency bands ... 122
Table 6.1. Search latencies and sites of peak detection for all components and mean latency for each stimulus type ... 143
Table 6.2. Mean and range in ms for reaction time data and error rates as a percentage for each stimulus type. Standard deviations are shown in brackets. 145
Table 6.3. Significant effects for the N1 component.. 146
Table 6.4. Significant effects for the P2a component.. 147
Table 6.5. Significant effects for the P2b component.. 148
Table 6.6. Significant effects for the N2a component.. 148
Table 6.7. Significant effects for the N2b component.. 149
Table 6.8. Significant effects for the P3 component.. 150
Table 6.9. A summary of significant effects for the N2a in the time-domain, alpha and theta frequency bands. ... 153
Table 6.10. A summary of significant effects for the N2b in the time-domain, alpha and theta frequency bands. ... 153
Table 6.11. A summary of significant effects for the P3 in the time-domain, alpha, theta and delta frequency bands. ... 154
Table 7.1. Search latencies and sites of peak detection for all components and mean latency for each stimulus type. ... 168
Table 7.2. Mean and range in ms for reaction time data and error rates as a percentage for each stimulus type in the non-degraded and degraded conditions. Standard deviations are shown in brackets. .. 171
Table 7.3. Significant effects for the N1 component.. 173
Table 7.4. Significant effects for the P2a component.. 174
Table 7.5. Significant effects for the P2b component.. 176
Table 7.6. Significant effects for the N2a component.. 177
Table 7.7. Significant effects for the N2b component.. 177
Table 7.8. Significant effects for the P3 component.. 178
Table 7.9. Significant effects for the N2a component in the time-domain, alpha and theta frequency bands... 182
Table 7.10. Significant effects for the N2b component in the time-domain, alpha and theta frequency bands... 183
Table 7.11. Significant effects for the P3 component in the time-domain, alpha, theta and delta frequency bands. ... 184
Table 8.1. Search latencies and sites of peak detection for all components.............. 208
Table 8.2. Mean and range in ms for reaction time data and error rate as a percentage for each Stimulus type and Cue condition. Standard deviations are shown in brackets. .. 213
Table 8.3. Mean latency in milliseconds (ms) for each component for each Stimulus type and Cue condition... 215
Table 8.4. Significant effects for S1-N1, S1-P2 components and the CNV............. 215
Table 8.5. Significant effects for the N1 component.. 216
Table 8.6. Significant effects for the P2 component.. 217
Table 8.7. Significant effects for the N2a component... 218
Table 8.8. Significant effects for the N2b component... 219
Table 8.9. Significant effects for the P3 component.. 220
Table 8.10. Significant effects for the N2a component in the time-domain, alpha and theta frequency bands.. 226
Table 8.11. Significant effects for the N2b component in the time-domain, alpha and theta frequency bands.. 227
Table 8.12. Significant effects for the P3 component in the time-domain, alpha, theta and delta frequency bands... 228
Table 9.1. Search latencies and sites of peak detection for all components and mean latency in milliseconds (ms) for each stimulus type....................... 246
Table 9.2. Mean and range in ms for reaction time data and error rate and omission errors as a percentage. Standard deviations are shown in brackets........... 252
Table 9.3. Significant effects for the N1 component.. 253
Table 9.4. Significant effects for the P2 component.. 253
Table 9.5. Significant effects for the N2a component... 254
Table 9.6. Significant effects for the N2b component... 254
Table 9.7. Significant effects for the P3 component.. 255
Table 9.8. Significant effects for the N2a component in the time-domain, alpha and theta frequency bands.. 259
Table 9.9. Significant effects for the N2b component in the time-domain, alpha and theta frequency bands.. 259
Table 9.10. Significant effects for the P3 component in the time-domain, alpha, theta and delta frequency bands... 259
Table 12.1. Significant effects for the N2a, N2b and P3 components in the alpha frequency (8-13 Hz) in Study 1... 324
Table 12.2. Significant effects for the N2a, N2b and P3 component in the theta frequency (4-8 Hz) in Study 1... 325
Table 12.3. Significant effects for the P3 component in the delta frequency (0.1-4 Hz) in Study 1... 325
Table 13.1. Significant effects for the N2a, N2b and P3 components in the alpha frequency (8-13 Hz) in Study 2... 326
Table 13.2. Significant effects for the N2a, N2b and P3 components in the theta frequency (4-8 Hz) in Study 2... 327
Table 13.3. Significant effects for P3 component in the delta frequency (0.1-4 Hz) in Study 2. .. 327

Table 14.1. Significant effects for the N2a, N2b and P3 components in the alpha frequency (8-13 Hz) in Study 3. .. 328

Table 14.2. Significant effects for the N2a, N2b and P3 components in the theta frequency (4-8 Hz) in Study 3. .. 329

Table 14.3. Significant effects for the P3 component in the delta frequency (0.1-4 Hz) in Study 3. .. 329

Table 15.1. Significant effects for the N2a, N2b and P3 components in the alpha frequency (8-13 Hz) in Study 4. .. 330

Table 15.2. Significant effects for the N2a, N2b and P3 components in the theta frequency (4-8 Hz) in Study 4. .. 331

Table 15.3. Significant effects for the P3 component in the delta frequency (0.1-4 Hz) in Study 4. .. 332

Table 16.1. Significant effects for the N2a, N2b and P3 components in the alpha frequency (8-13 Hz) in Study 5. .. 334

Table 16.2. Significant effects for the N2a, N2b and P3 components in the theta frequency (4-8 Hz) in Study 5. .. 335

Table 16.3. Significant effects for the P3 component in the delta frequency (0.1-4 Hz) in Study 5. .. 336

Table 17.1. Significant effects for the N2a, N2b and P3 components in the alpha frequency (8-13 Hz) in Study 6. .. 337

Table 17.2. Significant effects for the N2a, N2b and P3 components in the theta frequency (4-8 Hz) in Study 6. .. 337

Table 17.3. Significant effects for the P3 component in the delta frequency (0.1-4 Hz) in Study 6. .. 338
Abbreviations used in the text

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Anterior cingulate cortex</td>
</tr>
<tr>
<td>A/D</td>
<td>Analog to Digital</td>
</tr>
<tr>
<td>AD/HD</td>
<td>Attention-deficit/Hyperactivity Disorder</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BOLD</td>
<td>Blood oxygen level dependent</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>CNV</td>
<td>Contingent Negative Variation</td>
</tr>
<tr>
<td>CRN</td>
<td>Correction-related Negativity</td>
</tr>
<tr>
<td>CSD</td>
<td>Current Source Density</td>
</tr>
<tr>
<td>dB</td>
<td>Decibels</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>Df</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>DLPFC</td>
<td>Dorsolateral prefrontal cortex</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyogram</td>
</tr>
<tr>
<td>EOG</td>
<td>Electrooculogram</td>
</tr>
<tr>
<td>ERN</td>
<td>Error-related Negativity</td>
</tr>
<tr>
<td>ERP</td>
<td>Event-related Potential</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz in cycles per second</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Component Analysis</td>
</tr>
<tr>
<td>ISI</td>
<td>Inter-stimulus Interval</td>
</tr>
<tr>
<td>LPC</td>
<td>Late Positive Complex</td>
</tr>
<tr>
<td>LRP</td>
<td>Lateralised Readiness Potential</td>
</tr>
<tr>
<td>MMN</td>
<td>Mismatch Negativity</td>
</tr>
<tr>
<td>MPN</td>
<td>Movement preceding Negativity</td>
</tr>
<tr>
<td>Ne</td>
<td>Error Negativity</td>
</tr>
<tr>
<td>OCD</td>
<td>Obsessive Compulsive Disorder</td>
</tr>
<tr>
<td>OR</td>
<td>Orienting Response</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>Pe</td>
<td>Error Positivity</td>
</tr>
<tr>
<td>PN</td>
<td>Processing Negativity</td>
</tr>
<tr>
<td>RT</td>
<td>Reaction time</td>
</tr>
<tr>
<td>S1</td>
<td>Stimulus 1</td>
</tr>
<tr>
<td>S2</td>
<td>Stimulus 2</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SOA</td>
<td>Stimulus Onset Asynchrony</td>
</tr>
<tr>
<td>SPN</td>
<td>Stimulus-preceding Negativity</td>
</tr>
<tr>
<td>SSRT</td>
<td>Stop-signal Reaction time</td>
</tr>
<tr>
<td>STFT</td>
<td>Short-time Fourier Transform</td>
</tr>
<tr>
<td>SW</td>
<td>Slow wave</td>
</tr>
<tr>
<td>TTI</td>
<td>Target-to-target Interval</td>
</tr>
<tr>
<td>WT</td>
<td>Wavelet Transform</td>
</tr>
</tbody>
</table>