Electrophysiological and behavioural indices of simulated recognition memory impairment

Hilarie P. Tardif
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
ELECTROPHYSIOLOGICAL AND BEHAVIOURAL INDICES OF SIMULATED RECOGNITION MEMORY IMPAIRMENT

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

HILARIE P. TARDIF, B.Sc.(Hons.)

DEPARTMENT OF PSYCHOLOGY
2003
DECLARATION

I, Hilarie P. Tardif, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Psychology, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Hilarie P. Tardif
March 2003
ACKNOWLEDGEMENTS

I consider myself very fortunate to have had two wonderful thesis supervisors – Professor Robert Barry and Dr Stuart Johnstone – whose combined wisdom, encouragement and support made this work possible.

I would also like to thank my partner Pete for his love and for sustaining me emotionally and with numerous curries, and my sister Jacqui, for being such a precious friend and for knowing when to rescue me with much needed social activities. Thanks also to my fellow postgraduate friends, Jane Bajgar, Aneta Dimoska, Janette Smith and Jacqui Rushby, for making the whole experience that much more enjoyable. And of course, the biggest thank you to my daughter Bonnie, whose sense of humour, enthusiasm, and love could make anything possible.

I would like to dedicate this thesis to my parents, John and Patricia Tardif. Together you created an environment which valued and nurtured effort and achievement, but at the same time promised unconditional love and support, regardless of how successful I was. Thank you!
ABSTRACT

This thesis examined the use of event-related potentials as a means of detecting feigned recognition memory impairment. In seven studies, undergraduate students were instructed either to complete a recognition memory test to the best of their abilities, or to simulate accident-related memory loss. These studies extended previous research by investigating electrophysiological differences between the control and malingering tasks (1) for stimuli which differed in linguistic frequency, (2) in tests which varied the format of word presentation, (3) during the initial encoding of the stimuli, and (4) using ERP components not previously considered in studies investigating the detection of malingering. The main results were that simulating individuals appear to use more active or additional cognitive processing during task performance compared to those who respond honestly, with this enhanced effort reflected in an ERP effect indexing earlier recognition of previously-studied words. This earlier recognition, considered to be the result of more elaborative or efficient encoding of the stimuli, was most evident in the easier forms of the recognition test and in malingers who presented a more believable profile of impairment. The malingers also demonstrated different electrophysiological responses to items that were incorrectly classified, and a pattern of response latency suggesting that they concealed recognition of previously-studied items. Overall, the results indicate that the simulation of amnesia on a recognition memory task involves qualitatively different processing of the word stimuli, which may be detected in the waveforms and more covert patterns of behaviour of these individuals.
OVERVIEW

This thesis aimed to extend knowledge regarding the use of ERPs to detect feigned memory impairment. This was achieved through examination of the effect of malingering task instructions on components and ERP effects other than the P3, which has been the focus of most previous studies investigating ERPs and malingering. Studies 1 to 5 examined the behavioural and electrophysiological responses of control and simulating malingering participants on recognition memory tests that varied the linguistic frequency of the stimuli, and the format in which the words were presented during the retrieval phase. Studies 4 and 5 also included a comparison of ERP outcomes of processes occurring in the two groups during initial encoding of the stimuli. Study 6 delayed assignment of participants to the malingering and control groups until after the encoding phase to further explore the relationship between encoding and retrieval ERPs. A final study compared the behavioural and electrophysiological data of malingerers who presented a believable deficit with those whose performance appeared to be less plausible. Discriminant function analyses were used throughout to assess the reliability of ERP and behavioural effects in predicting group membership at the individual level.

The first three chapters of this thesis provide comprehensive literature reviews on malingering (Chapter 1), the more traditional approaches to its detection (Chapter 2), and the use of ERPs for detecting simulated impairment (Chapter 3).

Study 1 (Chapter 4) investigated the performance of a group of 24 participants on a computerised version of the Words subtest of the Warrington Recognition Memory test. Twelve subjects were instructed to feign an accident-related recognition memory deficit,
while the remainder served as controls. In this and all following studies, EEG data from nine scalp sites were analysed. The malingerers performed poorly on the test compared to the control group. However, the “old-new effect”, an ERP measure thought to reflect recognition memory processes, did not differ in size or topography between the two groups. In addition, a second, earlier-emerging difference between old and new words was evident, confined to the waveforms of the malingerer participants. These results suggest firstly, that the malingerers did recognise the previously-studied words despite poor test performance, and secondly, that the task of malingerer involves differential or additional processing of the stimuli.

Study 2 (Chapter 5) aimed to replicate and extend the findings of the first study, using a statistically more powerful within-subject design, a principal components analysis of the data to define the underlying components of the waveform, and an analysis of response latency data. The data from 19 participants completing the task in both a control and malingerer condition were analysed. Behaviourally, individuals performed poorly on the recognition task when simulating impairment. They also demonstrated equivalent reaction times regardless of the accuracy of their response, whereas correct responses were made more rapidly in the control task. The control task waveforms were characterised by old/new word differences associated with a frontally-distributed N400 component, and a later right frontal old/new effect, consistent with shallower processing and less confident recognition of the words. In contrast, old/new differences were broadly distributed across the scalp and emerged earlier in the malingerer task. These results replicated the main findings of the first study, suggesting that recognition occurred earlier in those simulating
impaired. In addition, the qualitatively different ERPs were consistent with additional or enhanced cognitive processing of the stimuli in the malingering task.

The recognition tests used in these first two studies presented words with a high linguistic frequency in a forced-choice format, whereby the participant decides which one of a pair of words was shown in the study phase. Numerous studies have demonstrated that cognitive processing differs according to word frequency, and the format in which the words are presented. The following three studies therefore aimed to assess the reliability of the findings of Studies 1 and 2 through the systematic manipulation of test format and word frequency.

Responses to words with a low frequency of occurrence presented in a forced-choice test of recognition memory were investigated in Study 3 (Chapter 6). Ten controls and nine simulating malingerers completed the task. ERP effects indicating earlier recognition of studied items in those simulating impairment were again observed. In addition, the response latency effect observed in the previous study was again evident in the malingering participants. These results demonstrate the reliability of those reported in Studies 1 and 2, using low-frequency word stimuli.

These results were also replicated in Study 4 (Chapter 7), which assessed the responses of 17 control and 23 simulators to high-frequency words, presented in a yes-no test format. In addition, qualitative differences in the ERPs recorded during both the study and test phases suggested that encoding strategy influenced processes occurring during retrieval, and that these processes differed in the two groups. Furthermore, the ERPs of the malingering group were consistent with more elaborative and efficient encoding of the stimuli. An analysis of the ERPs associated with incorrect responses revealed that these
elicited an increased negativity at about 600 ms in the control group only. This was interpreted as reflecting the purposeful provision of incorrect responses in individuals simulating impairment.

Study 5 (Chapter 8) completed the series of studies manipulating word frequency and test format, assessing recognition memory in 20 controls and 22 simulating malingerers on a test using low-frequency words in a yes-no format. Group differences in the time taken to classify correct and incorrect responses were again evident in this study. However, the ERP effects identified previously and taken to reflect additional or enhanced cognitive processing in the malingering group were not observed. These results suggest that the additional processing or effort hypothesised in the malingerers in the previous studies might be a function of the combined effect of word frequency and test format.

The findings of Studies 2 to 5 were integrated and discussed in Chapter 9. While the behavioural group differences in test scores and in response latency as a function of accuracy were evident in all studies, ERP effects signaling additional effort were most evident in the easier forms of the recognition task – those involving highly familiar words and/or a forced-choice format. These results suggest that easier tasks may enable additional processing or planning in malingering participants and may therefore be preferable in ERP studies aiming to distinguish feigned from honest performance.

Study 6 (Chapter 10) further investigated the relationship between encoding and retrieval phase ERPs. Twenty participants completed a recognition memory task that presented low-frequency words in a forced-choice format, and were assigned to either the control or simulating group after the initial presentation and encoding of the words. The study phase ERPs of the two groups did not differ, and the early malingering recognition
effect was absent. These results indicate that the early recognition of the words in those simulating impairment, identified in previous studies in this thesis, may be the result of differential processing during the initial encoding of the stimuli.

Study 7 (Chapter 11) identified malingerers from the previous studies in this thesis who responded at chance levels, and compared them to malingerers who presented a more believable deficit. ERP effects interpreted previously as reflecting more effort in the processing of the stimuli, in particular, the early malingering recognition effect, were larger in the simulators who were more able to feign a believable impairment. The results of this study therefore suggest that ERPs may play an important role in the detection of these typically difficult-to-identify individuals.

An overall summary of the main results obtained in this thesis, and suggestions for future research, are provided in Chapter 12.
TABLE OF CONTENTS

Declaration ... ii
Acknowledgements ... iii
Abstract ... iii
Overview .. v
Table of Contents .. x
Table of Figures .. xv
Table of Tables ... xvii

CHAPTER 1. MALINGERING ... 1

1.2 MODELS OF MALINGERING ... 2
 1.2.1 Psychopathological model ... 2
 1.2.2 Criminological model .. 3
 1.2.3 Adaptational model ... 4
 1.2.4 Diagnostic importance of models of malingering ... 5
 1.3 Differential Diagnosis ... 6
 1.4 PREVALENCE .. 8
 1.5 IMPORTANCE OF DETECTING MALINGERERS .. 9
 1.6 SUMMARY .. 10

CHAPTER 2. DETECTION OF MALINGERING ... 11

2.1 SUBJECT POPULATION ... 13
 2.1.1 "Known groups" design ... 13
 2.1.2 Differential prevalence design .. 14
 2.1.3 Simulation studies .. 15
 2.2 METHODS OF DETECTING FEIGNED IMPAIRMENT .. 17
 2.2.1 Test Development .. 17
 2.2.2 Strategies to detect memory impairment ... 19
 2.2.2.1 Quantitative Differences ... 19
 2.2.2.2 Qualitative Differences ... 21
 2.3 COACHING OF MALINGERERS .. 22
 2.4 CURRENT STATUS OF TESTS TO DETECT MALINGERING AND FUTURE DIRECTIONS .. 25

CHAPTER 3. EVENT-RELATED POTENTIALS IN THE DETECTION OF MALINGERING ... 27

3.1 EVENT-RELATED POTENTIALS ... 27
 3.1.1 N400 ... 28
 3.1.2 P3 .. 29
 3.1.3 Assessment of cognitive function using ERPs .. 31
 3.1.4 P3 and the detection of malingering and deception ... 33
 3.2 THE ERP OLD/NEW EFFECT AND RECOGNITION MEMORY ... 38
 3.2.1 Early studies of the old/new effect .. 38
 3.2.2 Parietal old/new effect ... 40
 3.2.3 Late right frontal effect ... 44
 3.2.4 Frontal old/new effect ... 45
 3.3 SUMMARY OF PREVIOUS CHAPTERS .. 46

CHAPTER 4. STUDY 1 – DETECTION OF FEIGNED MEMORY IMPAIRMENT USING THE ERP OLD/NEW EFFECT 49

4.1 INTRODUCTION .. 49
 4.2 METHODS .. 51
 4.2.1 Participants .. 51
CHAPTER 7. STUDY 4 – IDENTIFICATION OF FEIGNED IMPAIRMENT USING HIGH-FREQUENCY WORD STIMULI IN A “YES-NO” TEST OF RECOGNITION MEMORY

7.1 INTRODUCTION .. 114
7.2 METHODS ... 116
 7.2.1 Participants .. 116
 7.2.2 Stimuli ... 117
 7.2.3 Electrophysiological recording .. 117
 7.2.4 Procedure ... 117
 7.2.5 Data analysis .. 118
7.3 RESULTS .. 119
 7.3.1 Behavioural data ... 119
 7.3.2 Electrophysiological data .. 121
 7.3.2.1 Test phase data ... 121
 7.3.2.1.1 0-290 ms ... 123
 7.3.2.1.2 290-520 ms ... 125
 7.3.2.1.3 520-720 ms ... 127
 7.3.2.1.4 720-900 ms ... 127
 7.3.2.2 Study phase data ... 130
 7.3.2.2.1 160-290 ms ... 132
 7.3.2.2.2 290-675 ms ... 133
 7.3.2.2.3 675-900 ms ... 134
 7.3.2.3 Analysis by response accuracy .. 135
 7.3.3 Classification of malingering and control participants .. 138
7.4 DISCUSSION .. 140
 7.4.1 Test phase analysis .. 142
 7.4.2 Study phase analysis ... 145
 7.4.3 Summary ... 149

CHAPTER 8. STUDY 5 – AN ERP STUDY OF SIMULATED AMNESIA USING LOW-FREQUENCY WORDS IN A “YES-NO” TEST OF RECOGNITION MEMORY

8.1 INTRODUCTION .. 151
8.2 METHOD ... 152
 8.2.1 Participants .. 152
 8.2.2 Stimuli ... 153
 8.2.3 Electrophysiological recording .. 153
 8.2.4 Procedure ... 153
 8.2.5 Data analysis .. 153
8.3 RESULTS .. 154
 8.3.1 Behavioural data ... 154
 8.3.2 Electrophysiological data .. 156
 8.3.2.1 Study phase data ... 156
 8.3.2.1.1 155-295 ms ... 158
 8.3.2.1.2 295-595 ms ... 159
 8.3.2.1.3 595-700 ms ... 160
 8.3.2.1.4 700-900 ms ... 161
 8.3.2.2 Test phase data .. 162
 8.3.2.2.1 90-170 ms ... 165
 8.3.2.2.2 170-300 ms ... 165
 8.3.2.2.3 300-605 ms ... 166
 8.3.2.2.4 605-900 ms ... 170
 8.3.3 Classification of simulated and honest performance .. 174
8.4 DISCUSSION .. 175
TABLE OF FIGURES

Figure 4-1. Grand average ERP waveforms for the control and malingering groups ... 57
Figure 5-1. Grand mean waveforms for the control and malingering conditions shown as a function of Word... 75
Figure 5-2. Varimax-rotated components showing the epochs over which they were analysed 77
Figure 5-3. The N100-P150 complex (Factor 4), analysed over the 0-190 ms epoch. In this and the following figures, factors are illustrated as a function of task, old/new status and presentation order. ... 79
Figure 5-4. The P2 component (Factor 3), analysed over a 190-320 ms epoch following stimulus onset . 80
Figure 5-5. Waveforms for Factor 2, showing the frontocentral N400 component which was analysed over the 320-585 ms epoch ... 82
Figure 5-6. The LPC (Factor 1), measured over the 585-900 ms epoch ... 84
Figure 6-1. Grand mean waveforms for the control and malingering groups. ... 99
Figure 6-2. Varimax-rotated components showing the epochs over which they were analysed 100
Figure 6-3. The N1-P1 complex (Factor 4), which was analysed over a 0-175 ms epoch following stimulus onset. In this and the following figures, factors are illustrated as a function of group, old/new status and presentation order ... 101
Figure 6-4. The P2 component, measured over the 175-340 ms epoch .. 103
Figure 6-5. Factor 2 waveforms, showing the frontocentrally-distributed N400 component, analysed over the 340-660 ms time window .. 105
Figure 6-6. The LPC (Factor 1) analysed over the 660-900 ms epoch ... 107
Figure 7-1. Grand average waveforms for the control and malingering group recorded during the test phase, showing responses to old and new words .. 122
Figure 7-2. Varimax-rotated components for the test phase data, showing the epochs over which they were analysed .. 123
Figure 7-3. Early components (Factor 4), measured over the epoch 0-290 ms following stimulus onset. In this and the following figures, factors are shown as a function of Word and Group. 124
Figure 7-4. The frontocentral N400 (Factor 2), analysed over the 290-520 ms epoch ... 126
Figure 7-5. Factor 3 waveforms showing the LPC, measured in the 520-720 ms time window 128
Figure 7-6. The positive slow wave (Factor 1), analysed over the 720-900 ms epoch 129
Figure 7-7. Grand average waveforms for the control and malingering group recorded during the study phase .. 131
Figure 7-8. Varimax-rotated components for the study phase, showing the epochs over which they were analysed ... 131
Figure 7-9. The P2 component (Factor 3), analysed over the 160-290 ms epoch and shown as a function of Group ... 132
Figure 7-10. The frontal N400 component (Factor 1) recorded during the study phase, and measured over the 290-675 ms epoch .. 133
Figure 7-11. The slow wave component (Factor 2) for the control and malingering group, analysed over the 675-900 ms time window ... 134
Figure 7-12. Grand average test phase waveforms for the control and malingering group as a function of response accuracy ... 136
Figure 8-1. Response latencies for the control and malingering groups as a function of word type and accuracy ... 155
Figure 8-2. Study phase waveforms for the control and malingering groups .. 156
Figure 8-3. Varimax-rotated components for the study phase data, showing the epochs over which the components were analysed .. 157
Figure 8-4. The P2 component (Factor 3) for the control and malingering group, analysed over the 155-295 ms epoch .. 158
Figure 8-5. Frontal N400 component (Factor 1), analysed over a 295-595 ms epoch following the onset of the stimulus .. 159
Figure 8-6. Waveforms showing the LPC (Factor 4), analysed over the 595-700 ms time window 160
Figure 8-7. Positive show wave component (Factor 2) for the control and malingering groups, measured over the 700-900 ms epoch ... 162
Figure 8-8. Test phase grand average waveforms for the control and malingering groups.......................... 163
Figure 8-9. Varimax-rotated component for the test phase, illustrating the epochs over which the components were analysed .. 164
Figure 8-10. Early components (Factor 4) analysed over the 90-170 ms epoch following the onset of the stimulus .. 167
Figure 8-11. The N200-P2 complex (Factor 3) measured over the 170-300 ms time window 168
Figure 8-12. Factor 2 waveforms showing the frontocentral N400 component, analysed over the 300-605 ms epoch .. 169
Figure 8-13. Factor 1 waveforms (measured over the 605-900 ms epoch) for the control and malingering groups ... 171
Figure 8-14. Waveforms for Factor 5 for the two groups. This factor was interpreted as representing a subdivision of Factor 1, and statistical analyses of this component were not conducted. 172
Figure 8-15. Factor 6 waveforms for the control and malingering groups. As for Factor 5, this component was seen as a subdivision of Factor 1 and was not analysed further .. 173
Figure 9-1. Waveforms for the control and malingering participants showing ERPs for the forced-choice compared to the yes-no test formats averaged over old and new words .. 185
Figure 9-2. Waveforms for the control group comparing responses to first and second words in the forced-choice format to yes-no format ERPs .. 186
Figure 9-3. Difference waveforms (old minus new words) for the control and malingering groups in the forced-choice and yes-no test formats .. 189
Figure 9-4. Difference waveforms for the control and malingering groups during the study phase, showing low- minus high-frequency words ... 191
Figure 9-5. High vs. low-frequency ERPs for the control and malingering groups, averaged over old and new words ... 194
Figure 9-6. Difference waveforms (old minus new words) for the two groups as a function of word frequency .. 196
Figure 10-1. Study phase waveforms for the control and malingering group .. 205
Figure 10-2. Varimax-rotated components for the study phase, illustrating the epochs over which they were analysed .. 206
Figure 10-3. Waveforms showing the P2 component (Factor 3) for the two groups recorded during the study phase and measured over the 180-310 ms epoch .. 207
Figure 10-4. The frontocentral N400 (Factor 2) measured over the 310-490 ms time window 208
Figure 10-5. Factor 1 waveforms showing the LPC, which was analysed over the 490-900 ms epoch... 209
Figure 10-6. Averaged waveforms for the control and malingering groups showing responses to old and new words, recorded during the test phase ... 210
Figure 10-7. Varimax-rotated components extracted during the test phase and showing the epochs over which they were analysed ... 211
Figure 10-8. Early components (Factor 4) in the control and malingering group, measured over the 0-170 ms epoch .. 212
Figure 10-9. Topographical distribution of the P2 component (Factor 3), analysed over the 170-310 ms time window .. 214
Figure 10-10. The frontocentral N400 component (Factor 2), measured over the 310-630 ms epoch 215
Figure 10-11. Factor 1 waveforms showing the LPC as a function of Group, Word and Order, analysed over the 630-900 ms epoch .. 217
Figure 11-1. Average waveforms for the poor- and high-performing malingerers shown as a function of Word ... 228
TABLE OF TABLES

Table 4-1. Recognition Memory Test scores of controls and malingerers in the present study compared to scores obtained in previous research. Scores show number correct out of 50, with standard deviations in brackets. ... 55

Table 5-1. Mean recognition performance and response latency by condition (standard error in brackets). ... 55

Table 5-2. Presence of old/new word differences in response to first and second words in the control and malingering conditions .. 85

Table 7-1. Accuracy and response latency measures for the control and malingering groups showing means, and standard error of the means in brackets .. 120

Table 9-1. Behavioural measures for the control and malingering groups for Studies 2-5. Note that due to the presentation of paired old and new words in the forced-choice studies, hit and false alarm rates, measures of bias and reaction times as a function of word status and accuracy could not be assessed. ... 85

Table 11-1. Test scores, reaction time and response rates for the poor- and high-performing malingerers (standard deviations in brackets) .. 226