Designing simulations to improve learner outcomes in ecological education

Robert M. Corderoy

University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
DESIGNING SIMULATIONS TO IMPROVE
LEARNER OUTCOMES IN ECOLOGICAL EDUCATION

A thesis submitted in fulfilment of the
requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

ROBERT. M. CORDEROY
B.A.(Geol.), M.Ed(IT)., M.A.C.E., JP.

FACULTY OF EDUCATION
2001
Declaration

I, Robert Malcolm Corderoy, certify that the material within this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Education, University of Wollognong, is wholly my own original work unless otherwise referenced or acknowledged. This thesis has not been submitted for the award of qualifications at any other institution.

Robert M. Corderoy
30th August, 2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter-Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>a-1</td>
</tr>
</tbody>
</table>

Chapter 1: Overview

1.0 Introduction 1-1
1.1 The Study 1-4
1.2 The Research Question 1-5
 1.2.1 General Hypothesis 1-6
 1.2.2 Learning Outcomes 1-6
 1.2.3 Development of an Understanding of Relationships 1-7
1.3 Design Considerations 1-7
 1.3.1 Good Learning Environment Design 1-7
1.4 Simulations in Ecological Education 1-9

Chapter 2: Literature Review

2.0 Introduction 2-1
2.1 Simulations: Real World Substitutes or ‘Preset’ Experiences 2-1
 2.1.1 Games and Simulation Games 2-3
 2.1.2 Simulations 2-5
 2.1.3 Design Issues for Algorithmic Simulations 2-16
 2.1.4 Summary 2-28
2.2 Simulations in Educational Settings 2-29
 2.2.1 Educational Criteria 2-32
 2.2.2 Engagement, Motivation and Challenge 2-35
 2.2.3 Learners Building Models of the World 2-36
 2.2.4 Providing an Environment/mechanism for Testing the Efficacy of these Models 2-40
<table>
<thead>
<tr>
<th>Chapter-Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5 Providing a Community of Practice in which they are Supported in Constructing the Knowledge</td>
<td>2-41</td>
</tr>
<tr>
<td>2.2.6 Matching Technology to Educational Theory</td>
<td>2-47</td>
</tr>
<tr>
<td>2.2.7 Specific Simulation Studies</td>
<td>2-53</td>
</tr>
<tr>
<td>2.2.8 Exploring the Nardoo - A Simulation Developed</td>
<td>2-55</td>
</tr>
<tr>
<td>2.2.9 Summary</td>
<td>2-58</td>
</tr>
<tr>
<td>2.3 Model Development and Performance Testing</td>
<td>2-60</td>
</tr>
<tr>
<td>2.3.1 Data sources</td>
<td>2-62</td>
</tr>
<tr>
<td>2.3.2 The Base Model</td>
<td>2-65</td>
</tr>
<tr>
<td>2.3.3 Re-development</td>
<td>2-67</td>
</tr>
<tr>
<td>2.3.4 Summary</td>
<td>2-68</td>
</tr>
<tr>
<td>3.0 Overview</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 The Context</td>
<td>3-2</td>
</tr>
<tr>
<td>3.1.1 Investigating Lake Iluka</td>
<td>3-2</td>
</tr>
<tr>
<td>3.1.2 Exploring the Nardoo</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2 Phase One: Underlying Model Development</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.1 Original Design Parameters</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.1.1 Input/Output</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.1.2 Output of Data</td>
<td>3-7</td>
</tr>
<tr>
<td>3.2.1.3 Learning Evaluation</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.1.4 Some Operational Considerations: The General Interface Design</td>
<td>3-8</td>
</tr>
<tr>
<td>3.2.1.5 The Interface-Structural Components</td>
<td>3-9</td>
</tr>
<tr>
<td>3.2.1.6 Input/Output Functions</td>
<td>3-10</td>
</tr>
<tr>
<td>3.2.2 Evolution of the Engine: The ‘Bench Mark’</td>
<td>3-11</td>
</tr>
<tr>
<td>3.2.3 The Modelling Environment</td>
<td>3-11</td>
</tr>
<tr>
<td>3.2.4 Data Sources</td>
<td>3-12</td>
</tr>
<tr>
<td>3.2.5 Building and Refining the Model</td>
<td>3-13</td>
</tr>
<tr>
<td>3.2.6 The Essential Mathematical Relationships</td>
<td>3-15</td>
</tr>
<tr>
<td>3.2.7 Developing the Accompanying Resources</td>
<td>3-18</td>
</tr>
<tr>
<td>3.3 Re-purposing the Model for Exploring the Nardoo</td>
<td>3-19</td>
</tr>
<tr>
<td>3.3.1 Blue-Green Algae Simulator Specifications</td>
<td>3-20</td>
</tr>
<tr>
<td>3.3.1.1 General Interface</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.1.2 Detailed Operational Considerations for the Simulator</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.2 Model Parameters and Equations</td>
<td>3-22</td>
</tr>
<tr>
<td>3.3.2.1 Basic Model Parameters/Expected Maximum & Minimum Values</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.2.2 Initialisation Equations</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.2.3 Run Time Equations</td>
<td>3-23</td>
</tr>
<tr>
<td>3.3.2.4 Equation Programming Notes</td>
<td>3-23</td>
</tr>
</tbody>
</table>
Chapter 3: Methodology

3.4 Phase Two: Developing the tool for *Exploring the Nardoo* 3-24
3.4.1 Overview 3-24
3.4.2 Simulator Design 3-25
3.4.3 Simulator Functionality 3-26
3.4.3.1 Using the Algal Bloom Simulator 3-26
3.4.3.2 Input 3-32
3.4.3.3 Output 3-32
3.4.4 Resource Materials 3-33
3.4.5 Using the Simulation Tool 3-33
3.4.6 Conclusions 3-39

Chapter 4: Methodology

4.0 Introduction 4-1
4.1 The General Research Approach 4-1
4.1.1 Research Questions 4-3
4.2 The Hypotheses 4-4
4.2.1 Learning Outcomes 4-5
4.2.2 Development and Understanding of Relationships 4-5
4.3 The Research Design 4-5
4.4 The Variables 4-7
4.5 The Experimental Materials 4-7
4.6 The Treatments 4-8
4.6.1 The Control group 4-8
4.6.2 The Experimental Group 4-9
4.7 The Selection Process 4-10
4.7.1 The Target Population 4-10
4.7.2 The Operational Population 4-10
4.7.3 Group Allocation 4-12
4.8 Instrumentation 4-12
4.8.1 Instrument Reliability 4-14
4.8.1.1 Pilot Study 4-15
4.8.2 Instrument Validity 4-16
4.9 Procedures 4-17
4.9.1 Pre-study Orientation 4-18
4.9.2 Variations to Orientation Sessions 4-19
4.9.2.1 Experimental Group 4-19
4.9.2.2 Control Group 4-19
4.9.3 The Pre-Treatment Data Collection 4-19
4.9.4 The Treatment Sessions 4-20
4.9.5 Post-Treatment Data Collection 4-21
<table>
<thead>
<tr>
<th>Chapter-Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>The Experimental Site</td>
</tr>
<tr>
<td>4.11</td>
<td>Data Collection</td>
</tr>
<tr>
<td>4.12</td>
<td>Data Processing and Statistical Analysis</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Pilot Study</td>
</tr>
<tr>
<td>4.12.2</td>
<td>Main Study</td>
</tr>
<tr>
<td>4.13</td>
<td>Limitations</td>
</tr>
<tr>
<td>4.14</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Chapter 5: Results and Findings

5.0	Overview	5-1
5.1	Pilot Study	5-1
5.1.1	Results: Pilot Study - KAS/CES Parametric Data	5-1
5.1.2	Pilot Study: Summary of General Statistics	5-2
5.1.3	Analysis of Variance (Repeated Measure) - KAS	5-4
5.1.4	Analysis of Variance (Repeated Measure) - CES	5-5
5.1.5	Findings: Pilot Study	5-7
5.1.5.1	Procedural Aspects	5-7
5.1.5.2	Pilot Study: Homogeneity of Population	5-9
5.1.5.3	Pilot Study: KAS/CES Measures	5-10
5.2	Results: Main Study - KAS/CES Parametric Data	5-12
5.2.1	Main Study Data Sets	5-12
5.2.2	Main Study: Summary of General Statistics	5-13
5.2.3	Main Study: Testing the Homogeneity of the Operational Population	5-14
5.2.4	Main Study: KAS Scores - Learning Outcomes Measure	5-16
5.2.4.1	Analysis of Variance (Repeated Measure) - KAS	5-16
5.2.5	Main Study: CES Scores - Understanding Relationships Measure	5-18
5.2.5.1	Analysis of Variance (Repeated Measure) - CES	5-18
5.3	Findings: Main Study	5-20
5.3.1	Restatement of the Research Hypothesis	5-20
5.3.1.1	Learning Outcomes	5-20
5.3.1.2	Development of Understanding of Relationships	5-20
5.3.2	Operational Hypotheses	5-21
5.4	Findings: Main Study - Based on KAS and CES Research Instrument Data	5-22
5.4.1	General Statistical Measures	5-23
5.4.2	Findings for each Operational Hypothesis	5-24
5.4.2.1	Experimental vs Control (Pre-Treatment KAS Mean scores)	5-25
5.4.2.2	Experimental vs Control (Pre-Treatment CES Mean scores)	5-26
5.4.3	Learning Outcomes (Control Group)	5-27
Chapter 6: Synthesis and Further Research

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>Introduction</td>
<td>6-1</td>
</tr>
<tr>
<td>6.1</td>
<td>Contemporary Principles</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2</td>
<td>The Simulation Tool</td>
<td>6-3</td>
</tr>
<tr>
<td>6.3</td>
<td>Implementation</td>
<td>6-5</td>
</tr>
<tr>
<td>6.4</td>
<td>Further Research</td>
<td>6-6</td>
</tr>
</tbody>
</table>

Bibliography

Bib.1-Bib.20

Appendices

Chapter 3

- Resources: Filing Cabinet Documents on Blue-Green Algae A3.1 (1-18)
- Resources: Newspaper Clipping Text A3.2 (1-16)
- Resources: Video Scripts A3.3 (1-5)
- Resources: Radio Scripts A3.4 (1-6)
- Resources: Blue-Green Algae Simulation Expected Values A3.5
- Resources: Blue-Green Algae Simulation Help Notes A3.6 (1-2)
- Resources: Talking Head Scripts A3.7 (1-4)
- Lake Iluka Structural Flowcharts A3.8 (1-11)
- Specific Help Hints Scripts A3.9 (1-2)
- Runtime Equations: Lake Iluka Final Version A3.10 (1-4)
- General Interface Design Issues A3.11 (1-5)
- Detailed Operational Considerations A3.12 (1-5)
- Model Base Parameters A3.13 (1-2)
- Initialisation Equations A3.14 (1-12)
- Runtime Equations A3.15 (1-3)
- Equation Programming Notes A3.16 (1-9)
- Original Design Parameters Document A3.17 (1-10)

Chapter 4

- Task Requirements A4.0 (1-3)
- KAS: Pre-Test Version A4.1a (1-4)
- KAS: Post-Test Version A4.1b (1-5)
- KAS Data Collection Sheet A4.1c
- CES: Pre-Test Version A4.2a (1-2)
- CES: Post Test Version A4.2b (1-2)
- User Perceived Value Schedule (UPS) A4.3 (1-2)
- UPS Data Collection Sheet A4.3a
- Sample of Interview Questions A4.4
Chapter 5

Pilot Study: Control Group Data set A5.1
Pilot Study: Experimental Group Data set A5.2
Pilot Study: Paired ‘t’ Test Results A5.3
Pilot Study: KAS/CES Differences vs Treatment Paired ‘t’ Test Results A5.3a
Main Study: Control Group Data set A5.4
Main Study: Experimental Group Data set A5.5
Main Study: Paired ‘t’ Test Results A5.6
Main Study: Paired ‘t’ Test Results (Within groups) A5.7
Main Study: KAS/CES Differences vs Treatment Paired ‘t’ Test Results A5.8
Main Study: UPS Common Question Responses A5.9
Main Study: Experimental Simulation Specific Question Responses A5.10

List of Figures

Chapter 2

Fig 2.1 Overview of Simulation Taxonomy 2-4
Fig 2.2 Proposed Taxonomy 2-11

Chapter 3

Fig 3.1 Early Test Loop for Algal Growth 3-14
Fig 3.2 Addition of Controls for Nutrient Input 3-15
Fig 3.3 Schematic of Final Version – Lake Iluka Model 3-17
Fig 3.4 Schematic of Exploring the Nardoo Model 3-21

List of Tables

Chapter 4

Table 4.1 Pilot Study – Statistical Analysis Summary 4-25
Table 4.2a Operational Population Homogeneity 4-27
Table 4.2b Learning Outcomes Analysis Summary 4-28
Table 4.2c Development of Understanding Analysis Summary 4-29
Table 4.2d UPS Statistical Analysis Summary 4-31

Chapter 5

Table 5.1 Pilot Study Control/Experimental (KAS data set)-Statistical Summary 5-2
Table 5.2 Pilot Study Control/Experimental (CES data set)-Statistical Summary 5-3
Table 5.3 Pilot Study: ANOVA-Summary of Pre/Post KAS Mean Scores 5-4
Table 5.4 | Pilot Study: ANOVA-Treatment vs Pre/Post KAS Mean Score Differences | 5-5
Table 5.5 | Pilot Study: ANOVA-Summary of Pre/Post CES Mean Scores | 5-5
Table 5.6 | Pilot Study: ANOVA-Treatment vs Pre/Post CES Mean Score Differences | 5-6
Table 5.7 | Main Study Control/Experimental (KAS data set-Statistical Summary) | 5-13
Table 5.8 | Main Study Control/Experimental (CES data set-Statistical Summary) | 5-14
Table 5.9 | Main Study: One Factor ANOVA-Treatment vs Pre/Post KAS and CES Mean Scores | 5-15
Table 5.10 | Main Study: ANOVA-Summary of Pre/Post KAS Mean Scores | 5-16
Table 5.11 | Main Study: ANOVA-Treatment vs Pre/Post KAS Mean Score Differences | 5-17
Table 5.12 | Main Study: ANOVA-Summary of Pre/Post CES Mean Scores | 5-18
Table 5.13 | Main Study: ANOVA-CES_diff Score | 5-19
Table 5.14 | Likert ‘Scores’ | 5-33
Table 5.15 | Main Study: Experimental/Control Responses-UPS Common Questions | 5-34
Table 5.16 | Main Study: Experimental Group Responses-UPS Simulation Specific Questions | 5-35
Table 5.17 | Main Study: UPS Common Questions-ANOVA (Questions 7 & 17) | 5-37
Table 5.18 | Main Study: UPS Common Questions-ANOVA (Questions 22 & 24) | 5-38
Table 5.19 | Main Study: UPS Common Questions-ANOVA (Questions 33 & 45) | 5-39

List of Graphs

Chapter 5

Graph 5.1 | Pilot Study: Interaction-Treatment vs KAS Pre/Post Mean Scores | 5-4
Graph 5.2 | Pilot Study: Interaction-Plot for CES Scores | 5-6
Graph 5.3 | Main Study: Interaction-Treatment vs KAS Pre/Post Mean Scores | 5-17
Graph 5.4 | Main Study: Interaction-Treatment vs CES Pre/Post Mean Scores | 5-19

List of Plates

Chapter 3

Plate 3.1 | Nardoo Catchment Regions | 3-4
Plate 3.2 | Early Generic Blue-Green Algae Simulation Tool Interface | 3-27
Plate 3.3 | Early Nardoo Blue-Green Algae Simulation Tool Interface | 3-28
Plate 3.4 | Multiple Representation of Data - Version 1 | 3-29
Plate 3.5 Graphical Representation 3-30
Plate 3.6 Animated Presentation Mode 3-31
Plate 3.7a Testing the Effect of Flow Rate - No Flow 3-35
Plate 3.7b Testing the Effect of Flow Rate - Continuous Flow 3-36
Plate 3.8a Testing the Effect of Flushing the River - No Flush 3-37
Plate 3.8b Testing the Effect of Flushing the River - Single Flush 3-38

Included Software

Exploring the Nardoo

Hybrid PC/Mac version CD-ROM (Inside back cover)
ACKNOWLEDGEMENTS

I would like to recognise the invaluable contribution, advice and support given to me by my supervisors, Barry Harper and John Hedberg during the conduct of this research and the writing and editing of this thesis.

I would also like to thank all the members of the IMMLL Exploring the Nardoo team, especially Rob Wright and Grant Farr for their help in the design and implementation of the simulation tool.

Mention must also be made of the support provided by my colleagues Brian Ferry and Garry Hoban in their willingness to offer their students as subjects in this research.

Finally, I would like to thank my wife and children for their tolerance and patience over the 5 years of exhausting but rewarding work on this research project.

Robert. M. Corderoy
30th August, 2001
Abstract

The study of complex ecological processes presents many difficulties for learners including the time frame in which it may take place and the complexity of the relationships involved. The learning outcomes and level of understanding of the underlying relationships for students studying such processes may be effectively supported and improved through the use of carefully designed simulations which provide the learner with the opportunity to explore and test their ideas, knowledge and understanding without risk. The purpose of this study was to design, develop, implement and test the efficacy of a simulation tool designed to simulate algal bloom in a river catchment environment in terms of its potential to produce improved learning outcomes and understanding of relationships for the learners.

There has always been a ‘suspicion’ amongst some educators, particularly those who have limited computer literacy, that the platforms of the information technology revolution are simply ‘new toys’ in the hands of resource developers and researchers, and that the outcome is simply an application of such technologies in the misguided belief that such delivery systems for educational experiences provide some sort of advantage over the more traditional methods.

This study is based on two assertions with regard to the educational effectiveness of simulations in educational environments. First, that to be effective simulations need to have been designed in accordance with contemporary theoretical principles in terms of both pedagogical and user interaction issues with regard to modelling the real world effectively so as to provide an authentic environment in which the user may construct knowledge and understanding of complex processes. Second, that students using such simulations will have better learning outcomes and develop a deeper understanding of the relationships between the variables involved than those who are exposed to a more conventional approach in terms the representational media adopted, available resources and teaching methods.

In summary, the study was designed to test the efficacy of the assertion that with careful design, interactive simulations which mimic complex ecological processes can provide the opportunity for improved learning outcomes and the development of a deeper understanding of the underlying relationships.

The experimental materials used in this study comprised the software package *Exploring the Nardoo* and the algal bloom simulation tool embedded within it. The package is an interactive multimedia CD-ROM based learning environment designed with a constructivist approach. It attempts to provide a realistic, risk free information rich learning space in which students may explore, test their understanding of specific issues, and develop solutions to authentic tasks.
The methodological approach adopted for this study was of a classic experimental design (pre/post test) and based in the Scientific Paradigm. Such a pure experimental approach was essential to testing the stated hypotheses, however in order to provide a more complete picture of the nature of user/software interactions, a hybrid quantitative/qualitative approach was used.

The data set on which the analysis of the study was based was collected using researcher designed instruments; a Knowledge Acquisition Schedule (KAS), a Cause and Effect Schedule (CES) and a User Perceived Value Schedule (UPS). Subjective information in the form of field observation records and comments was also collected. Such an approach provided a context in which the research question could be tested and considered while maintaining the necessary research rigour. The operational population, third year pre-service student teachers, was chosen from the target population by the use of the technique of “cluster sampling”.

The data collected from the Knowledge Acquisition Schedule (KAS) indicated that use of the package Exploring the Nardoo resulted in significantly improved acquisition of factual knowledge for both the control and experimental groups. This was not unexpected as the overall design of the software was such that all students had access to extensive multi-format information on all aspects of algal blooms and the investigation was designed so as to be ‘independent’ of the algal bloom simulation tool. The fact that the experimental groups KAS mean scores showed a significantly greater increase than those of the control group would suggest that using the simulation tool also supported factual knowledge acquisition.

Analysis of the Cause and Effect Schedule (CES) data suggests that the simulation tool also facilitated a deeper understanding of the processes and the relationships between causal factors for the students who had access to the simulation tool. Examination of the pre and post CES mean scores data indicated that the students using the simulation tool not only improved their CES mean scores, but improved them by a significantly greater margin than those in the control group. This outcome adds support to the assertion that, when students have the opportunity to test and re-assess their mental models of complex systems, the processes and relationships at work, in meaningful learning environments and supported by appropriate tools, there is the potential for improved learning outcomes and the development of deeper understanding. The data collected from the UPS added support to these findings and issues relating to the design and function of the simulation tool.

In summary, the overall findings suggest that, simulations which are designed in terms of contemporary theoretical principles with regard to functionality and pedagogical strategies, and are embedded within rich, multimedia based learning environments have the potential to provide the user with a greatly enriched experience by facilitating the review of existing learner knowledge and the construction of new learner knowledge.