1996

Arthropods and fire: studies in a southeast Australian heathland

Patrick M. Tap
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
ARTHROPODS AND FIRE:
STUDIES IN A SOUTHEAST AUSTRALIAN HEATHLAND

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

Patrick Marie Tap
BSc (ANU), BSc For (ANU), Grad Dip Res Man (CCAE)

DEPARTMENT OF BIOLOGICAL SCIENCES
1996
Declaration

This thesis is submitted in accordance with the regulations of the University of Wollongong in fulfilment of the requirements of the degree of Doctor of Philosophy. The work described in this thesis was carried out by me and has not been submitted to any other university or institution.

Patrick Marie Tap
February 1996.
Abstract

The studies described in this thesis were aimed at unravelling the relationships between fire and arthropods. This has been investigated in a number of studies in the literature. Some studies reported finding fewer arthropods in burned than in unburned sites, others reported finding more, and still others found no difference. Factors that may help to explain this variety of outcomes include differences in arthropod taxa and habitat type, time since fire, and methods and duration of sampling. I analysed the frequencies of studies reporting fewer, equivalent or more arthropods in collections from burned compared to unburned sites for eight categories (i.e. taxon, taxonomic group, trophic level, habitat type, season of fire, censusing method, time since fire and duration of sampling) and found some support for the hypothesis that differences between burned and unburned sites are taxon-dependent. However, few of the studies examined had an experimental design of sufficient power to allow a critical analysis of responses to fire. Most studies were short-term (i.e. < 1 year) and lacked knowledge of pre-disturbance conditions. Few studies had sufficient replication or adequate controls. Furthermore, few studies investigated the mechanisms underlying described changes.

I sought to overcome these methodological problems via studies of arthropod communities in heathland located within Barren Grounds Nature Reserve, near Kiama, NSW. The studies comprised: (i) an initial comparison of a site burned by a wildfire in January 1983 and an unburned site, with one set of prefire and 34 sets of postfire samples collected between October 1982 and March 1985, analysed to assess differences between sites; (ii) subsequent reburning of half of one of these sites in March 1985, with a further 13 sets of postfire samples collected between the time of the experimental burn and January 1987, analysed to assess differences between sites; and (iii) a replicated manipulative experiment (i.e. particular combinations of burning, slashing, mowing and vacuuming) initiated in December 1985, with four sets of post-treatment samples collected between January 1986 and January 1987 analysed to assess treatment effects. In all three studies, arthropods were sampled using pitfall traps (larvae not examined) and data for major groups analysed using Analysis of Variance.

In the first field study, 21 taxa were identified among 15,883 macroarthropods collected from the burned and unburned sites. The majority of individuals comprised Formicidae (72%), Araneae (8%), Diptera (7%), Orthoptera (3%), Coleoptera (4%) and Opiliones (1%). In addition to the macroarthropods, Collembola (12,752) and Acarina (8,233), referred to as microarthropods, were counted for eight dates. Comparisons of the mean numbers of individuals trapped at each sample date revealed the following postfire differences between
burned and unburned sites: (a) Overall, significantly more Acarina, 'total macroarthropods', Formicidae, Orthoptera, Coleoptera, but fewer Collembola and Diptera, and equivalent numbers of Araneae were trapped in the burned than in the unburned site; (b) For all groups except Araneae, there was a significant interaction between site and sample date with each macroarthropod group showing a consistent pattern of peaks in numbers of captures in warm periods of the year and troughs during cool periods; (c) The taxa also differed in the timing of the differences between sites with captures of Formicidae, Araneae, Coleoptera and Acarina peaking soon after burning (within 5 to 48 days); and Collembola, Diptera and Orthoptera peaking much later after burning (around 190, 380 and 700 days, respectively). For all major macroarthropod groups except Araneae, differences in captures between sites were still apparent at 2 years after burning.

Interpretation of the role of fire in producing differences reported in the first study was limited by two main constraints: (i) paucity of prefire data for each site, and (ii) lack of replication of treatments. The first of these two problems was addressed in the second field study when half of the 'unburned site' from the first study was experimentally burned. Data obtained from trap grids in the burned and unburned halves were compared to the data collected in the site during the 29 months prior to treatment. Most taxa present before burning, were present after burning. Overall, after the experimental fire, 16 taxa were identified among 2816 macroarthropods trapped from burned and unburned halves. The majority of macroarthropods comprised Formicidae (68%), Araneae (13%), Diptera (8%), Opiliones (3%), Orthoptera (3%) and Coleoptera (2%). Comparisons of the mean numbers of individuals of the major taxa trapped at each sample date revealed the following patterns: (a) Overall, as in the first study, significantly more 'total macroarthropods', Formicidae, Orthoptera and Coleoptera were trapped in the burned than in the unburned half of the study site, numbers of Araneae trapped in each half of the site were not different, but unlike the first study, the same was also true for Diptera; (b) Prior to burning there were no groups for which significant differences between half-sites were detected; (c) For all groups except Araneae and Coleoptera, there was a significant interaction between half-site and sample date for the period following the experimental fire; (d) The taxa differed in the timing of the differences between half-sites. For example, captures of Araneae, Diptera and Formicidae peaked soon after burning (i.e. within 1 to 5 days) while Orthoptera peaked much later (481 to 644 days). For all major macroarthropod groups, differences in captures between sites were still apparent at 1.8 years after burning.

The second constraint of the wildfire study (i.e. lack of replication of treatments) was addressed in a manipulative experiment that evaluated the role of vegetative cover in the postfire response. The following eight treatments were established in a study area comprised
of 64, 5 x 5m plots (i.e. 8 replicates per treatment). The treatments were: (i) Control; (ii) Burned only; (iii) Burned then vacuumed; (iv) Burned, vacuumed then covered with slashed vegetation; (v) Scorched (approximately one-third of plot area burned); (vi) Slashed then most cuttings removed; (vii) Slashed, mown, then all cuttings removed; and (viii) Slashed then all cuttings left. The data analysed were from collections undertaken at 16, 77, 242 and 403 days after initiation of the treatments. Overall, 18 taxa were identified among 60,952 macroarthropods trapped. The majority comprised Formicidae (90%), Araneae (4%) and Diptera (2%). The additional examination of the effects of burning, by comparing Burned only and Control plots, confirmed the general patterns observed in the first two studies.

Comparisons of the data from each of the eight treatments revealed the following general patterns: (a) Significant differences among the eight treatments were found for all the taxa tested excepting Hemiptera; (b) Differences were significant at all four dates for 'total macroarthropods', Orthoptera and Formicidae; at three dates for Diptera and Hymenoptera (other than Formicidae); and at two dates for Araneae, Thysanoptera and Coleoptera; (c) For some groups, most individuals were trapped in treatments where vegetative cover was removed (i.e. by burning or slashing), and least in treatments where cover was partially removed or added after burning; this pattern was apparent at all four dates for 'total macroarthropods', Orthoptera and Formicidae; and at two dates for Thysanoptera; the reverse was true, at one date, for Coleoptera; no particular pattern was apparent for Araneae, or Diptera; (d) Comparisons within modes of disturbance (e.g. 'burned vs. other burned', 'slashed vs. other slashed') showed that differences between plots occurred most often where levels of surface cover were very different (e.g. Burned only vs. Burned, vacuumed then covered with slash); (e) Comparisons between modes of disturbance generally showed that there were few differences for partial removal of cover, but for substantial or complete removal of vegetation cover, they differed in only half the comparisons.

The studies outlined in this thesis confirm various patterns that have been reported in the literature on the relationships between fire and arthropods. That is: (i) there is not an elimination of arthropods; (ii) many taxa are trapped more readily after fire; (iii) for some taxa this increase occurs soon after burning (e.g. Araneae and Formicidae); and (iv) for other taxa, the increase occurs some time later (e.g. Orthoptera, Diptera). Patterns and directions of differences between burned and unburned areas were also found to vary between taxa, thereby adding additional weight to the hypothesis that fire responses are taxon-dependent. Details of the mechanisms behind observed differences are more difficult to resolve. The randomised block burning-and-slash study suggested that, for Formicidae and Orthoptera, the presence or absence of vegetative cover, as much as burning per se, is an important variable that influences the postfire environment.
Acknowledgments

Fire ecology is a complex topic and without the help of many people this thesis might never have been finished. First, I would like to thank my supervisor Rob Whelan for his guidance throughout this project and for the enthusiasm that he generated in our discussions on fire ecology. I am also grateful to Ross Goldingay and Sue Carthew, whose good humour and no nonsense attitude enabled me to overcome the frustrations that I experienced while writing this thesis and counting the many thousands of specimens (at least twice!). I extend my sincere thanks to David Ayre, Sue Carthew and Jim Campbell for offering critical comments on early drafts of thesis chapters. Ross Goldingay and Rob Whelan provided extensive editing of this thesis for which I am extremely grateful.

This project would not have been possible without the cooperation of the National Parks & Wildlife Service of NSW (Nowra District) who provided the personnel and equipment required to carry out the experimental burns. In particular, I would like to thank Doug Bailey, Les Mitchell, Bruce Slater and staff for their invaluable contribution and the many hours spent 'lighting up the heath'. Many thanks also to the University's grounds and maintenance section for providing the slashing and vacuuming apparatus used in the field manipulations, and to Ken Fairey and the Forestry Commission of NSW for providing the use of a temperature controlled extractor to process soil samples. The University's scientific workshop built the portable walk-on platform and the late Eddy Himmelreich constructed the large 'inserter tool'.

I wish to thank the many other people who provided help at various stages of this project. In particular: Sue Carthew, Shigeto Miyamoto, Nick Tap and Eddy Tap for helping with field manipulations; Ross Goldingay and Robert Tap for early assistance in counting and sorting of specimens; Ed Slater for photographing specimens; and Paul Stubbs and Liz Telford for helping with preparation of figures. I also thank Richard and Pat Jordan and the other wardens of Barren Grounds Bird Observatory for their hospitality.

My gratitude is extended to the Linnean Society of NSW for providing funding for this research. I am grateful to the Department of Biological Sciences for providing stationery, equipment and transport. I thank Ann Lee, Judy Gordon and Jan Fragiacomino for their much appreciated help. The staff of the University library, and Deirdre Jewell in particular, provided invaluable assistance with literature searches. Ken Russell cheerfully gave his expert statistical advice and conducted the analyses of variance given in Chapter 5. I thank Steven Shattuck and Alan Andersen for identifying the ant specimens for that chapter.

Finally, special thanks must go to my parents for tolerating, over many years, the varying 'interests' of their offspring. I am grateful to them for enduring support and the bottomless cups of tea and coffee.
Table of contents

Abstract i
Acknowledgments iv
Table of contents v
List of tables ix
List of figures xi

Chapter 1. Arthropods and fire

1.1. Introduction 1
1.2. Methods 2
 1.2.1. Sources of information 2
 1.2.2. Categorising the types of studies 2
 1.2.3. Choosing the best studies 2
 1.2.4. Publications with multiple studies 2
 1.2.5. Cataloguing the sources of variation 4
 1.2.6. Quantifying the differences between burned and unburned sites 4
 1.2.7. Separating single-census studies from those with extended sampling 6
1.3. Results 6
 1.3.1. Sources of variation amongst studies of comparable burned and unburned areas 6
 1.3.1.1. Overview 6
 1.3.1.2. Arthropod type 6
 1.3.1.3. Habitat type 6
 1.3.1.4. Type and season of fire 9
 1.3.1.5. Method of sampling 9
 1.3.1.6. Timing of postfire sampling 9
 1.3.1.7. Experimental design - incidence of prefire sampling and replication 16
 1.3.2. Testing the significance of particular sources of variation - overview 19
 1.3.3. Tests of significance - method of sampling 19
 1.3.4. Tests of significance - timing of postfire sampling 23
 1.3.4.1. Immediacy of postfire sampling 23
 1.3.4.2. Duration of postfire sampling 23
 1.3.5. Tests of significance - arthropod type 23
 1.3.5.1. Taxon 23
 1.3.5.2. Taxonomic group 24
 1.3.5.3. Trophic level 24
1.4. Discussion 24
 1.4.1. General conclusions about the effects of fire 24
 1.4.2. Difficulties encountered while compiling this review 26
 1.4.3. Addressing mechanisms - thesis aims 27
Chapter 2. Field studies at Barren Grounds: Underlying methodology

2.1. Introduction

2.2. Study area

2.2.1. Reasons for selection

2.2.2. Description of the habitat

2.2.3. Fire history

2.3. Sampling method

2.3.1. Survey of arthropod sampling methods

2.3.2. Influence of site factors

2.3.3. Pitfall trapping - reasons for choice

2.4. Issues associated with pitfall trapping

2.4.1. What are pitfall traps?

2.4.2. Opinions on the merits of pitfall trapping

2.4.3. Limitations of the method

2.4.4. Minimising sources of bias

2.5. Restricting site disturbances due to sampling

2.5.1. Problems associated with increased activity in study plots

2.5.2. Strategies adopted to minimise any effects

Chapter 3. Field Study 1: A comparison of arthropods caught in burned and unburned trap grids before and after a wildfire

3.1. Introduction

3.2. Methods

3.2.1. Study area

3.2.2. Sampling design

3.2.3. Pitfall trap design

3.2.4. Sampling protocol

3.2.5. Handling, identification and storage of samples

3.2.6. Data analysis

3.3. Results

3.3.1. Types of arthropods caught in the study area

3.3.2. Variations in taxon richness

3.3.3. Relative abundances of particular macroarthropod taxa caught after burning

3.3.4. Variations in mean numbers of total macroarthropods caught after burning

3.3.5. Variations in mean numbers of individuals of particular arthropod taxa caught after burning

3.4. Discussion

3.4.1. Types of arthropods caught in traps

3.4.2. Seasonal patterns
3.4.3. Differences between sites

Chapter 4. Field Study 2: A comparison of macroarthropods caught in adjacent burned and unburned trap grids before and after an experimental fire

4.1. Introduction
4.2. Methods
 4.2.1. Study area
 4.2.2. Implementation of treatments
 4.2.3. Measurement of soil and surface temperatures during burning
 4.2.4. Post-treatment soil sampling
 4.2.5. Pitfall trap sampling
 4.2.6. Handling, identification and storage of samples
 4.2.7. Data analysis
4.3. Results
 4.3.1. Soil and air temperatures during burning
 4.3.2. Types of macroarthropods caught before and after burning
 4.3.3. Variations in taxon richness before and after burning
 4.3.4. Relative abundances of particular macroarthropod taxa caught before and after burning
 4.3.5. Variations in mean numbers of total macroarthropods caught before and after burning
 4.3.6. Variations in mean numbers of individuals of particular macroarthropod taxa caught before and after burning
4.4. Discussion
 4.4.1. Temperatures during burning
 4.4.2. Types of macroarthropods caught in traps
 4.4.3. Differences between sites

Chapter 5. Field Study Three: Are postfire changes in surface-moving macroarthropod communities a reflection of alterations in habitat structure?

5.1. Introduction
5.2. Methods
 5.2.1. Study area
 5.2.2. Experimental design
 5.2.3. Treatments
 5.2.4. Pitfall trap design
 5.2.5. Preservative used in pitfall traps
 5.2.6. Sampling protocol
 5.2.7. Handling, identification and storage of samples
 5.2.8. Statistical analysis
5.2.9. Compensating for missing data 103
5.3. Results 103
 5.3.1. Overview of macroarthropod fauna 103
 5.3.2. Responses to treatment 109
 5.3.3. Focus on the outcome of disturbance: removal of cover 118
5.4. Discussion 127
 5.4.1. Types of macroarthropods caught in traps 127
 5.4.2. Differences between treatments - overview 128
 5.4.3. Focus on particular taxa 130
 5.4.3.1 Formicidae 130
 5.4.3.2. Orthoptera 132
 5.4.3.3. Diptera 134
 5.4.3.4. Coleoptera 135
 5.4.3.5. Araneae 136

Chapter 6. Concluding discussion 139
 6.1. Introduction 139
 6.2. Describing the patterns 140
 6.3. Underlying mechanisms 141
 6.3.1. Overview 141
 6.3.2. Conclusions of this study 141
 6.3.2.1. Which macroarthropod groups were most responsive to habitat manipulations? 141
 6.3.2.2. How important was the presence of surface cover after disturbance? 142
 6.3.2.3. For equivalent alterations to vegetation structure, did burning cause different effects to slashing? 142
 6.3.3. Hypotheses for future research 142
 6.4. Techniques 143
 6.5. Conclusion 144

References 145
List of tables

Table
1.1. Types of studies investigating the effects of fire on arthropods. 3
1.2. Information detailed in a typical study record. 5
1.3. Taxa and frequencies of studies that found fewer, equivalent or greater numbers of arthropods in burned (B) compared to unburned (UB) areas. 7
1.4. Habitat types represented amongst surveyed studies of arthropods from comparable burned and unburned areas. 8
1.5. Types and seasons of fire represented amongst surveyed studies of arthropods from comparable burned and unburned areas. 10
1.6. Methods of sampling used amongst surveyed studies of arthropods from comparable burned and unburned areas. 11
1.7. Immediacy of postfire sampling amongst surveyed studies of arthropods from comparable burned and unburned areas. 12
1.8. Duration of postfire sampling amongst surveyed studies of arthropods from comparable burned and unburned areas. 13
1.9. Duration of each postfire census amongst surveyed studies of arthropods from comparable burned and unburned areas. 14
1.10. Intensity of postfire sampling amongst surveyed studies of arthropods from comparable burned and unburned areas. 15
1.11. Incidence of prefire sampling amongst surveyed studies of arthropods from comparable burned and unburned areas. 17
1.12. Incidence of replication amongst surveyed studies of arthropods from comparable burned and unburned areas. 18
1.13. Categories and frequencies of studies that found fewer, equivalent or greater numbers of arthropods in burned (B) than in unburned (UB) sites for 'All postfire censuses pooled (all studies)'. 20
1.14. Categories and frequencies of studies that found fewer, equivalent or greater numbers of arthropods in burned (B) than in unburned (UB) sites for 'All postfire censuses pooled (studies with more than one postfire census only)'. 21
1.15. Categories and frequencies of studies that found fewer, equivalent or greater numbers of arthropods in burned (B) than in (UB) sites for the 'first or only postfire census'. 22
2.1. Descriptions of arthropod sampling methods. 33
2.2. Survey of arthropod taxa collected in pitfall trap studies of comparable burned and unburned areas. 40
3.1. Details of pitfall trap sampling carried out in burned (Site S1) and unburned (Site S2) trap grids at different dates before and after the wildfire. 49
3.2. Taxa and total numbers of arthropods (a, b) caught in burned (Site S1) and unburned (Site S2) trap grids before and after the wildfire. 51
3.3. Arthropod taxa caught in burned (Site S1) and unburned (Site S2) trap grids at different dates before and after the wildfire. 53
3.4. Numbers of macroarthropod taxa caught in burned (Site S1) and unburned (Site S2) trap grids during different seasons after the wildfire.

3.5. Significance of differences in mean numbers of individuals of particular arthropod taxa caught per transect in burned (Site S1) and unburned (Site S2) trap grids after the wildfire.

4.1. Details of pitfall trap sampling carried out in burned and unburned trap grids at Site S2 at different dates before and after experimental burning.

4.2. Estimates of maximum surface and soil temperatures at Site S2a during experimental burning on 18 March 1985.

4.3. Taxa and total numbers of macroarthropods caught in burned and unburned trap grids at Site S2 before and after experimental burning.

4.4. Proportions of individuals of particular macroarthropod taxa caught in the burned trap grid at Site S2 before and after experimental burning.

4.5. Macroarthropod taxa caught in burned and unburned trap grids at Site S2 at different dates before and after experimental burning.

4.6. Frequency of censuses at Site S2 where particular taxa were less, equally or proportionally more abundant in collections from burned (B) compared to unburned (UB) trap grids.

4.7. Significance of differences in mean numbers of individuals of particular macroarthropod taxa caught per transect in burned and unburned trap grids at Site S2 before and after experimental burning (a, b, c).

5.1. Mechanisms commonly proposed to explain changes in abundance of above-ground macroarthropods after burning.

5.2. Details of treatments implemented at Site S3.

5.3. Details of pitfall trap sampling carried out at Site S3.

5.4. Taxa and total numbers of macroarthropods caught in control, burned and slashed treatments at Site S3.

5.5. Macroarthropod taxa caught at each census in control, burned and slashed treatments at Site S3.

5.6. Significance of differences in mean numbers of individuals of particular macroarthropod taxa caught per trap in control, burned and slashed treatments at Site S3.

5.7. Significance of differences in mean numbers of individuals of particular macroarthropod taxa caught per trap in burned treatments at Site S3 (a, b).

5.8. Significance of differences in mean numbers of individuals of particular macroarthropod taxa caught per trap in slashed treatments at Site S3.

5.9. Significance of differences in mean numbers of individuals of particular macroarthropod taxa caught per trap in treatments at Site S3 involving different intensities of removal of surface cover (a, b, c).

5.10. Predictions from the 'habitat modification' hypothesis to explain differences in numbers of macroarthropods caught in pitfall traps set in control, burned and slashed treatments at Site S3.
List of figures

Figure

2.1. Location of study sites. 29
2.2. Temperature and rainfall at Barren Grounds Nature Reserve, January 1983 to December 1987. 31
3.1. View of burned Site S1 (a) and unburned Site S2 (b) at 5 days after the wildfire. 45
3.2. Arrangement of pitfall trap positions at Site S1 and Site S2. 46
3.3. Portable walk-on platform. 46
3.4. Design of pitfall traps used at Site S1 and Site S2. 48
3.5. Method of installation of pitfall traps at Site S1 and Site S2. 48
3.6. Taxon-richness of macroarthropods caught in burned (Site S1) and unburned (Site S2) trap grids at different dates before and after the wildfire. 54
3.7. Relative abundances of particular macroarthropod taxa caught in burned (Site S1) and unburned (Site S2) trap grids (a, b) at different dates before and after the wildfire. 56
3.8. Mean numbers of Total Macroarthropods caught per transect in burned (Site S1) and unburned (Site S2) trap grids at different dates before and after the wildfire. 58
3.9. Mean numbers of individuals of particular arthropod taxa caught per transect (a-g) in burned (Site S1) and unburned (Site S2) trap grids at different dates before and after the wildfire. 60
4.1. Arrangement of pitfall trap positions at Site S2. 68
4.2. Distant view of Site S2 at 3 days after experimental burning. 68
4.3. Taxon-richness of macroarthropods caught in burned and unburned trap grids at Site S2 at different dates before and after experimental burning. 78
4.4. Relative abundances of particular macroarthropod taxa caught in burned and unburned trap grids (a, b) at Site S2 at different dates before and after experimental burning. 80
4.5. Mean numbers of Total Macroarthropods caught per transect in burned and unburned trap grids at Site S2 at different dates before and after experimental burning. 84
4.6. Mean numbers of individuals of particular macroarthropod taxa caught per transect (a-c) in burned and unburned trap grids at Site S2 at different dates before and after experimental burning. 85
5.1. Arrangement of treatments and pitfall trap positions at Site S3. 95
5.2. View of Site S3 during completion of Treatments S2 and S8. 95
5.3. View of Site S3 during experimental burning on 19 December 1985. 98
5.4. View of Site S3 after experimental burning on 19 December 1985. 98
5.5. Design of pitfall traps used at Site S3. 99
5.6. Method of installation of pitfall traps at Site S3. 99
5.7. Relative abundances of particular macroarthropod taxa (a, b) caught in control, burned and slashed plots at Site S3 at 16, 77, 242 and 403 days since initiation of treatment.

5.8. Mean numbers of Total Macroarthropods caught per trap in control, burned and slashed plots at Site S3 at 16, 77, 242 and 403 days since initiation of treatment.

5.9. Mean numbers of individuals of different types of Formicidae (a-d) caught per trap in control, burned and slashed plots at Site S3 at 16, 77, 242 and 403 days since initiation of treatment.

5.10. Mean numbers of individuals of particular macroarthropod taxa (a-f) caught per trap in control, burned and slashed plots at Site S3 at 16, 77, 242 and 403 days since initiation of treatment.