The human foveal confluence and high resolution fMRI

Mark M. Schira
University of Wollongong, mschira@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/sspapers

Part of the Education Commons, and the Social and Behavioral Sciences Commons
The human foveal confluence and high resolution fMRI

Abstract
Abstract presented at the Vision Sciences Society meeting, 11-16 May 2012, Naples FL.

Keywords
foveal, human, confluence, high, fmri, resolution

Disciplines
Education | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/sspapers/254
After remaining terra incognita for 40 years, the detailed organization of the foveal confluence has just recently been described in humans. I will present recent high resolution mapping results in human subjects and introduce current concepts of its organization in human and other primates (Schira et al., J. Nsci, 2009). I will then introduce a new algebraic retino-cortical projection function that accurately models the V1-V3 complex to the level of our knowledge about the actual organization (Schira et al. PLoS Comp. Biol. 2010). Informed by this model I will discuss important properties of foveal cortex in primates. These considerations demonstrate that the observed organization though surprising at first hand is in fact a good compromise with respect to cortical surface and local isotropy, proving a potential explanation for this organization. Finally, I will discuss recent advances such as multi-channel head coils and parallel imaging which have greatly improved the quality and possibilities of MRI. Unfortunately, most fMRI research is still essentially performed in the same old 3 by 3 by 3 mm style - which was adequate when using a 1.5T scanner and a birdcage head coil. I will introduce simple high resolution techniques that allow fairly accurate estimates of the foveal organization in research subjects within a reasonable timeframe of approximately 20 minutes, providing a powerful tool for research of foveal vision.

Meeting abstract presented at VSS 2012