Relationship between CT-derived gross tumour volume (GTV) and the FDG-PET/CT-derived metabolic tumour volume (MTV): An exploratory study in non-small cell lung cancer patients treated with radical radiotherapy

A Oar
Western Sydney University

Michael Jameson
University of Wollongong, mgj77@uowmail.edu.au

I. A Ho Shon
Liverpool Hospital

Penny Phan
Liverpool and Macarthur Cancer Therapy Centres

Lois C. Holloway
University of Wollongong, loish@uow.edu.au

Publication Details
Relationship between CT-derived gross tumour volume (GTV) and the FDG-PET/CT-derived metabolic tumour volume (MTV): An exploratory study in non-small cell lung cancer patients treated with radical radiotherapy

Abstract
Poster presentation from The Royal Australian and New Zealand College of Radiologists 65th Annual Scientific Meeting, 29 October-1 November 2015, Adelaide, Australia

Keywords
study, exploratory, metabolic, volume, tumour, gross, between, relationship, treated, patients, radiotherapy, cancer, radical, lung, cell, (mtv); (gtv), non-small, fdg-pet/ct-derived, ct-derived

Disciplines
Engineering | Science and Technology Studies

Publication Details

Authors

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers1/218
Relationship between CT-derived gross tumour volume (GTV) and the FDG-PET/CT-derived metabolic tumour volume (MTV): An exploratory study in non-small cell lung cancer patients treated with radical radiotherapy

A Oar,1,2 M Jameson,1,3,4 I Ho-Shon,2,5,6 P Phan,1 L Holloway,1,3,4,5,7 D Wang,5 J Descallar,3,5 A Pramana,8 S Vinod,1,2,5 E Koh1,2,3 and M Field3,4

1Liverpool and Macarthur Cancer Therapy Centres, Sydney, New South Wales, Australia, 2University of Western Sydney, Sydney, New South Wales, Australia, 3Ingham Institute of Applied Medical Research, Liverpool Hospital, Sydney, New South Wales, Australia, 4Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales, Australia, 5University of New South Wales, Sydney, New South Wales, Australia, 6Department of Nuclear Medicine and PET, Liverpool Hospital, Wollongong, New South Wales, Australia, 7Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia, 8St George Cancer Care Centre, Sydney, New South Wales, Australia

Purpose: Fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is routinely used in staging and radiotherapy (RT) planning for non-small cell lung cancer (NSCLC). Over and above established clinical factors, emerging literature has proposed the novel PET/CT-derived metabolic tumour volume (MTV) as a potential prognostic factor. This study aims to firstly describe the spatial overlap between CT-derived Gross Tumour Volume (GTV) and MTV and secondly, to investigate the impact of this overlap on progression-free survival (PFS).

Methods and Materials: To date, medical records of twenty Stage I-III NSCLC patients diagnosed over 2006–2011 who underwent staging and/or planning FDG-PET/CT were reviewed for tumour and treatment characteristics, site of relapse (locoregional and/or distant), and PFS. Metabolically active regions of primary tumour and nodal disease on FDG-PET/CT studies were manually contoured using Osirix® (v5.1.12) by consensus between two experienced observers (nuclear medicine physician and radiation oncologist) to derive the MTV. Both observers were blinded to all other clinical and imaging information. CT-derived GTVs used for actual RT were contoured with concurrent PET fusion in the Focal® planning system. Osirix®-based MTVs were then transferred to Focal® for comparison with GTVs. Agreement between GTV and MTV contours was assessed using the Dice similarity coefficient (DSC), a score from 0 to 1 which measures spatial overlap of two volumes, with 1 indicating perfect agreement. Univariate cox regression was conducted to assess the impact of Stage, histology and DSC on PFS.

Results: There were 14 males and 6 females with median age 69 years (range 56–89). Six patients had Stage I, 3/20(15%) Stage II and 11/20(55%) Stage III disease, with n = 7 adenocarcinoma, n = 4 large cell and n = 9 squamous cell tumours. Median RT dose was 66 Gy (range 60–70 Gy). Nine patients received chemotherapy, given concurrently in n = 8. With median follow-up of 19 months (5–73 months), n = 9 experienced isolated locoregional and n = 4 had distant relapse. The DSC between GTV and MTV contours was moderate at 0.58 +/- 0.18. There was no association found between Stage (p = 0.37) and tumour histology (p = 0.69) with PFS. Furthermore, given the moderate degree of overlap, small sample size and number/sites of relapse, the DSC was not associated with PFS (p = 0.86).

Conclusions: Preliminary results in a small cohort show a moderate overlap between GTV and MTV, as represented by the DSC. Further investigation in a larger sample will aid in clarifying the relationship between known clinical prognostic factors, novel metabolic parameters and the end-points of locoregional failure and progression-free survival.