2007

Functional Food Synergies: improving the effect of the omega-3 fatty acid docosahexaenoic acid on cardiovascular disease risk factors through concurrent dietary consumption of canola or soy isoflavones

Leisa Ridges
University of Wollongong, leisa@uow.edu.au

Recommended Citation
NOTE
This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Functional Food Synergies: Improving the effect of the omega-3 fatty acid docosahexaenoic acid on cardiovascular disease risk factors through concurrent dietary consumption of canola or soy isoflavones.

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY (PhD)

From

UNIVERSITY OF WOLLONGONG

By

Leisa Ridges (BSc Hons)

School of Health Sciences
2007
I, Leisa Anne Ridges, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Health Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Leisa Anne Ridges

14 September 2007
Table of contents

1 Literature review

1.1 Cardiovascular disease prevalence ... 2
1.2 Cardiovascular disease risk factors .. 2
 1.2.1 Total and LDL cholesterol .. 3
 1.2.2 HDL cholesterol .. 4
 1.2.3 Triglycerides ... 5
 1.2.4 Blood pressure .. 6
1.3 Guidelines for reducing CVD risk .. 7
1.4 Functional foods for CVD risk reduction ... 10
 1.4.1 The shift to polyunsaturated fats .. 11
1.5 The Cardiovascular Benefits of Omega-3 Fatty Acids 14
1.6 Mechanisms of omega-3 fatty acid CVD protection 21
 1.6.1 Blood lipid effects .. 21
 1.6.2 Blood pressure and vascular function ... 25
1.7 Summary of cardiovascular risk factor effects of EPA and DHA 27
1.8 Omega-6 versus omega-3 fatty acids ... 28
1.9 Soy Isoflavones as a means for reducing LDL cholesterol 32
 1.9.1 Introduction to soy protein and isoflavones 33
 1.9.2 The cardiovascular protection offered by isoflavones 34
1.10 Complementary effects of soy isoflavones and DHA 39
1.11 Thesis Aims ... 42

2 Monounsaturated oils and fish oil (MOFO) study

2.1 Introduction .. 44
2.2 Study hypothesis .. 47
2.3 Methods .. 48
 2.3.1 Subjects .. 48
 2.3.2 Study design and protocol .. 48
 2.3.3 Food and supplements ... 49
 2.3.4 Arterial compliance instrumentation .. 52
 2.3.5 Methodology for the assessment of arterial compliance 53
 2.3.6 Laboratory analysis ... 54
 2.3.7 Plasma and erythrocyte membrane analysis 55
 2.3.7.1 Plasma fatty acid extraction procedure 56
 2.3.7.2 Red blood cell membrane fatty acid extraction procedure 56
 2.3.7.3 Flame-ionization capillary gas chromatography 56
 2.3.8 Statistical analysis .. 57
2.4 Results ... 58
 2.5.1 Plasma fatty acids ... 59
 2.5.2 Erythrocyte membrane fatty acids .. 64
3 Omega-Soy study ... 94

3.1 Introduction ... 95
3.2 Study hypothesis .. 98
3.3 Methods ... 99
3.3.1 Subjects ... 99
3.3.2 Study design ... 100
3.3.3 Food and supplements ... 102
3.3.4 Clinical assessment protocol ... 104
3.3.5 Dietary compliance assessment ... 105
3.3.6 Clinical measurements .. 106
3.3.7 Twenty-four hour blood pressure assessment 106
3.3.8 Non-invasive arterial compliance assessment 107
3.3.9 Sample collection and analyses .. 107
3.3.10 Lipoprotein composition ... 108
3.3.11 Isoflavone analysis ... 109
3.3.11.1 Extraction and hydrolysis ... 109
3.3.11.2 Analysis of isoflavones ... 110
3.3.12 Statistical analysis ... 110

3.4 Results ... 113
3.4.1 Anthropometric results .. 113
3.4.2 Dietary intake ... 114
3.4.3 Initial plasma and urinary isoflavones 117
3.4.4 Isoflavones following soy cereal consumption 118
3.4.5 Erythrocyte membrane fatty acids 123
3.4.6 Total omega-3 fatty acids .. 127
3.4.6.1 Omega-3 Index .. 127
3.4.6.2 Omega-6 fatty acids .. 128
3.4.6.3 Omega-6:omega-3 fatty acid ratio 131
3.4.6.4 Oleic acid (OA) ... 131
3.4.6.5 Saturated Fatty acids ... 132
3.4.7 Plasma lipids ... 134
3.4.8 Lipid correlations with isoflavones and fatty acids 139
3.4.9 Plasma lipoprotein composition ... 140
3.4.9.1 Very low density lipoprotein (VLDL) 140
3.4.9.2 Intermediate density lipoprotein (IDL) 146
3.4.9.3 Low density lipoproteins (LDL) 147
3.4.10 Arterial compliance ... 149
3.4.11 Additional cardiovascular measures 150
3.4.12 Blood pressure – clinic and ambulatory 152
3.5 Discussion ... 154
 3.5.1 DHA supplementation .. 155
 3.5.2 Soy isoflavone consumption .. 160
 3.5.3 Combined effect of isoflavones and DHA on lipid metabolism 164
 3.5.4 Arterial compliance, blood pressure, heart rate and other cardiovascular measures .. 165
3.6 Conclusion .. 170

4 Discussion ... 171
 4.1 Food synergies and functional food combinations .. 172
 4.2 How could EPA and DHA decrease fasting triglyceride concentrations? 173
 4.3 How could EPA and DHA cause an increase in LDL cholesterol? 179
 4.4 Theoretical framework for combined effect of canola and DHA on LDL cholesterol metabolism ... 182
 4.4.1 Evidence to support a cholesterol lowering effect of canola or its components... 183
 4.4.2 Canola phytosterols and their potential for cholesterol reduction 185
 4.5 Theoretical framework for combined effect of DHA and isoflavones on cholesterol metabolism ... 190
 4.5.1 Effect of isoflavones and DHA on LDL receptor activity 191
 4.5.2 Potential explanations for a combined effect of soy isoflavones and DHA on LDL cholesterol .. 192
 4.5.3 Proposed mechanism #1 – An isoflavone enabling effect of DHA similar to soy protein. ... 195
 4.5.4 Proposed mechanism #2: Formation of isoflavone-omega-3 fatty acid esters 197
 4.5.5 Mechanism #3: Modification of hepatic redox state via antioxidant effect of isoflavones promoting hepatic LDL uptake by DHA .. 198
 4.5.6 Summary of proposed mechanisms .. 199
 4.6 Summary .. 201
 4.7 Implications of this research .. 203
 4.8 Conclusion .. 206
References .. 208
List of Tables

Table 1.1 Review of outcomes from systematic reviews of the scientific literature on fish, fish oil and omega-3 fatty acids and the risk of CVD mortality and events ...18

Table 1.2 Number of studies based on data contained in the systematic review by Wang et al. (2006) that reported significant reductions, trend toward a reduction, no effect or potential negative effect of dietary omega-3 fatty acid intake, fish oil or fish consumption on CVD outcomes in the general population..20

Table 2.1 Blocking characteristics of the four intervention groups ..49
Table 2.2 Fatty acid profile of Hi-DHA Tuna Oil..51
Table 2.3 Fatty acid content of dietary oils and margarines..51
Table 2.4 Body weight at baseline and after six week with the four interventions58
Table 2.5 Plasma omega-3 fatty acids at baseline and after six weeks of the four interventions60
Table 2.6 Plasma omega-6 fatty acids at baseline and after six weeks of each intervention62
Table 2.7 Plasma monounsaturated and saturated fatty acids at baseline and after six weeks of intervention ...63
Table 2.8 Erythrocyte membrane omega-3 fatty acid content at baseline and after six weeks with the four interventions ..66
Table 2.9 Erythrocyte membrane omega-6 fatty acids, omega-6:omega-3 ratio and Omega-3 Index at baseline and after six weeks of the interventions ...68
Table 2.10 Erythrocyte membrane monounsaturated and saturated fatty acid content at baseline and after six weeks of the interventions ...69
Table 2.11 Fasting plasma lipid concentrations at baseline and after six weeks of dietary supplementation ..73
Table 2.12 Arterial compliance, blood pressure and heart rate at baseline and after six weeks with each intervention ..75
Table 2.13 Changes in blood lipids in human clinical trials using DHA supplementation86
Table 3.1 Blocking characteristics for the four intervention groups100
Table 3.2 Fatty acid profile of DHA Gold ..103
Table 3.3 Ingredient profile of the soy and control breakfast cereals103
Table 3.4 Body weight at zero, six and twelve weeks of the intervention period and changes in body weight after six and twelve weeks, in the four intervention groups ..114
Table 3.5 Dietary intake data obtained from diet histories for the two olive oil groups at zero, six and twelve weeks of the intervention period ..115
Table 3.6 Dietary intake data obtained from diet histories in the two DHA groups at zero, six and twelve weeks of the intervention period ...116
Table 3.7 Concentration of daidzein, genistein and equol in plasma and urine for each group and all groups combined at the commencement of the intervention period ..117
Table 3.8 Plasma isoflavone concentrations in the four groups before and after six weeks of soy cereal consumption ..119
Table 3.9 Concentrations of isoflavones in 24hr urine samples in the four groups before and after six weeks of soy cereal consumption ..121

Table 3.10 Estimated percent of total isoflavones consumed that were recovered in urine122

Table 3.11 Results from a 3 Factor ANOVA for plasma and urine concentrations of daidzein, genistein and equol using type of oil supplementation and order of soy cereal consumption as between group factors and time as the within group factor ..122

Table 3.12 Erythrocyte membrane omega-3 fatty acid content in the four groups before and after six and twelve weeks of either olive oil or DHA-rich oil supplementation ..124

Table 3.13 Erythrocyte membrane omega-6 fatty acid content in the four groups before and after six and twelve weeks of either olive oil or DHA-rich oil supplementation ...129

Table 3.14 Erythrocyte membrane saturated and monounsaturated fatty acid content in the four groups before and after six and twelve weeks of either olive oil or DHA-rich oil supplementation ..133

Table 3.15 Fasting plasma lipids in the two olive oil groups at baseline and after six and twelve weeks ..135

Table 3.16 Fasting plasma lipids in the DHA groups at zero, six and twelve weeks of the intervention period ..137

Table 3.17 Components in VLDL in which a significant difference was found between the groups taking olive oil and the groups taking DHA-rich oil at the end of the control cereal period ...141

Table 3.18 Change from baseline (t=0) in VLDL total cholesterol, cholesterol ester, triglyceride and apolipoprotein B as determined by repeated measures, 2 factor ANCOVA with age and BMI as covariates ...142

Table 3.19 LDL composition in DHA-c-s compared with the two olive oil groups after six weeks of oil supplementation and control cereal consumption ..148

Table 3.20 Mean change in LDL total cholesterol, free cholesterol and phospholipid following six weeks of olive oil and DHA oil supplementation as determined by repeated measures ANCOVA with age and BMI as covariates ...149

Table 3.21 Large artery compliance in the two olive oil groups compared with the two DHA-rich oil groups before and after six weeks of oil supplementation and control cereal consumption ..150

Table 3.22 Heart rate in the olive oil and DHA oil groups at baseline and after six and twelve weeks ..151

Table 3.23 Cardiovascular parameters which were significantly different after six or twelve weeks of DHA supplementation compared with olive oil supplementation ...151

Table 3.24 Clinic blood pressure in the four intervention groups at baseline and after six and twelve weeks ...152

Table 3.25 Ambulatory systolic and diastolic blood pressure in the four intervention groups at baseline and after six and twelve weeks ...153

Table 3.26 Summary of the effects of DHA supplementation alone and the combination of DHA and soy isoflavones on plasma lipids between baseline and six weeks (0-6wks) and between six and twelve weeks of the study (6 – 12 wks) ...155
Table 3.27 Comparison of lipid outcomes from clinical trials testing the effect of soy isoflavone supplementation (in the absence of soy protein) on plasma lipids, with the findings from the current study..162

Table 4.1 Similarities between soy protein and EPA and DHA effects on lipid metabolism enzymes...196
List of Figures

Figure 2.1 Change in plasma EPA and DHA (% of total fatty acids) after 6 weeks of dietary intervention ..60

Figure 2.2 Change in the plasma and erythrocyte membrane omega-6: omega-3 fatty acid ratio after six weeks with the four interventions ..62

Figure 2.3 Changes in erythrocyte membrane omega-3 fatty acids with the four interventions......65

Figure 2.4 Percent change in fasting plasma triglycerides based on tertiles of baseline triglyceride concentrations ..70

Figure 2.5 Change in LDL cholesterol after six weeks with the four interventions71

Figure 2.6 Change in total cholesterol after six weeks with the four interventions72

Figure 2.7 Comparison of percent change in fasting plasma triglycerides and dose of DHA supplementation from eleven human clinical trials ...85

Figure 3.1 Diagrammatical representation of the four dietary interventions100

Figure 3.2 A diagrammatical representation of study timeline showing clinic visit measurements and dietary monitoring tools. Each arrow represents one clinic visit. ...105

Figure 3.3 Plasma daidzein concentrations in the four groups before and after soy cereal consumption ...119

Figure 3.4 Plasma genistein concentrations in the four groups before and after soy cereal consumption ...120

Figure 3.5 Plasma equol concentrations in the four groups before and after soy cereal consumption ...120

Figure 3.6 Erythrocyte membrane DHA in the four groups before and after six and twelve weeks of the intervention period ..123

Figure 3.7 Erythrocyte membrane EPA in the four groups before and after six and twelve weeks of oil supplementation ..125

Figure 3.8 Erythrocyte membrane DPA in the four groups before and after six and twelve weeks of oil supplementation ..126

Figure 3.9 Total omega-3 fatty acids in the four groups before, and after six and twelve weeks of oil supplementation ..127

Figure 3.10 Erythrocyte membrane LA in the four groups before and after six and twelve weeks of oil supplementation ..128

Figure 3.11 Erythrocyte membrane AA in the four groups before and after six and twelve weeks of oil supplementation ..130

Figure 3.12 Total erythrocyte membrane omega-6 fatty acids in the four groups before and after six and twelve weeks of oil supplementation ...131

Figure 3.13 Total cholesterol concentrations in the two DHA groups at baseline and at six and twelve weeks of the intervention period ..136

Figure 3.14 LDL cholesterol concentrations in the two DHA groups at baseline and at six and twelve weeks of the intervention period ..136
Figure 3.15 Change from baseline (t=0) in VLDL total cholesterol in the olive oil and DHA oil groups during the 6 weeks of control cereal and soy cereal ..143

Figure 3.16 Change from baseline (t=0) in VLDL cholesterol ester in the olive oil and DHA oil groups during the 6 weeks of control cereal and soy cereal ..143

Figure 3.17 Change from baseline (t=0) in VLDL triglyceride in the olive oil and DHA oil groups during the 6 weeks of control cereal and soy cereal ..144

Figure 3.18 Change from baseline (t=0) in VLDL apolipoprotein B in the olive oil and DHA oil groups during the 6 weeks of control cereal and soy cereal ..144

Figure 3.19 Percentage composition of VLDL in the two olive oil groups and two DHA groups at baseline and after six and twelve weeks of oil supplementation ..145
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha linolenic acid</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DHAc-s</td>
<td>Daily DHA-rich oil supplementation for twelve weeks with concurrent consumption of control cereal for the first six weeks followed by consumption of soy cereal between six and twelve weeks of the intervention period.</td>
</tr>
<tr>
<td>DHAs-c</td>
<td>Daily DHA-rich oil supplementation for twelve weeks with concurrent consumption of soy cereal for the first six weeks followed by consumption of control cereal between six and twelve weeks of the intervention period.</td>
</tr>
<tr>
<td>DPA</td>
<td>Docosapentaenoic acid</td>
</tr>
<tr>
<td>FXR</td>
<td>Farnesol X receptor</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>HNF-4α</td>
<td>Hepatocyte nuclear factor 4α</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate density lipoprotein</td>
</tr>
<tr>
<td>LCAT</td>
<td>Lecithin-cholesterol acyltransferase</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LXR</td>
<td>Liver X receptor</td>
</tr>
<tr>
<td>OOc-s</td>
<td>Daily olive oil supplementation for twelve weeks with concurrent consumption of</td>
</tr>
<tr>
<td>OOs-c</td>
<td>Daily olive oil supplementation for twelve weeks with concurrent consumption of soy cereal for the first six weeks followed by consumption of control cereal between six and twelve weeks of the intervention period.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator - activated receptor</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SR-B1</td>
<td>Scavenger receptor B class-1</td>
</tr>
<tr>
<td>SREBP</td>
<td>Sterol regulatory element binding protein</td>
</tr>
</tbody>
</table>
Abstract

Ischaemic heart disease and cerebrovascular disease are among the leading causes of death in Australian men and women with heart diseases being the third highest cause of death in Australian women and fourth highest cause of death in Australian men (AIHW, 2006). In Australia more than 50% of all adults have two or three (out of a possible nine) risk factors for cardiovascular disease and 15% having four or more risk factors.

It has long been recognised that diet modification can reduce these risks. Recently dietary advice has moved from an “exclusionary” to an “inclusionary” paradigm. That is, rather than identify dietary items to avoid, current guidelines recommend incorporating advice to increase the consumption of a range of functional foods including marine sourced omega-3 fatty acids EPA and DHA and vegetable oils.

EPA and DHA are effective functional foods in reducing CVD mortality, cardiac death, sudden death and myocardial infarction. EPA and DHA provide this cardiovascular benefit by improving several risk factors including: fasting plasma triglycerides, blood pressure and arterial compliance. However, a safety concern of dietary EPA and DHA supplementation is their capacity to cause a significant increase in LDL cholesterol concentrations.

Dietary intake levels of EPA and DHA in the Australian diet are well below those associated with reductions in CVD risk. In 50% of the population a potential 20 – fold increase in EPA and DHA would be required to increase intake levels to those commensurate with reduced CVD risk.

While dietary supplementation with EPA and DHA is one means of increasing dietary intake levels, strategies to increase the efficacy of EPA and DHA would also be advantageous and could reduce supplement doses. Dietary strategies that could simultaneously counteract the rise in LDL cholesterol caused by DHA would also be beneficial.
The research described in this thesis aimed to modify the bioavailability and cardiovascular effects of DHA by modifying other dietary factors and combining DHA with other active ingredients. To address these aims two human clinical trials were conducted. The first examined the effect of altering the types of oil and margarine consumed in the diet with view to reducing the dietary intake of omega-6 fatty acids while supplementing the diet with DHA-rich fish oil (MOFO study). This study showed that replacing usual dietary oil and margarine with canola products while supplementing the diet with 1.1g/d of DHA favourably improved total omega-3 fatty acid incorporation and reduced the omega-6: omega-3 fatty acid ratio in plasma and erythrocyte membrane phospholipids as effectively as double the supplement dose of DHA. Additionally, there was a similar rise in erythrocyte membrane DHA when either safflower or sunola oil, which contain very different amounts of linoleic acid, were consumed concurrently with a daily dietary supplementation of 1.1g/d of DHA. A distinguishing feature of canola is its relatively high omega-3 ALA content. Thus, these findings add to the body of scientific evidence supporting the view that the total amount of dietary omega-3 consumed has greater impact on the bioavailability of supplemented DHA than the ratio of dietary omega-6: omega-3 fatty acids.

The MOFO study also showed that the combination of canola plus 1.1g/d of DHA is equally as effective as daily supplementation with 2.2g/d of DHA at reducing fasting plasma triglyceride concentrations with the added benefit of preventing the significant rise in both LDL and total cholesterol caused by both doses of DHA alone. While further research is warranted based on the findings from animal studies, it can reasonably be proposed that the findings from the MOFO study may be an example of a synergistic effect of canola phytosterols and DHA, rather than ALA and DHA, working together to significantly reduce fasting plasma triglyceride concentrations while preventing detrimental effects on LDL cholesterol in people with mild hypertriglyceridemia.

The second human clinical trial conducted as part of this thesis examined the effect of combining omega-3 fatty acids with soy isoflavones on fasting blood lipids, blood pressure and arterial compliance (Omega-Soy study). The Omega-Soy study showed that the
combined consumption of DHA with soy isoflavones resulted in an 8-10% improvement in HDL cholesterol, an 18-20% reduction in plasma triglyceride concentrations and the absence of a 10.8% rise in LDL cholesterol observed with DHA supplementation alone. Furthermore, the increases in LDL and total cholesterol observed with DHA supplementation in the first six weeks were reversed and significantly reduced when soy cereal was concurrently consumed. The results showed that the dietary combination of soy isoflavones and DHA improve the lipid profile of moderately hyperlipidemic individuals more favourably than either constituent alone.

While further research is warranted based on evidence from in vitro cell culture and in vivo animal models demonstrating functional effects of soy isoflavones and DHA on lipid metabolism pathways, it can reasonably be proposed that the findings from the Omega-Soy study demonstrate a synergistic effect of soy isoflavones and DHA, working together to significantly reduce fasting plasma triglyceride concentrations without detrimental effects on LDL cholesterol in people with mild hyperlipidemia.

The findings from this thesis support two functional food synergies for effective improvement of blood lipid concentrations when consumed as part of the usual diet of men and postmenopausal women with moderately elevated blood lipids. These functional food combinations are DHA with canola and DHA with soy isoflavones. The findings of this thesis sheds some light on how isoflavones may be actively involved in reducing plasma cholesterol concentrations when consumed with soy protein or in soy containing foods, furthermore the findings of this thesis provide strategies for ultimately reducing the negative side effects of dietary DHA supplementation and for achieving a better outcome in overall lipid profile improvements than could be achieved with DHA supplementation alone. Future research into these synergistic combinations of functional food ingredients with DHA may lead to new directions in functional food development by food manufacturers to enable more consumers to manage their blood lipid concentrations with minimal or without drug therapy requirements.
Acknowledgements

I commenced my PhD in 1999 so this thesis has been 8 years in the making, give or take a couple of years of leave. There are many people who have supported me tirelessly throughout this long stretch to whom I am forever indebted.

The person I need to thank first and foremost for her tolerance, love and support is my lovely wife Kellie Ridges. I could not have finished this thesis if it were not for her constant support and clever tactics to get me into the study and writing. Kellie’s determination to see my thesis finished provided me with the motivation necessary to inhibit my procrastination trends, forcing me to write. I appreciate the great amount of patience and the many sacrifices of fun times and holidays that Kellie made for me during this long candidature.

I would like to thank Professor Lee Astheimer and Associate Professor Peter McLennan for putting up with me during my candidature and helping me to get over the finish line. I am especially appreciative of Peter’s kind offer to take over my supervision at a late stage in my thesis after having taken leave. Peter has been a wonderfully inspiring and supportive supervisor and I am very grateful for his guidance. I am also extraordinarily fortunate that Lee continued to support me throughout the full 8 years of my candidature trying every tactic she could muster to get this thesis finished. I owe Lee many good publications from this thesis to try and repay her commitment to my doctoral endeavors. I would also like to thank Professor Peter Howe and Associate Professor Barbara Meyer for all of their support and guidance at the commencement and first few years of my candidature. I learnt a great deal from both Peter and Barbara and am appreciative of the many things they taught me. I also need to thank the University of Wollongong, the Heads of Department, Heads of Postgraduate Studies and the staff at the Postgraduate Student Research Centre who continued to support my candidature even after I had exceeded my five year timeframe.

I would like to thank Associate Professor Ken Russell for all of his expert advice and guidance on how to statistically analyse my data in Chapter 3. I am extremely grateful for his advice and patience.
I would like to give a very big thank you to Judy Martin and to John, Elise, Andrew and Allyson for allowing me to take over Judy’s study or Allyson’s bedroom whenever I visited over the past two years and for the many cups of excellent coffee, biscuits, snacks and meals provided to me as I typed away long hours at the computer. A very special thank you also to the many long chats that I shared with Judy about the thesis journey. The Martin family support was incredibly helpful and I am extremely appreciative of the support they have provided me.

I would like to thank all of my friends who never stopped believing in my ability to finish this thesis and who never got cross at me for missing numerous catch-ups and get-togethers because I had to stay home and write. A big thank you must go to John Byron and Angela Pratt for their constant support throughout my candidature. They always boosted my self confidence and belief in my abilities whenever I saw them and that assisted me greatly in getting my thesis finished. I must also give a big thanks to my brother Malcolm Ridges who was also wonderfully supportive in sharing his PhD experiences with me and being constantly understanding of where I was at during each phase of the thesis process. I truly appreciate his support.

A special thank you must also go to my work supervisors Peter Williams and Troy Coyle. Both provided me with fantastic support and encouragement to get my thesis finished. I am especially thankful for having a day a week throughout 2007 to write. I cannot thank Troy enough for providing me with the opportunity to have solid time periods for thesis writing and thinking.

Finally, I would like to thank my parents for encouraging me throughout my thesis and constantly believing in my ability to complete my PhD, no matter how long it took me. I am very appreciative of their support.