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Second Order Nonlinear Inelastic Analysis of Composite
Steel–Concrete Members. I: Theory

Yong-Lin Pi1; Mark Andrew Bradford, M.ASCE2; and Brian Uy, M.ASCE3

Abstract: A total Lagrangian finite element �FE� model has been formulated for the nonlinear inelastic analysis of both composite beams
and columns. An accurate rotation matrix is used in the position vector analysis and nonlinear strain derivations. The slip between the steel
and concrete components due to the flexible shear connection at their interface is considered as an independent displacement in the
formulation which makes it easier to assign the corresponding proper slip conditions at the connections between composite beams and
columns. The effects of nonlinearities and slip on the deformations and strains in the steel and concrete components, and so on the stress
resultants �i.e., internal forces�, stiffness, and strength of the composite member are thus combined together in the formulation. The
constitutive models for steel and concrete in this investigation are based on the longitudinal normal stress and the shear stress induced by
the slip between the steel and concrete components. Hence, these models include the effects of the slip at the interface on the von Moses
yield surface, associated flow rule and isotropic hardening rule. These constitutive models can be used in association with any type of
uniaxial stress–strain curves for steel and concrete, including hot-rolled or cold-formed steel, and confined or unconfined concrete. The
constitutive models are expressed in terms of engineering stresses and strains. The total Lagrangian formulation is applicable for these
constitutive models directly, and most convenient for the slips at the interface between the steel and concrete components.

DOI: 10.1061/�ASCE�0733-9445�2006�132:5�751�

CE Database subject headings: Beams; Columns; Composite materials; Inelastic action; Concrete; Steel; Finite element method.

Introduction

Structural members with composite steel–concrete sections
�Fig. 1�, such as composite beams, concrete-filled steel columns,
concrete-filled steel arches, composite beams curved in plan, or in
space are often used in buildings and bridges. Research on nu-
merical techniques such as finite element �FE� methods for the
nonlinear analysis of composite steel–concrete members may has
been extensive �Hajjar 1998a, b; Ranzi 2003�. FE methods for the
nonlinear analysis of composite members may be categorized into
two groups: the use of available commercial FE packages; and the
development of suitable FE models. When an FE package is used,
the steel and concrete components are usually modeled separately
using plate, shell, or solid elements and are then assembled to-
gether by some connection or interface elements to simulate the
shear connectors between the steel and concrete components.
Studies by Hirst and Yeo �1980�; Thevendran et al. �1999�, and

Baskar et al. �2002� belong to this group. Their studies demon-
strate that such models are usually quite complicated. For
example, several hundred elements are often needed to model a
simply supported composite beam �Thevendran et al. 1999;
Baskar et al. 2002�, and so these models are also computationally
intensive. Choosing the right elements for modeling a composite
member sometimes is also not easy. For example, Baskar et al.
�2002� have shown that the three-dimensional �3D� solid elements
in ABAQUS �2003� are not suitable for modeling the concrete
components and that, instead, the thick shell elements in
ABAQUS should be employed. In addition, it is difficult to
properly model the interaction between the steel and concrete
components using connector or interface elements available in
commercial FE packages such as ABAQUS �2003� and ANSYS
�2003�. Hence, the slip between the steel and concrete compo-
nents predicted by these models does not correlate well with
experimental results.

In most cases, FE methods for composite members developed
by researchers are for composite beams or for concrete-filled
tubes �CFT� columns only. FE models that can deal with both
composite beams and CFT columns are rarely reported. In terms
of methods, FE models can be further classified into force-based
�flexibility� formulations and displacement-based �stiffness� for-
mulations. The advantage of force-based formulations is the ease
of selecting force interpolation functions that are related to the
exact solutions of the governing equations of equilibrium of an
element. However, most force-based formulations use force inter-
polation functions based the solutions from the governing linear
differential equilibrium equations �Spacone 1996�; �Salari et al.
1998�. Because of this, it is difficult to find force interpolation
functions for the interaction between the nonlinear displacements
and the internal forces. In order to overcome the difficulty in
selecting force interpolation functions that satisfy equilibrium for
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problems with strong interaction between the displacements and
the internal forces, a mixed formulation for a nonlinear steel–
concrete composite beam element was proposed. Because it
is difficult to obtain the exact solutions of the governing equations
for the nonlinear equilibrium of an element, force-based form-
ulations do not commonly consider the effects of geometric
nonlinearity. Even in the mixed formulations, it appears that the
nonlinear axial strain and internal force produced by the second
order transverse displacements were not considered.

In a number displacement-based finite element formulations
for composite beams, the axial displacements of the steel and
concrete components are formulated separately so as to facilitate
the slip between the steel and concrete components. The formu-
lations used by Arizumi and Hamada �1981�, Daniels and Crisinel
�1993�, Salari et al. �1998�, and Ranzi et al. �2004� belong to this
group. Although these models are able to analyze the slip due to
the partial interaction between the steel and concrete components,
the effects of the slip on strains, stresses, deformations, stiffness,
and strength of composite members have often not clearly been
demonstrated by these types of models. In addition, most of these
models for composite beams assume that the internal axial forces
form a force couple that is equal to the bending moment produced
by the external transverse loads. The resultant of axial forces in
the composite beam is then assumed to be equal to zero. This is
correct when the axial internal forces produced by the nonlinear
effects of the transverse deformation are not considered. How-
ever, the axial internal forces can become significant as the
transverse displacements increase. Therefore, these displacement-
based formulations often deal with small displacement problems
only. They are also prone to the problem of curvature locking
�Ranzi et al. 2004�, that can occur, with a large stiffness of the
shear connection.

FE models for CFT columns have been reported by several
researchers. Hajjar et al. �1998a, b� developed a distributed plas-
ticity FE model for concrete-filled steel tube beam–columns. The
model considered the interlayer slip and the effect of the slip on
CFT beam–column behavior. The model is also suitable for cyclic
loading. Lakshmi and Shanmugam �2002� formulated a FE model
for nonlinear analysis of CFT columns using yield criteria based
on the stress resultants. Other FE models are also reported
�Schneider 1988; Shakir-Khalil and Al-Rawdan 1996; Huang et
al. 2002; Hu et al. 2003�. However, these FE models are

actually models on how to use commercial FE softwares such as
ABAQUS.

In addition, in the nonlinear range, the interaction between the
slip and in-plane bending will produce additional shear strains
and stresses at both the interface and the cross section. These
shear strains and stresses have not been addressed in the open
literature. The shear stress resultant produced by the shear stresses
may be small. However, the shear stresses play a role in the local
yield of the steel and concrete and so they should be considered in
the FE model. Therefore, the constitutive model for the steel and
concrete needs to be based on both the longitudinal normal
stresses and the shear stresses induced by the interface slip. Fur-
thermore, as pointed out above, most of the FE models reported in
the open literature are specific for composite beams or for the
composite columns. Generic FE models that can deal with both
composite beams and CFT columns are needed.

The objective of this paper is to present a treatment of a total
Lagrangian formulation of a unified FE model for the second
order nonlinear inelastic analysis of composite steel–concrete
members: both beams and columns, while the companion paper
will demonstrate the implementation and application of the FE
model.

It is known that updated Lagrangian, total Lagrangian, and
corotational formulations are often used for the nonlinear FE
model. The stress and strain measures used in these formulations
are the second Piola–Kirchhoff stress tensor and the Green–
Lagrange strain tensor. Under the small strain assumption, the
components of the second Piola–Kirchhoff stress tensor and the
Green–Lagrange strain tensor have a physical significance close
to that of the conventional engineering stress and strain measures.
Because elasto-plastic constitutive models for steel and concrete
are usually developed using engineering stress and strain mea-
sures, they are directly applicable to the total Lagrangian form-
ulation. The total Lagrangian formulation is conveniently
applicable for the constitutive models for the slips at the interface
between the steel and concrete components because these models
are usually referred to as the undeformed configuration and ex-
pressed in a way that is equivalent to engineering stress and strain
measures.

In order to present the new FE model in the limited length of
this paper, the presentation is concentrated on the theoretical de-
velopment and some of its applications associated with mono-
tonic loadings. The cyclic behavior and the corresponding topics
are not considered in the present study.

Axis Systems, Rotation, and Curvatures

The basic assumptions for this study are: �1� the Euler–Bernolli
bending theory is used, so that the cross section is assumed to be
rigid and local buckling and/or effects of distortion of the cross
section are not considered; and �2� the strains are small. Two axis
systems are used to describe the geometry of a composite steel–
concrete member as shown in Fig. 2. The first set is a body at-
tached �material� right-handed curvilinear orthogonal axis system.
In the undeformed configuration, the curvilinear axis system re-
duces to a rectangular orthogonal axis system in the position oyz.
The axis oz passes through the centroids of the cross section of
the undeformed member and the axis oy is the minor principal
axis of the cross section, as shown in Fig. 2. A unit vector pz in
the direction of the centroidal axis oz, and a unit vector py in the
direction of the axis oy, form a right-handed orthonormal basis
shown in Fig. 2. The unit vectors py,pz are used as the fixed

Fig. 1. Composite cross sections
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reference basis. They do not change with the deformation.
In the deformed configuration, the centroid o displaces v, w to

the position o*, the axis oz deforms into a curve, and so the body
attached curvilinear orthogonal axis system moves and rotates to
a new position o*y*s* as shown in Fig. 2. In the deformed con-
figuration, a unit vector qz is defined along the tangent direction
of the deformed centroidal axis o*s*, and the unit vector qy is in
the direction of the minor principal axis o*y* of the rotated cross
section at o*. The unit vectors qy,qz also form an orthonormal
basis. They attach to the member and move with the member
during the deformation with the vector qz remaining normal to the
cross section at all times.

A fixed �space� right-handed rectangular coordinate system
OYZ is defined in space as also shown in Fig. 2. The position of
the undeformed and deformed member can be defined in the axis
system OYZ. The axes OY and OZ are parallel to the axes oy and
oz of the axes oyz in the undeformed configuration. Unit vectors
PY,PZ in directions OY and OZ form a right-handed orthogonal
basis.

In the undeformed configuration, the position vector of the
centroid o in the fixed axes OYZ is r0 �Fig. 2�, and so the unit
vector pz at the centroid o can be expressed in terms of the posi-
tion vector r0 as �Pi et al. 2003�

pz =
dr0

dz
�1�

In the deformed configuration, the position vector of the centroid
o* in the fixed axis system OYZ is r as shown in Fig. 2, and so the
vector qz tangential to the deformed centroidal axis o*s* can be
obtained by differentiating the position vector r with respect to
the member length s* as

qz =
dr

ds* =
1

1 + �

dr

dz
�2�

where ds*= �1+��dz is used, with � being the longitudinal normal
strain at the centroid.

In the deformed configuration, the position vector r of the
centroid o* can be expressed as �Fig. 2�

r = r0 + vpy + wpz �3�

Substituting Eqs. �1� and �3� into Eq. �2� leads to

qz =
1

1 + �

dr

dz
=

1

1 + �
�v�py + �1 + w��pz� = v̂�py + ŵ�pz �4�

where � ���d� � /dz, v̂�=v� / �1+��, and ŵ�= �1+w�� / �1+��.
Because qz is a unit vector, it follows from Eq. �4� that

�v̂��2 + �ŵ��2 = 1 �5�

The vector qz can also expressed as

qz = sin � py + cos � pz �6�

where �=angle between the axes oz and the tangent to the axis
o*s*.

In the deformed configuration, according to the Frenet–Serret
formulae, the relationship between the derivatives of the basis
vectors and the curvatures and twist can be written as �Pi et al.
2003�

dqy

ds* = �qz = Kqy

�7�
dqz

ds* = − �qy = Kqz

where �=curvature in the direction of the unit vector qy, i.e., in
the direction of the axis oy, and K=skew-symmetric matrix for
the curvature � in the deformed configuration and given by

K = �0 − �

� 0
� �8�

The rotations from the vectors py ,pz to the vectors qy,qz can be
described using a rotation matrix T of a special orthogonal group
for two-dimensional finite rotation SO�2� �Burn 2001; Pi et al.
2003� as

qi = Tpi

�9�
i = y,z

or collectively as

�qy qz� = T�py pz� �10�

where the rotation matrix T of the special orthogonal Lie group
SO�2� has only one independent parameter, and can be written as

T = � cos � sin �

− sin � cos �
� �11�

Comparison of Eq. �4� with Eq. �6� leads to

cos � = ŵ�

�12�
sin � = v̂�

Hence, the rotation matrix T can be rewritten as

T = � ŵ� v̂�

− v̂� ŵ�
� �13�

The rotation matrix T in Eq. �13� satisfies the orthogonality
condition

TTT = I �14�

and the unimodular condition

Fig. 2. Axes system, basis, and position vectors
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det T = + 1 �15�

Hence, the matrix T given by Eq. �13� belongs to the proper
orthogonal Lie group SO�2� for two-dimensional rotation. The
components of the matrix T become infinite only when 1+�=0,
however this situation cannot occur during the deformation of a
real composite steel–concrete structure.

Differentiating Eq. �10� with respect to z produces

�dqy

dz

dqz

dz
� =

dT

dz
�py pz� �16�

Substituting Eqs. �7� and �10� into Eq. �16� and using ds*= �1
+��dz yields

�1 + ��K =
dT

dz
TT �17�

and substituting Eq. �13� into Eq. �17� leads to the expression for
the curvature in the deformed configuration as

� = �1 + ��−1�v̂�ŵ� − ŵ�v̂�� �18�

which can be expressed as

� =
v�w� − v��1 + w��
��1 + w��2 + v�2�3/2 �19�

and which can be simplified further to the familiar expression for
the curvature given by

� =
− v�

�1 + v�2�3/2 �20�

if the effect of axial extension w� is ignored.
Conveniently, the matrix T given by

T = � 1 v�

− v� 1
� �21�

is often used �Vlasov 1961�. In this case, the matrix T is still a
skew-symmetric matrix but does not satisfy the orthogonal con-
ditions for a rotation matrix that TTT=I and det T=1. After rota-
tion, the basis vectors are not preserved as unit vectors because

qz · qz = qy · qy = 1 + v�2

�22�
qy · qz = qz · qy = 0

In spite of this, the basis vectors are still assumed to be preserved
as unit vectors in the convention analysis. The curvature after
deformation then becomes

� = − v� �23�

which is a widely used approximation when v�2 is assumed to be
small and when geometric nonlinearity is ignored.

Position Vectors and Finite Strains

The position vector a0 of an arbitrary point P on the cross section
of the member in the undeformed configuration can be expressed
as �Fig. 2�

a0 = r0 + ypy �24�

where r0=position vector of the centroid o in the fixed axes OYZ.
In the undeformed configuration, the initial gradient tensor F0

can be expressed as

F0 = � �a0

�y
,
�a0

�z
� �25�

The position of the point P in the deformed configuration is
determined based on the following two assumptions. First, it is
assumed that the composite member is considered to satisfy the
Bernoulli hypothesis, i.e., the cross-sectional plane remains plane
and perpendicular to the member axis during the deformation
except for a slip strain at the interface, and second, the total
deformation of a point P results from two successive motions:
translation and finite rotation of the cross section, and a superim-
posed relative slip displacement between the steel and concrete
components along the unit vector qz in the deformed configura-
tion. The slip displacement is given by wsp�z�. Because slip is the
relative axial displacement between the steel and concrete com-
ponents, the sign of the slip displacement wsp�z� must be opposite
for the steel and concrete components. Under these two assump-
tions, the position vector a of the point P1, which is the position
of the point P after the deformation, can be expressed in terms of
the basis vectors qy,qz as �Fig. 2�

a = r + yqy + �qz �26�

in which r=position vector of the centroid o* after the deforma-
tion in the fixed axis system OYZ and is given by Eq. �3�, and
where

� =
− wsp for the concrete component

wsp for the steel component
�27�

It can be seen that the slip at the interface between the steel and
concrete components is considered as an independent degree of
freedom, which makes it easier to assign the corresponding
proper slip conditions at the connections between composite
beams and columns.

In the deformed configuration, the deformation gradient tensor
F can be expressed as

F = � �a

�y
,
�a

�z
� = � �a

�y
,�1 + ��

�a

�s
� �28�

In this investigation, the well-known strains defined by Love
�1927� are used. In this case, the strain tensor can be expressed in
terms of the initial and deformation gradient tensors as

� �yy

1

2
�yz

1

2
�zy �zz

	 =
1

2

FTF − F0

TF0� =
1

2

FTF − I� �29�

from which the normal strains �yy and �zz at the point P are given
by

�yy = 0 �30�

�zz = 1
2 
��1 + ���1 + y�� + ���2 + ��1 + �����2 − 1�

� w� + �� + 1
2v�2 + 1

2w�2 + 1
2��2

− y�v��1 + w�� − v�w�� + yv��� �31�

and the shear strains �yz and �zy are given by

�zy = �yz = ���1 + �� = ��v�w� − v��1 + ���� � − �v� �32�

where the third and higher order terms are ignored.
Longitudinal normal stresses that are conjugate to the nonlin-

ear terms v�2 /2+w�2 /2+��2 /2 given in Eq. �31� will produce an
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axial stress resultant even under transverse loading because the
term v�2 /2 becomes significant as the transverse displacements
increase and the term ����2 /2 also becomes significant when the
slip at the interface increases. Hence, the assumption that the
resultant of the axial internal forces in the plane of the cross
section of a deformed composite beam is equal to zero is correct
only when the nonlinear terms v�2 /2+w�2 /2+��2 /2 are so small
that their effects on the longitudinal strain and stress can be
ignored.

The shear strains �zy and �yz given in Eq. �32� are induced by
the interaction of the slip and the in-plane bending and they will
vanish for full interaction because �=0. It is worth pointing out
that the shear strains do not appear to be addressed in the open
literature. If fact, if geometric nonlinearity is not considered, the
nonlinear shear strains �zy and �yz will vanish. Because the signs
of � are opposite to each other in the steel and concrete compo-
nents, the shear stress resultant produced by the shear stresses
conjugate to the shear strains may be small. However, the shear
stresses play a role in the local yield of steel and concrete and so
they should be considered in the FE model. Therefore, the con-
stitutive models for steel and concrete need to be based on both
longitudinal normal stresses and the shear stresses induced by the
slips at the interface. In the most FE model of beam elements for
composite beams and CFT columns, only the longitudinal normal
stresses are considered for the constitutive models of concrete and
steel.

Constitutive Model for Structural Steel

The von Mises yield criterion, associated flow rule and isotropic
hardening are suitable for structural steel. The von Mises yield
criterion can be written as

F��,�� = �e − �y = 0 �33�

where �y =uniaxial yield stress, which describes the change of
yield surface for steel. Because the isotropic hardening rule is
used, �y is given by

�y = �y0 +
0

�e
�p�

Hs�d�e
�p� �34�

where �y0=uniaxial initial yield stress; Hs�=hardening parameter
for steel; and d�e

�p�=equivalent plastic strain rate; �e=von Mises
equivalent deviatoric stress given by

�e = �3
2S:S = ��zz

2 + 3	zy
2 �35�

where the deviatoric stress matrix S=�+ pI, S :S=trace�SST�
=double contracted product of S; and p=effective pressure stress
given by

p = − 1
3 trace � = − 1

3�zz �36�

and �=stress tensor that can be expressed as

� = � 0 	zy

	zy �zz
� �37�

and �zz and 	zy =longitudinal normal and uniform shear stresses in
the steel component.

The strain increments can be decomposed into an elastic strain
increment and a plastic strain increment as

d� = d�e + d�p �38�

The associated flow and isotropic hardening theory is used for
steel. After derivation, the incremental relationship between the
stress increment d� and the strain increment d� can be expressed
as

d� = E�ep�d� �39�

where E�ep�=standard tangent modulus material matrix and given
by

E�ep� = �Es 0

0 Gs
� − � �zz

2 Es
2 3�zz	zyEsGs

3�zz	zyEsGs 9	zy
2 Gs

2 � �40�

where the coefficient 
 is given by 
=�e
2Hs�+�zz

2 Es+9	zy
2 Gs.

It can also be shown that the equivalent plastic-strain rate d�e
p

in Eq. �34� is given by

d�e
�p� = cTd� =

�e�Es�zzd�zz + 3Gs	zyd�zy�
�e

2Hs� + �zz
2 Es + 9	zy

2 Gs

�41�

Constitutive Model for Concrete

Concrete Component

The experimental short term uniaxial stress–strain curve for con-
crete has essentially no linear range and the slope of the curve is
continuous up to “failure.” However, when stresses are less than
approximately 35% of the ultimate stress, the stress–strain behav-
ior is almost linear. The concrete component can then be assumed
to exhibit an elastic response initially, when it is subjected to
compression and shearing. As the stresses increase, some nonre-
coverable straining occurs, and the response of the material be-
comes nonlinear. After the ultimate stress is reached, the material
softens until it can no longer carry any stress.

When a uniaxial specimen is loaded into tension, its response
is elastic until cracks form so quickly that it is very difficult to
observe the actual behavior. For the purpose of modeling, it is
assumed that the concrete component that is subjected to tension
and shearing loses strength through a softening mechanism and
that the open cracks can be represented by a loss of elastic stiff-
ness. It is also assumed that the cracks can close completely when
the stress across them becomes compressive.

An isotropically hardening compressive yield surface forms
the basis of modeling the inelastic response when the longitudinal
normal stresses are dominantly compressive. The constitutive
model for the concrete component consists of a compressive
yield/flow surface to model the concrete response in the predomi-
nantly compressive states of stress, together with damaged elas-
ticity to represent cracks that have occurred at an integration point
of the cross section; the occurrence of cracks is defined by a crack
detection failure surface and is considered as part of elasticity.

Constitutive Model for Tension of Concrete

The crack detection surface for concrete can be defined by
�Menetrey and Willam 1995; ABAQUS 2003�

Ft��,�t� = �e
t − �3 − b0

�t

�t
u�pt − �2 −

b0

3

�t

�t
u��t = 0 �42�

where the von Mises equivalent deviatoric stress �e
t and the ef-

fective tensile stress pt can be obtained from Eqs. �35� and �36� as
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�e
t = �3

2S:S = ��zz
2 + 3	zy

2 �43�

where �zz and 	zy =longitudinal normal tensile and shear stresses
in the concrete component; and pt=−�zz /3; �t��t�=hardening
parameter �i.e., the equivalent uniaxial tensile stress�, and
b0=constant and its value can be obtained as �ABAQUS 2003�

b0 = 3
1 + �2 − f�rt

� − �1 + �frt
��2 + frt

�

1 + frt
��1 − f�

�44�

where rt
�=ratio of the ultimate stress in uniaxial tension to the

ultimate stress in uniaxial compression and given by rt
�=�t

u /�c
u,

and f =ratio of the ultimate stress in uniaxial tension to the non-
zero principal stress �2 at the occurrence of cracking when one
principal stress has the value �1=�c

u in a plane stress test, i.e.,
f =�t

u /�2.
Before cracking, the response of the concrete under tensile

longitudinal normal and shear stresses is assumed to be linear,
and the constitutive equation can be written as

d� = Ectd� �45�

where the stress increment is d�= 
d�zz ,d	zy�T, the strain incre-
ment is d�= 
d�z ,d�zy�T, and the tangent material modulus matrix
Ect is given by

Ect = �Ec 0

0 Gc
� �46�

in which Ec=Young’s modulus of elasticity of the concrete and
Gc=shear modulus of elasticity of the concrete and given by

Gc =
Ec

2�1 + �c�
�47�

and �c=Poisson’s ratio of the concrete.
After cracking, tensile stresses are generated in the cracked

concrete as a result of the transfer, via shear and bond, of the
stresses from the reinforcement and steel component. The Gauss
point models the crack �or cracks� and the adjacent concrete and
consequently its response should be stiffer than it would be for a
purely brittle failure. This phenomenon is called “tension stiffen-
ing” �Gilbert and Warner 1978�. To account for the tension stiff-
ening, the constitutive equation for the cracked concrete can be
written in terms of the diminished moduli as

d� = Ecrd� �48�

where the damaged tangent material matrix Ecr is given by

Ecr = �Ecr 0

0 Gcr
� �49�

where Ecr and Gcr=reduced normal and shear moduli.

The reduced normal modulus Ecr can be determined as �Fig. 3�

Ecr =
0 − �t

u

�t
max − �t

u �50�

It is also assumed there are no Poisson effects for open cracks,
and so the reduced shear modulus Gcr can be expressed as

Gcr = �Gc

�51�

� = �1 −
�t

�t
max�

where �t=normal tensile strain and �t
max=assumed maximum

value of the normal tensile strain.

Constitutive Model for Compression of Concrete

The compression yield surface for concrete can be defined by
�Menetrey and Willam 1995; ABAQUS 2003�

Fc��,�� = �e
c − �3a0pc − �1 −

a0

�3
��c = 0 �52�

where the von Mises equivalent deviatoric stress �e is given by

�e
c = �3

2S:S = ��zz
2 + 3	zy

2 �53�

where �zz and 	zy =longitudinal normal compressive and shear
stresses in the concrete component; and pc=−�zz /3, and the con-
stant a0 can be obtained as �ABAQUS 2003�

a0 =
�3�1 − rbc

� �
1 − 2rbc

� �54�

where the ratio rbc is given by rbc=�bc
u /�b

u, with �bc
u being the

ultimate stress in biaxial compression and �b
u being the ultimate

stress in uniaxial compression. The typical value rbc
� =1.16 is usu-

ally assumed, and used herein. �c���=hardening parameter �cor-
responding to the equivalent anoxia compressive stress in the
uniaxial stress strain curve�. The compressive yield surface de-
fined by Eq. �52� is plotted together with the crack detection
surface defined by Eq. �42� in Fig. 4.

The associated flow rule generally overpredicts the inelastic
volume strain. However, for computational efficiency and sim-
plicity, the associated flow and isotropic hardening rules are also
used for the concrete component when compression is dominant.
While the associated flow assumption is not fully justified by
experimental data, it can nevertheless provide results that are ac-
ceptably close to these measurements and is therefore used here.

Fig. 3. Tension stiffening model
Fig. 4. Concrete failure surfaces in ��e− p� plane

756 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / MAY 2006



The gradient of the flow potential for the compressive yield
surface is

a =
�F

��
=

��e

��
− �3a0

�p

��
=

1

�e
��zz +

a0

�3
�e,3	zy�T

�55�

The vector cT can be obtained as

cT =
aTE

H� + aTEa
=

�e�Ec��zz + a0�e/�3�,3Gc	zy�

�e
2Hc� + ��zz + a0�e/�3�2Ec + 9	zy

2 Gc

�56�

where E=tangent elastic modulus matrix for concrete and given
by

E = �Ec 0

0 Gc
� �57�

The stress increments are expressed as

d� = E�ep�d� �58�

where d�=vector of strain increments and E�ep�=standard tangent
modulus material matrix for concrete and can be obtained as �Pi
et al. 2006�

E�ep� = E − EacT �59�

where the term EacT can be obtained from Eqs. �55�–�57� as

EacT =
1


c
� �zz + a0�e/�3�2Ec

2 3��zz + a0�e/�3�	zyEcGc

3��zz + a0�e/�3�	zyEcGc 9	zy
2 Gc

2 �
�60�

in which the coefficient 
c is given by


c = Hc��e
2 + Ec��zz +

a0

�3
�e�2

+ 9GcTzy
2

The equivalent plastic strain increment d�e
p can be obtained as

d�e
�p� = cTd� =

�e�Ec��zz + a0�e/�3�d�zz + 3Gc	zyd�zy�

�e
2Hc� + ��zz + a0�e/�3�2Ec + 9	zy

2 Gc

�61�

It is worth pointing out that for CFT columns, particularly for
short columns, the confinement effects of the steel tube on the
concrete core need to be considered �Hajjar 1998b; Hu et al.
2003�. In this case, the hardening parameter �c��� should take the
value from the corresponding uniaxial stress–strain curve that
includes the confinement effects �Mander et al. 1988�.

Constitutive Model for Crushed Concrete

The total equivalent plastic strain �e
p can be obtained by integrat-

ing Eq. �61� and is used as the criterion to detect the crushing of
the concrete in compression. When the total equivalent plastic
strain �e

p reaches the ultimate strain �u obtained from a uniaxial
compression test, i.e., �e

p=�u, the concrete in compression is con-
sidered to reach its “crushing” state.

After “crushing,” the concrete is assumed to lose some, but not
all, of its strength and rigidity due to the transfer of stresses from
the reinforcement and the adjacent uncrushed concrete. The con-
stitutive equation for the “crushed” concrete may be expressed as

d� = Ecrd� �62�

where the tangent material matrix Ecr is given by

Ecr = �K 0

0 0
� �63�

in which K=bulk modulus of concrete and defined by

K =
Ec

3�1 − 2�c�
�64�

This is consistent with the view of Arnesen et al. �1980� that the
instantaneous and complete loss of strength for the crushed con-
crete is only a crude approximation of real behavior.

Force–Slip Relationship at Interface

The present FE model provides facility for the incremental re-
lationship between the slip wsp the corresponding force at the
interface �shear force in the case of composite beams and axial
transferring force in the case of CFT columns�. It is important to
input correct the incremental relationship between the slip wsp and
the corresponding force at the interface. The shear force–slip
characteristics at the interface of composite steel–concrete beams
can be obtained by pushout tests. Several idealized force–slip
relationships such as bilinear elastic–full plastic characteristics
and rigid–plastic characteristics have been proposed for the de-
sign of composite beams �Oehlers and Bradford 1995�. However,
in order to simulate the experimental curves, the following em-
pirical relationship between the shear force Qint and the slip wsp

for stud shear connections proposed by Yam and Chapman �1968�
is used for composite beams in this investigation:

Qint = a�1 − exp�− bwsp�� �65�

where a and b=constants that are determined by best fitting
Eq. �65� with experimental curves. A typical relationship between
the shear force and the slip is shown in Fig. 5. The constants a
and b can be obtained from the two points wsp2=2wsp1 of the
curve as

a =
Q1

2

2Q1 − Q2

and

Fig. 5. Load–slip relationship for shear connection between concrete
and steel components
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b =
1

wwp1
ln

Q1

Q2 − Q1
�66�

The tangent relationship between the shear force increment and
the slip increment can be obtained from Eq. �65� as

dQint = abe−bwspdwsp �67�

It is assumed that the shear connection between the steel and
concrete components acts as a continuous medium along the
length of an element and that the shear connectors are uniformly
distributed along the length of a composite member. Hence, the
shear force per unit length �shear flow force� qsh can be expressed
as

qint =
Qint

s
�68�

where s=spacing between the adjacent connectors.
Finally, the incremental relationship between qint and wsp can

be obtained from Eqs. �67� and �68� as

dqint = Kintdwsp �69�

where Kint= tangent stiffness for slip deformation and given by

Kint = abe−bwsp/s �70�

Experiments focused on the force–slip behavior of CFT columns
are limited as pointed out by Hajjar et al. �1998b�. Shakir-Khalil
�1993a, b� performed an experimental investigation on the force–
slip behavior of rectangular CFT sections and proposed a bilinear
relationship between the slip and the force transferred. Hence, the
incremental relationship between the transferring force and the
slip at the interface for CFT columns can also be expressed by
Eq. �69� with the tangent stiffness Kint is a constant before the
bond between the steel tube and the concrete core is broken
down. After bond breaking down, the value of Kint is assumed to
vanish. It is worth pointing out that at the connections of frames,
the stiffness against slip is usually higher than those obtained
from the pushout tests. In this case, the value of Kint can be
calibrated directly �Hajjar et al. 1998b�.

Nonlinear Equilibrium

The nonlinear equilibrium equations of an element of a composite
steel–concrete member can be derived from the principle of vir-
tual displacements which requires that

U =
V

�T�dV +
0

l

wspqshdz −
0

l

uTqdz − �
k=1,2

uk
TQk = 0

�71�

for all kinematically admissible sets of infinitesimal virtual dis-
placements 
v ,w ,wsp� where l=length of the element; �·�
=Lagrange variation operator for infinitesimal changes; � and
�=vector of stresses and the vector of the conjugate virtual
strains and they are given by

� = 
�zz,	zy�T

and

� = 
�zz,�zy�T �72�

qsh and wsp=shear flow force and the conjugate virtual slip at the
interface between the steel and concrete components; q, Qk, and
u=vectors of the external distributed and concentrated loads;
and the vector of the conjugate virtual displacements and they are
given by

q = 
qy,qz,m�T

and

Qk = 
Qy,Qz,M�k
T �k = 1,2� �73�

and

u = uk = 
v,w,− v��T �74�

From Eqs. �31� and �32�, the vector of the virtual strains can be
expressed as

� = SB� �75�

where �=vector of the general virtual displacements and given
by

� = 
v,v�,v�,w,w�,w�,wsp,wsp� �T �76�

S=2�3 matrix and is given by

S = �1 y 0

0 0 1
� �77�

and B=3�8 matrix and given by

B = �0 v� 0 0 1 + w� 0 0 1 + ��

0 w� − �1 + w� + ��� 0 − v� v� 0 v�

0 0 − � 0 0 0 − v� 0
	
�78�

The relationships between the infinitesimal increments of the
stresses and strains for the steel and concrete given by Eqs. �39�,
�45�, �58�, and �62� can be written collectively as

� = E�ep�� = E�ep�SB� �79�

where the incremental operator d�·� is replaced by the variational
operator �·� for consistency in the following formulation because
both operators represent infinitesimal changes �called incremen-
tation�.

Substituting Eq. �75� into Eq. �71� produces a new expression
for the principle of virtual displacements given by

U =
0

l

�T�BTR + qsh�dz −
0

l

�TATqdz − �
k=1,2

�TATQk = 0

�80�

where R=vector of the stress resultants and is given by

R = 
N,M,Q�T =
A

ST�dA �81�

in which N, M, and Q=axial force, bending moment, and shear
force, respectively, and given by
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N =
A

�zzdA

M =
A

�zzydA

and

Q =
A

	yzdA �82�

qsh=8�1 vector of the shear flow force acting at the interface
between the steel and concrete components and given by

qsh = 
0,0,0,0,0,0,qsh,0�T �83�

with qsh being given by Eq. �69�; A=3�8 matrix and its nonzero
elements are given by A11=1, A22=−1, and A33=1.

The general displacement vector � can be expressed as

� = Nr �84�

where N=shape function matrix whose elements are shape func-
tions of z and r=nodal displacement vector and given by

r = 
v1,v1�,w1,w1�,wsp1,wsp1� ,v2,v2�,w2,w2�,wsp2,wsp2� �T �85�

It can be seen that six degrees of freedom are used for each node
and that the independent degrees of freedom wsp and its derivative
wsp� are used to describe slips at the interface between steel and
concrete components, which can be conveniently used to assign
the slip condition at the connections between beams and columns
in the composite structures. It is known that different order of
shape functions such as cubic, quitic, or septic functions can be
used for the elements of the shape matrix N. When higher order
shape functions are used, the nodal displacement vector r needs
to be expanded and stiffness and geometric matrices need to be
condensed.

Substituting Eq. �84� into Eq. �80� leads to

rT�
0

l

NT�BTR + qsh�dz −
0

l

NTATqdz − �
k=1,2

NTATQk� = 0

�86�

Eq. �86� has to hold for all admissible sets of virtual displace-
ments r, so that the nonlinear equilibrium equations can be
obtained from Eq. �86� as


0

l

NT�BTR + qsh�dz − p = 0 �87�

where �0
l NT�BTR+qsh�dz=vector of element internal forces while

p =
0

l

NTATqdz + �
k=1,2

NTATQk �88�

=vector of external forces acting on the element.

Consistent Linearization

Consistent linearization of the principle of virtual displacements
plays a key role in numerical implementations employing an
incremental-iterative solution procedure. A complete account of
linearization procedures in the general context of an infinite di-
mensional manifold can be found in Marsden and Hughes �1978�.

Linearization of the principle of virtual displacement can be per-
formed by linearizing Eq. �71�, Eq. �80�, or more conveniently
Eq. �87�. Consider an equilibrium configuration S defined by u, q,
Qk �k=1,2�, and qsh, and u+�u, q+�q, Qk+�Qk �k=1,2� and
qsh+�qsh define an adjacent equilibrium configuration S*. The
consistent linearization of the nonlinear equilibrium Eqs. �87� in
the equilibrium configuration S* can be expressed as

��
0

l

NT�BTR + qsh�dz − p� = 0 �89�

where ��·�=linear incremental operator. The linear incremental
operator indicates small variations that are not necessarily infini-
tesimal. The operational rules for the varirational operator �·�
can be used for the linear incremental operator ��·�.

Eq. �89� can be expanded as


0

l

NT��BTR + BT�R + �qsh�dz −
0

l

NT��ATq + AT�q�dz

− �
k=1,2

NT��ATQk + AT�Qk� = 0 �90�

From Eqs. �81� and �79�

�R =
A

ST��dA =
A

STE�ep�SB��dA = DB�� = DBN�r

�91�

where the familiar property matrix D is given by

D =
A

STE�ep�SdA �92�

The terms �BTR can be written as the identities

�BTR = M��� = M�N�r �93�

The stress matrix M�=8�8 symmetric matrix that accounts for
the nonlinear effects of the stress resultants on the tangent stiff-
ness matrix and its nonzero elements are given by

M22 = M55 = M88 = N
�94�

M26 = M62 = − M35 = − M53 = M

and

M37 = M73 = Q
�95�

M38 = M83 = M

The term �qsh can also be written as the identity

�qsh = Msh�� = MshN�r �96�

where the matrix Msh=8�8 matrix with elements Msh�i , j�
=7,ji,7Ksh in which i,j =Kronecher delta and Ksh is given by
Eq. �69�.

Substituting Eqs. �91� and �93� into Eq. �90� lead to the first
term of Eq. �90� as
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0

l

NT��BTR + BT�R + �qsh�ds

=
0

l

NT�BTDB + M� + Msh�Nds�r �97�

Since the elements of the matrices A are constants, �A=0, and
the consistent linearization of the second and third terms of Eq.
�90� is then obtained as

�p =
0

l

NTAT�qds + �
k=1,2

NTAT�Qk �98�

Substituting Eqs. �84�, �97�, and �98� into Eq. �90� leads to the
tangent stiffness relationship

kT�r = �p �99�

where the tangent stiffness matrix kT is given by

kT =
0

l

NT�BTDB + M� + Msh�Nds �100�

Conclusions

A total Lagrangian finite element model for the nonlinear inelastic
analysis of composite members was formulated in this paper. The
total Lagrangian formulation is directly applicable to the consti-
tutive models expressed in terms engineering stresses and strains,
in particular conveniently applicable for the constitutive models
for the slips at the interface between the steel and concrete com-
ponents. A matrix of the special orthogonal group for two-
dimensional rotation was expressed in terms of the axial and
transverse displacements and their derivatives. The total deforma-
tion was assumed to result from two successive motions:
displacements and finite rotation of the cross section, and a
superimposed relative slip–displacement between the steel and
concrete components in the deformed configuration. The nonlin-
ear strain–displacement relationships were then derived based on
the rotation matrix and the deformation assumption. The relative
slip between the steel and concrete components due to flexible
bond at the interface between the steel and concrete components
is considered as an independent displacement in the formulation.
This makes it easier to assign the corresponding proper slip con-
ditions at the connections between composite frames. The effects
of nonlinearities and slip on the deformations and strains in the
steel and concrete components and so on the stress resultants �i.e.,
internal forces�, stiffness, and strength of the composite member
are thus combined together in the formulation. The shear strains
and shear stresses produced by the interaction between the slip
and the in-plane bending are included in the FE model.

The constitutive models for steel and concrete are developed
in this investigation based on the longitudinal normal stress and
the shear stress induced by the slip between the steel and concrete
components. Hence, these models include the effects of the slip at
the interface on the von Moses yield surface, associated flow rule,
and isotropic hardening rule. These constitutive models can be
used in association with any type of uniaxial stress–strain curves
for steel and concrete, including hot-rolled or cold-formed steel,
and confined and unconfined concrete, which will be shown in the
companion paper �Pi et al. 2006�.

The numerical results in the companion paper �Pi et al. 2006�
show the excellent numerical capacity and efficiency of the non-
linear FE model developed in this paper.
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