Updating the DietAdvice website with new Australian food composition data

Yasmine Probst
University of Wollongong, yasmine@uow.edu.au

Holley-Anne Jones
holley@uow.edu.au

Shannon Lin

S. Burden
sburden@uow.edu.au

David G. Steel
University of Wollongong, dsteel@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/hbspapers

Part of the Arts and Humanities Commons, Life Sciences Commons, Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Probst, Yasmine; Jones, Holley-Anne; Lin, Shannon; Burden, S.; Steel, David G.; and Tapsell, Linda C.: Updating the DietAdvice website with new Australian food composition data 2009.
https://ro.uow.edu.au/hbspapers/162

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Abstract
DietAdvice is an Australian self-administered dietary assessment website initially developed in 2003-2005. The website allows patients to enter their dietary information and dieticians to remotely access and interpret the data. DietAdvice is presently being updated with new Australian food composition data. This study aims to describe the update process for moving from 1995 to 2006 food composition data. The database for the website was developed using grouped food data from the NUTTAB 1995 database. All food groups were cross-matched with the food from the NUTTAB 2006 database using the food ID codes. Rules were applied to determine the suitability of the food for inclusion in the database. New, ungrouped foods were considered individually and added to existing groups or grouped together as new groups. Foods within each group were statistically weighted to determine the nutrient profile for each group. The NUTTAB 1995 data was used to develop 19, 103 and 422 first, second and third level groups, respectively. From the NUTTAB 2006 data, an additional 623 foods needed to be individually considered. The final database contained 23, 123 and 430 first, second and third level groups, respectively. Ensuring the most recent food composition data is incorporated into the database of the website will maximise the accuracy of the dietary advice provided by the dieticians.

Keywords
dietadvice, updating, australian, website, composition, food, data

Disciplines
Arts and Humanities | Life Sciences | Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors
Yasmine Probst, Holley-Anne Jones, Shannon Lin, S. Burden, David G. Steel, and Linda C. Tapsell

This journal article is available at Research Online: https://ro.uow.edu.au/hbspapers/162
Updating the DietAdvice website with new Australian food composition data

Yasmine Probst*, PhD
Smart Foods Centre, University of Wollongong, Northfields Avenue, Wollongong, NSW Australia.
Phone: +612 4221 5302, Fax: +612 4221 4844, Email: yasmine@uow.edu.au

Holley Jones, BSc
Smart Foods Centre, University of Wollongong, Northfields Avenue, Wollongong, NSW Australia.
Phone: +612 4221 4996, Fax: +612 4221 4844, Email: holley@uow.edu.au

Shannon Lin, BSc
Completed while employed at: Smart Foods Centre, University of Wollongong, Northfields Avenue, Wollongong, NSW Australia.
Current address: 5/25 Glouceste Rd, Hurstville, NSW Australia
Email: shannon033lin@hotmail.com

Sandy Burden, MStat
Centre for Statistical and Survey Methodology, University of Wollongong, Wollongong, NSW Australia
Phone: +612 4221 3845, Fax: +612 4221 4845, Email: sburden@uow.edu.au

David Steel, PhD
Centre for Statistical and Survey Methodology, University of Wollongong, Wollongong, NSW Australia
Phone: +612 42213823, Fax: +612 42214845, Email: dsteel@uow.edu.au

Linda Tapsell PhD
Smart Foods Centre, University of Wollongong, Wollongong, NSW Australia
Phone: +612 4221 3152, Fax: +612 4221 4844, Email: ltapsell@uow.edu.au

* Corresponding author.
ABSTRACT

DietAdvice is an Australian self-administered dietary assessment website initially developed between 2003-2005. The website allows patients to enter their dietary information and dietitians to remotely access and interpret the data. DietAdvice is presently being updated with new Australian food composition data. This study aims to describe the update process for moving from 1995 to 2006 food composition data. The database for the website was developed using grouped food data from NUTTAB 1995 database. All foods groups were cross-matched with the food from NUTTAB 2006 database using the food ID codes. Rules were applied to determine the suitability for inclusion in the database of the food. New, ungrouped foods were considered individually and added to existing groups or grouped together as new groups. Foods within each group were statistically weighted to determine the nutrient profile for each group. The 1995 NUTTAB data was used to develop 19, 103 and 422 first, second and third level groups respectively. From the 2006 NUTTAB data, an additional 623 foods needed to be individually considered. The final database contained 23, 123 and 430 first, second and third level groups, respectively. Ensuring the most recent food composition data is incorporated into the database will maximise the accuracy of the dietary advice provided by the dietitians.

Keywords:
Diet history, food groups, technologies, professional judgement, website, food composition database, Australia
INTRODUCTION

Dietary assessment is a vital component of clinical practice in nutrition and has changed significantly since its early beginnings. Traditional forms of dietary assessment include the food frequency questionnaire, diet history interview, 24-hour recall and the food record or food diary. These methods are traditionally conducted using a paper and pen format, although in recent years, new technologies have been used to streamline the process. Computers were used for dietary assessment as early as the 1970's, with the diet history interview (Medlin and Skinner, 1988).

More recently the EPIC study developed EPIC-SOFT, a program modelled on the 24-hour recall including 17-23 food groups, 1500-2200 foods and 150-350 recipes (Menisink et al., 2001, Brustad et al., 2003, Slimani et al., 2002b, Slimani et al., 2002a, Slimani et al., 1999). Foods are entered in the system as prepared or as eaten, then automatically converted to amount eaten. Although this program is interviewer administered and does not contain any food portion information (each country had a different portion book), it provided a standardised process of collecting dietary information for a large population group in Europe.

DietAdvice is an Australian self-administered dietary assessment website utilising a combination of diet history and food frequency questionnaire methodologies. The website allows patients to enter their dietary information and dietitians to remotely access and interpret the data. The website was initially developed between 2003 and 2005 using 1995 Australian food composition data (NUTTAB). This data was matched with the food group intake data from the 1995 National Nutrition Survey (NNS). The level of error associated with using food groups as opposed to using...
individual food items was determined. A 5-10% level of error was found when grouped foods were used (unpublished data) which was felt to be comparable to the error associated with face-to-face dietary assessments. It was then decided that all future analyses would be performed for grouped food data rather than individual food items. Statistical analyses to identify common foods consumed in each meal were performed. Results were related back to the original food group from NNS.

The NNS food groups were developed for research purposes, hence, they needed to be adjusted for self-administered dietary assessment. Cluster analyses were performed using three different hierarchical clustering algorithms: average linkage, complete linkage and Ward's method for each group (Johnson and Wichern, 2002). Cluster analyses have been used for organising foods into groups (Akbay et al., 2000, Windham et al., 1985) but often require professional interpretation of the outcomes. Professional judgement was applied to the results to re-group the foods based on both nutritional and conceptual similarities (Probst and Tapsell, 2005). The final developmental stage was face-validity testing by a group of dietitians. The database was then uploaded to a dynamic web-design using a multi-pass approach (Probst et al., 2007).

In 2007 new food composition data for Australia (NUTTAB 2006) was released (Food Standards Australia New Zealand, 2007c, Food Standards Australia New Zealand, 2007b). A number of differences between the 1995 and 2006 databases were identified including the addition of new food items and product reformulations (Food Standards Australia New Zealand, 2007a). As a result the DietAdvice website needed to be updated. The aim of this study is to describe the process for updating the
DietAdvice website from 1995 to 2006 food composition data. The initial DietAdvice database only included macronutrient data for each of the food groups hence this update also included the incorporation micronutrient data into the database.

MATERIALS AND METHODS

The review process

A review of all new foods was required by comparing the NUTTAB 1995 and the 2006 datasets to determine the number of new foods to be included (Fig. 1). This process was based on the comparison of food codes, in the database, which was performed using Microsoft Excel (reference) lookup tables .(Fylstra et al., 1998). Although the comparison had been partially completed by Food Standards Australia New Zealand prior to the database release (Food Standards Australia New Zealand, 2007a). The partial comparison showed the progressive change of Australian food composition data and where new foods were added or old foods were matched with new food codes. The website update also required all macro and micronutrient data to be considered as well, hence the repeated review process. [INSERT FIGURE 1]

The DietAdvice database contains categories (first level groupings e.g. breads and cereals), subcategories (second level groupings e.g. bread and toast) and food types (third level groupings e.g. wholemeal bread) for the multiple pass approach used by the website. The NUTTAB database included individual food information while the DietAdvice database contained food groups only, therefore foods that were not new to the NUTTAB database and had a matching identification code were automatically sorted into the DietAdvice website food group database. The ‘new’ (completely new or re-formulated) foods in the NUTTAB 2006 database were then further compared
with the DietAdvice website database. Rules were applied to all groups to determine
the suitability of the food (summarised under Creating grouping rules) and foods were
only included in their ‘as consumed’ form. Where there was a <20% difference
between the macronutrient data, foods were grouped into their closest food group. A
20-40% difference required the use of professional judgement of each individual food,
and a >40% difference warranted the development of a new food group in the
DietAdvice database. Decisions requiring professional judgement were made by a
team of Accredited Practising Dietitians who had previously been involved in
development of the DietAdvice database.

As the original food groups were based on the NNS food grouping hierarchy, all foods
from NUTTAB 2006 needed to be linked back to the NNS food groupings in order to
apply statistical weighting to the new groups. Since the new foods incorporated in the
database were not directly matched to NNS foods, additional rules were created.
These new foods were related to the most conceptually similar food types (food types
- third level groupings).

As the NNS is the most recently available population food intake data obtainable for
Australia, foods within each food group could then be weighted to determine the
nutrient profile for each new group. The popularity of these ‘new’ food items were
also compared with data from a clinical trials database developed by the Smart Foods
Centre, University of Wollongong (see Developing a clinical trials dataset) to
determine whether large shifts in intake patterns needed to be considered when
applying the weighting. The final stage of this process involved matching of each the
NNS food items back to the closest NUTTAB 2006 food to recreate the DietAdvice
database through statistical weighting. Completion of this process resulted in a hierarchical food grouping system which encompassed all foods from NUTTAB 2006.

Upon completion of the statistical weighting, the portion size of each food needed to be considered due to the self-administered nature of the website. Portion sizes for new groups were compared with existing portion size options. Where a relevant portion size was found, it was added to the database. Where no portion sizes were suitable, a new portion size needed to be determined. To assist with the cognitive process of reporting dietary data, food portion photographs were created for the majority of portion sizes (Probst et al., 2008).

Developing a clinical trials dataset

Baseline diet history data was collected from all clinical trials conducted at the Smart Foods Centre until 2007. The clinical trials dataset was used to shape the weighting of new categories in the DietAdvice database. All data was available in Foodworks (2008, v5.1367, Highgate Hill QLD) database. As the clinical trials were conducted prior to the release of the 2006 NUTTAB dataset all food data needed to be converted to NUTTAB 2006 food data manually. In Foodworks a local copy of each trials dataset was created and saved as a separate folder. The data contained in the database was updated to include NUTTAB 2006 data only. The clinical trials data was primarily from the 2001 Australian branded foods database (AUSNUT) with some additional food items added from food labels and recipes submitted by the participants. For this reason some foods could not be matched appropriately as NUTTAB only contains generic food items. Notes were made against each individual
food match to track the change process. These steps were repeated for all foods in each of the local copy folders. The final database (n=284 clinical trials participants) was exported to Microsoft Excel.

RESULTS

Creating grouping rules

The 2006 NUTTAB database contained approximately 3000 foods of which 1350 foods could be considered ‘new’. Of these ‘new’ foods 531 were specific indigenous foods. As the food items were considered on an individual basis, the following rules and professional judgement decisions needed to be applied

Inclusion and grouping criteria

1. Macronutrient similarities and conceptual similarities e.g. salted pork cracker grouped into the Savoury snack foods>Pretzels and other snacks>Other snacks grouping hierarchy.

2. Commonly eaten foods and those available to general public in major retail outlets such as Milo formulated beverage.

3. Foods consumed in greater quantities today than 15 years ago such as raw vegetables and fruits.

Exclusion criteria

1. Foods in forms other than as eaten (ingredient foods) eg oat bran, flour, gelatine, curry paste, miso, coffee powders, milk powders, concentrated cordial.

2. Foods outside the target population for the DietAdvice website (Metabolic syndrome) e.g. Infant and children’s products, most indigenous foods.

3. Those not available to the general public.
4. Food additives, colourings and flavourings.

5. Very low energy vegetables.

6. Raw/inedible foods e.g. raw meat, meat fats.

Approximately 650 (48% of total) new foods were able to be grouped directly into the existing DietAdvice database and 700 (52% of total) foods required new categories (first level groupings) or subcategories (second level groupings) to be created. Of these foods 89 (14% of 650 grouped new foods) were identified as belonging to the existing DietAdvice database and 561 foods required individual grouping. As a result new food sub-categories and food types were created (e.g. new meat and fish sub-categories and types, ethnic takeaway foods while other food groups were renamed). The renaming process was undertaken to simplify food group descriptions and/or to add an example in the food name to improve user recognition.

Applying professional judgement

The process of developing the clinical trials database also required a number of professional judgement decisions from issues arising when converting AUSNUT data into 2006 NUTTAB data. This process required consideration of the following:

- Addressing ‘no form specified’ (NFS) food items (created as an average of a number of foods) in AUSNUT
- ‘Fried’ was not a cooking option for meats in NUTTAB yet was commonly used in AUSNUT
- Some dishes were referred to as ‘Asian’ in AUSNUT while NUTTAB provides separate options for Chinese, Thai, Indonesian and Vietnamese
AUSNUT uses many ‘non specified’ descriptors for cuts of meat, cooking methods, fat trimming while NUTTAB defines a range of cooking methods. Definitions for meats vary between AUSNUT and NUTTAB (e.g. lean cut with fat, fat trimmed, not specified fat trimmed, separable lean, semi-trimmed, untrimmed). These required clear definitions for consistent matching such as:

- Lean: trimmed of all external or selvedge fat and has minimal internal separable or intermuscular fat
- Semi trimmed or trimmed: Trimmed of most external or selvedge fat, but still has internal separable fat
- Untrimmed: still has external and internal separable fat.

Furthermore, when matching the foods from the DietAdvice database back to NNS food groups the following professional judgement decisions were required. Table 1 shows examples of the types of decisions and outcomes required for this process. As this process was for statistical weighting only, the comparability of the micronutrient data was not considered to be as important as the conceptual similarities between the foods. [INSERT TABLE 1]

The final database

Using 1995 NUTTAB data, 19, 103 and 422 first, second and third levels groups were formed respectively. These grouping levels were related to the multiple passes of the website structure. For example, only first level groups are displayed on the screen, second level groups selected are displayed in pass one and third level groups selected are displayed in pass two. The final pass for the website contains the food portion and food frequency information. From the 2006 NUTTAB data an additional 623 foods...
needed to be individually considered and the final database contained 23, 123 and 430 first, second and third levels groups, respectively (Table 2). [INSERT TABLE 2]

DISCUSSION

The process required to update the DietAdvice website, despite being modelled on pre-existing methodology, was time consuming and required a large amount of professional judgement. These challenges were primarily related to issues arising from converting a 15 year old dataset to a more recent dataset which does not have a nutrition survey associated with it. Although 1995 NUTTAB was used as the basis for the NNS food grouping hierarchy, many new food product developments and reformulations make the NNS difficult to apply to current eating patterns.

The most common challenge was relating individual food items to generic food averages created as a result of the NNS to deal with the reporting variability. The decision to use an alternate food item from the 2006 NUTTAB database, to find a commonality between the foods, or to use professional judgement to choose most common food item depending on the food in question. These decisions were required in the absence of sales or market share data for the individual food products.

The changed food preparation practices were also evident in the 2006 food composition database. Fried foods were not previously available for meats, making it impossible to relate them back to the food composition trends identified in the nutrition survey. Professional judgement determined whether an alternative cooking method was used such as grilling despite notable nutrient differences.
The food culture in Australia had also been captured in the 2006 data with various culturally specific food items and restaurant meals. These were previously limited to Asian foods in the NNS hence the clinical trials database was used to statistically weight these ‘new’ food groups.

The diversity of the food processing environment could also be seen with the number of new meat types and cuts available. A clear understanding of the descriptors for these cuts was required as these items needed to be clearly matched on a nutritional basis.

CONCLUSION

As the database now contains micronutrient as well as macronutrient data for each of the food groupings, a further validation of the website in practice is required. Ensuring the most recent food composition data is incorporated into the database will maximise the accuracy of the dietary advice provided by the dietitians who interpret the results. Updating the food composition data will also ensure that the website captures a more accurate picture of the users' usual intakes in relation to the current food supply available in Australia.

FUNDING DISCLOSURE

This project was funded under an NHMRC development grant.

FOOD STANDARDS AUSTRALIA NEW ZEALAND (2007a) NUTTAB 95 & NUTTAB 2006 Matching File

FOOD STANDARDS AUSTRALIA NEW ZEALAND (2007b) NUTTAB 2006 Australian Food Composition Tables.

FOOD STANDARDS AUSTRALIA NEW ZEALAND (2007c) NUTTAB 2006 Online version.

