Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide

Priyanka Jood
University of Wollongong, pj991@uow.edu.au

Germanas Peleckis
University of Wollongong, peleckis@uow.edu.au

Xiaolin Wang
University of Wollongong, xiaolin@uow.edu.au

S X. Dou
University of Wollongong, shi@uow.edu.au

H Yamauchi
Helsinki University of Technology Finland

See next page for additional authors

Publication Details
Phase formation and magnetotransport of alkali metal doped Na0.75CoO2 thermoelectric oxide

Abstract
Synthesis and characterization of bulk Na\(_x\)CoO\(_2\) samples substituted by K and Rb is reported. Phase formation studies revealed a narrow stable region for Na-alkali metal-Co system. Whisker and platelike single crystalline structures have been found to form on the surface of the pellets in case of K doping. All samples were metallic and no characteristic anomaly in R-T curves was observed for Rb doped sample. Magnetoresistance measured has a pronounced positive response only for K-doped and pure Na\(_x\)CoO\(_2\) phases, reaching 11\% and 7\% at 5 K temperature, respectively.

Keywords
Phase, formation, magnetotransport, alkali, metal, doped, Na0, 75CoO2, thermoelectric, oxide

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou, H Yamauchi, and M Karppinen
Phase formation and magnetotransport of alkali metal doped Na$_{0.75}$CoO$_2$ thermoelectric oxide

P. Jood,1 G. Peleckis,1,† X. L. Wang,1 S. X. Dou,1 H. Yamauchi,2 and M. Karppinen2

1Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, New South Wales 2519, Australia

2Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, FIN-02015, Finland

(Presented 19 January 2010; received 30 October 2009; accepted 30 November 2009; published online 21 April 2010)

Synthesis and characterization of bulk Na$_x$CoO$_2$ samples substituted by K and Rb is reported. Phase formation studies revealed a narrow stable region for Na-alkali metal-Co system. Whisker and platelike single crystalline structures have been found to form on the surface of the pellets in case of K doping. All samples were metallic and no characteristic anomaly in R-T curves was observed for Rb doped sample. Magnetoresistance measured has a pronounced positive response only for K-doped and pure Na$_x$CoO$_2$ phases, reaching 11% and 7% at 5 K temperature, respectively. © 2010 American Institute of Physics. [doi:10.1063/1.3365491]

In recent years constantly growing concern over decreasing amount of primary energy sources has prompted widespread research on development of alternative techniques and materials for power generation. Waste heat from power plants, factories, or automobiles equals to 70% of the total primary energy, but it is difficult to use as its sources are highly dispersed and small in size. The only effective method of overcoming these problems by converting heat energy directly into electrical energy is thermoelectric (TE) power generation. Good TE material should possess high conversion efficiency, be built out of nonvolatile and nontoxic elements, highly abundant and most important chemically stable at temperatures as high as 1000 K in air. Thus, oxide based TE materials are most promising candidates for TE applications due to their stability at high temperatures in air.

After Terasaki et al.1 have reported that Na$_x$CoO$_2$ compound exhibits simultaneously high TE power and low resistivity ($S \approx 100 \ \mu V/K$ and $\rho \approx 200 \ \mu \Omega \ cm$ at 300 K), many researchers put a lot of effort to develop new Co-based oxides that would exhibit similar or even better TE properties. Among many Co-based compounds three types of layered cobalt oxides have attracted the highest attention: Na$_x$CoO$_2$, Ca$_3$Co$_4$O$_9$, Bi$_2$Sr$_3$Co$_2$O$_9$. In Na$_x$CoO$_2$ TE oxide the sodium layers are sandwiched between CoO$_2$ blocks and these are stacked along the c axis. CoO$_2$ layers are responsible for electrical conductivity and Seebeck coefficient while the Na layers are insulating and determine thermal conductivity of the oxide. Fouassier et al.4 reported that a large amount of vacancies can easily be introduced into the sodium layer, giving a possibility for a high Na nonstoichiometry. It was also shown that highly sodium deficient and water intercalated Na$_x$CoO$_2$$\cdotH_2$O is superconducting at low temperatures.5 Moreover, Balsys et al.5 reported that due to the peculiar layered structure, Na ions can freely migrate in between the oxygen layers. Such migration of Na ions might be responsible for structural phase transitions close to room temperature which were described by Tojo et al.7 They have found existence of three first order transitions at 288.7, 296.3, and 302.1 K. This result is supported by Motohashi et al.8 who showed anomalous behavior in electrical resistivity curves for Na$_x$CoO$_2$ polycrystalline samples.

As being a transition metal oxide, Na$_x$CoO$_2$ is very attractive for chemical substitution studies. Both cation sites, Na and Co, can be substituted by various elements. Kawata et al.9 showed enhanced TE properties for Ca-substituted samples. On the other hand Sr does not go into Na site, but forms an individual compound Sr$_x$CoO$_2$. Other studies showed that Mn, Ru, and Rh act as strong scatter to increase electrical resistivity rapidly, while Cu, Zn, and Pd substitution does not alter the electrical conduction.11,12 In this article we present synthesis and characterization of alkali metal doped Na$_x$R$_y$CoO$_2$ (R=K, Rb) polycrystalline samples. The introduction of bigger alkali metal ions might decrease Na migration in the layer and thus improve transport properties of the material.

All samples were prepared applying “rapid heat-up” technique.8 Phase purity was checked using x-ray powder diffraction (MAC Science, MXP18VAHF, Cu Ka$_1$ radiation). Phase formation was studied by means of thermogravimetric (TG) analysis (Perkin Elmer, Pyris 1). For full synthesis simulation, a 5–30 mg amount of sample was put into the thermobalance. In order to avoid fast alkali metal evaporation, the heating rate of 2 °C/min was adopted. The morphology and microstructure of the samples was investigated by scanning electron microscopy (SEM) (Hitachi, S-4500). Chemical composition of the samples was determined using inductively coupled plasma atomic emission spectrometer (ICP-AES) (Seiko, SPS1500VR). Transport properties were analyzed by physical property measurement system (Quantum Design) in a temperature range of 5–350 K. For magnetoresistance studies the applied field was varied from 0 to 7 T.

\daggerAuthor to whom correspondence should be addressed. Electronic mail: peleckis@uow.edu.au.
Figure 1 shows x-ray diffraction patterns of undoped and K/Rb doped Na\textsubscript{x}CoO\textsubscript{2} samples after sintering. The samples are of single phase corresponding to that of hexagonal \(\gamma\)-Na\textsubscript{0.75}CoO\textsubscript{2} oxide. The 002 and 004 peaks at 2\(\theta\) = 16.2\(^\circ\) and 33.4\(^\circ\) are much higher in intensity for the Rb doped sample as opposed to other ones indicating a more pronounced \(c\) axis orientation. Lattice parameters calculated from the x-ray diffraction patterns revealed that introduction of bigger alkali ion in the system caused elongation of the lattice parameter \(c\), i.e., \(c\text{(un-doped)} = 10.912\) Å and \(c\text{(Rb-doped)} = 10.946\) Å, respectively.

Figures 2a and 2b show SEM micrographs of Na\textsubscript{0.75}Rb\textsubscript{0.25}CoO\textsubscript{2} calcined powders and sintered pellets, respectively. As we can see, the sample morphology has very distinctive differences. For calcined powders the particles are embedded in some sort of melt and the shape of the particles is somewhat circular. In contrary, the particles in the sintered sample [Fig. 2(b)] are well formed and separated, have clear signs of layered structure, and are elongated in shape. Some residue of melting or sublimation can be seen on the surface of the crystallites. The average particle size is about 20 \(\mu\)m. Furthermore, it was found that for K-doped samples, single crystallinelike formations have been observed [Fig. 2(c)]. Two kinds of distinctive products were formed: whisker-type and petal-like crystals [as indicated in Fig. 2(c)]. The formation of the product was found to be highly dependant on K amount in the samples and sample sintering temperature, i.e., higher K content and higher temperatures caused larger amount of petal-like crystals to be formed. Detailed phase formation analysis and TE properties of whisker type crystals is reported elsewhere.\(^{13}\) We were unable to measure electric properties of petal like crystals as they were very brittle and thin.

To establish and understand the proper synthesis procedure we have performed TG simulation of synthesis procedure. Figure 3 shows TG curve for the simulation of solid-state reaction, when Rb is doped into Na\textsubscript{x}CoO\textsubscript{2} sample. The TG curve has distinctive difference as compared to published data for Na-pure samples.\(^{8}\) At around 600–700 °C we have stable triple cation system, i.e., Na–Rb–Co. However, we can see a drop in weight at temperatures above 760 °C. This can be attributed to the evaporation of Rb from the samples. At temperature of 830 °C almost half of Rb content is already lost and is completely vanished at 860 °C. This is in contrast to K-doped samples, where stable Na–K–Co temperature region is broader, i.e., 650–830 °C.\(^{13}\) The observed Rb evaporation is supported by ICP-AES results, which showed that Na\textsubscript{0.75}Rb\textsubscript{0.25}CoO\textsubscript{2} precursor powders [region between steps (2) and (3)] after sintering [after step (3)] were in fact Na\textsubscript{0.73}Rb\textsubscript{0.02}CoO\textsubscript{2}.

Electrical properties measured revealed that all samples are metallic, with lowest electrical resistivity (\(\rho\)) at 300 K for Rb substituted Na\textsubscript{0.75}CoO\textsubscript{2}, i.e., \(\rho = 0.9\) m\(\Omega\) cm. The Rb doped sample does not show characteristic anomaly in the electrical resistivity curve at room temperature which is in contrast to undoped\(^{8}\) Na\textsubscript{0.75}CoO\textsubscript{2}. Furthermore, we have in-
investigated magnetotransport properties of our samples at 5 K [Fig. 4(b)]. The undoped sample shows positive magnetoresistance (MR) effect reaching 11% at 5 K. In the case of K doping this MR response is suppressed to 7%. Lastly, for Rb doped sample the MR effect is positive and negative, yet quite small, i.e., ~4%. The origin of such suppression of the MR effect might be related to the structural reordering and elongation of lattice parameter c. It is possible that due to the longer distances between CoO₂ layers, the magnetic ordering in the material is lower than that for undoped compound.

In summary, K and Rb doped samples of Na₀.₇₅CoO₂ TE oxide were prepared via "rapid heat-up" synthesis technique. Single crystalline structures were observed on the surface of the pellets for K-doped samples. TG analysis showed depletion of doped alkali ion during sintering procedure. All samples were metallic with positive MR effect for undoped and K-doped samples reaching 11% and 7% at 5 K, respectively. In contrast, Rb doped sample showed weakly pronounced MR features which might be caused by significant structural/microstructural changes.

ACKNOWLEDGMENTS

G.P. thanks the Australian Research Council for support under Discovery Grant No. DP0 879 714. P.J. thanks the University of Wollongong for providing matching scholarship for her Ph.D. studies.