The impact of igneous intrusions on coal, cleat carbonate, and groundwater composition

A. Golab
University of Wollongong, golab@uow.edu.au

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
THE IMPACT OF IGNEOUS INTRUSIONS ON COAL,
CLEAT CARBONATE, AND GROUNDWATER
COMPOSITION

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

The University of Wollongong

by

Alexandra Golab, BSc. (Hons)

School of Geosciences

2003
Table of Contents

TABLE OF CONTENTS.. i
LIST OF TABLES.. v
LIST OF FIGURES... viii
ABSTRACT... xii
ACKNOWLEDGEMENTS... xiv

CHAPTER ONE – INTRODUCTION..
1.1 INTRODUCTION... 1
1.2 AIM... 1
1.3 OUTLINE.. 2

CHAPTER TWO - STUDY AREA..
2.1 INTRODUCTION.. 3
2.2 STRUCTURE... 8
2.3 GEOLOGICAL EVOLUTION OF HUNTER VALLEY COAL SEAMS 10
2.4 OTHER WORK.. 11

CHAPTER THREE - COAL, ENCLOSING STRATA AND INTRUSIONS
3.0 INTRODUCTION..12
3.1 LITERATURE REVIEW...12
3.1.1 INTRODUCTION...12
3.1.2 COAL...12
3.1.2.1 Macerals...13
3.1.2.2 Minerals in Unaltered Coal...14
3.1.3 THE IMPACT OF IGNEOUS INTRUSIONS ON COAL..............................15
3.1.3.1 Coking..16
3.1.3.2 Findings by other authors..18
3.1.3.2.1 Vitrinite Reflectance..21
3.1.3.2.2 Mineralogy..22
3.1.3.2.3 Geochemistry..24
3.1.3.2.4 Summary of Results...29
3.2 METHODS..31
3.2.1 INTRODUCTION...31
3.2.2 COLLECTION..31
3.2.2.1 Drill Core...33
3.2.2.2 Hunter Tunnel...33
3.2.3 SAMPLE PREPARATION AND ANALYSIS..36
3.2.4 DATA ANALYSIS...37
3.3 RESULTS...38
3.3.1 COAL PETROLOGY..38
3.3.1.1 Vitrinite Reflectance..38
3.3.1.2 Textures...41
3.3.1.3 Discussion...44
3.3.2 DYKE PETROGRAPHY...46
3.3.2.1 Drill Core...46
3.3.2.2 Hunter Tunnel...49
3.3.2.3 Summary..49
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3</td>
<td>MINERALOGY</td>
<td>50</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Drill Core</td>
<td>50</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Hunter Tunnel</td>
<td>52</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Discussion</td>
<td>52</td>
</tr>
<tr>
<td>3.3.3.4</td>
<td>Summary</td>
<td>57</td>
</tr>
<tr>
<td>3.3.4</td>
<td>ROCK CHEMISTRY</td>
<td>57</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Drill Core</td>
<td>57</td>
</tr>
<tr>
<td>3.3.4.1.1</td>
<td>Discussion</td>
<td>64</td>
</tr>
<tr>
<td>3.3.4.1.2</td>
<td>Summary</td>
<td>66</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Hunter Tunnel</td>
<td>66</td>
</tr>
<tr>
<td>3.3.4.2.1</td>
<td>Discussion</td>
<td>71</td>
</tr>
<tr>
<td>3.3.4.2.2</td>
<td>Summary</td>
<td>72</td>
</tr>
<tr>
<td>3.4</td>
<td>DISCUSSION</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>CONCLUSIONS</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>CARBONATES</td>
<td>79</td>
</tr>
<tr>
<td>4.2.1</td>
<td>CARBONATE COMPOSITION</td>
<td>81</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Normal Coal</td>
<td>81</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Thermally Altered Coal</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>DAWSONITE</td>
<td>86</td>
</tr>
<tr>
<td>4.3.1</td>
<td>BACKGROUND</td>
<td>86</td>
</tr>
<tr>
<td>4.3.1.1</td>
<td>Occurrences</td>
<td>87</td>
</tr>
<tr>
<td>4.3.1.2</td>
<td>Distribution</td>
<td>88</td>
</tr>
<tr>
<td>4.3.1.3</td>
<td>Formation</td>
<td>89</td>
</tr>
<tr>
<td>4.4</td>
<td>METHODS</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1</td>
<td>COLLECTION</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Drill Cores</td>
<td>90</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Underground</td>
<td>90</td>
</tr>
<tr>
<td>4.4.2</td>
<td>EXTRACTION</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>RESULTS</td>
<td>94</td>
</tr>
<tr>
<td>4.5.1</td>
<td>MINERALOGY</td>
<td>94</td>
</tr>
<tr>
<td>4.5.2</td>
<td>ISOTOPIC COMPOSITION</td>
<td>101</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Mono-mineralic dawsonite</td>
<td>101</td>
</tr>
<tr>
<td>4.5.2.1.1</td>
<td>Carbon and Oxygen Source</td>
<td>104</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Dawsonite and Other Carbonates</td>
<td>106</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Other Carbonates</td>
<td>109</td>
</tr>
<tr>
<td>4.6</td>
<td>DISCUSSION</td>
<td>113</td>
</tr>
<tr>
<td>4.6.1</td>
<td>MECHANISMS FOR DAWSONITE FORMATION</td>
<td>113</td>
</tr>
<tr>
<td>4.7</td>
<td>CONCLUSIONS</td>
<td>116</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>117</td>
</tr>
<tr>
<td>5.1.1</td>
<td>GROUNDWATER COMPOSITION AND USES</td>
<td>117</td>
</tr>
<tr>
<td>5.1.2</td>
<td>GROUNDWATER PROCESSES</td>
<td>118</td>
</tr>
<tr>
<td>5.1.2.1</td>
<td>Ion Exchange</td>
<td>119</td>
</tr>
<tr>
<td>5.1.2.2</td>
<td>Mineral Dissolution</td>
<td>119</td>
</tr>
<tr>
<td>5.1.3</td>
<td>INDICATORS</td>
<td>120</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>Major and Trace Element Sources</td>
<td>121</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5.1.3.2 Strontium Isotopes</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>5.1.3.3 Sulphur Isotopes</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>5.1.3.4 Summary</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>5.1.4 AQUIFERS</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>5.1.4.1 Lithology</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>5.1.4.2 Dykes</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>5.1.4.3 Mining</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>5.2 METHODS</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>5.2.1 COLLECTION</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>5.2.1.1 Sampling</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>5.2.2 ANALYSIS</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>5.2.2.1 Major and Trace Element Chemistry</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>5.2.2.2 Sulphur Isotopes</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>5.2.2.3 Strontium Isotopes</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>5.2.2.4 Principal Component Analysis</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>5.3 RESULTS</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>5.3.1 MAJOR AND TRACE ELEMENT CHEMISTRY</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1 Element Affinities</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1.1 Combined Data</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1.2 Shallow Data</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1.3 Deep Data</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1.4 End Members</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>5.3.1.1.5 Marine Source</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>5.3.1.2 Spatial Trends</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>5.3.1.2.1 Detecting Igneous Intrusions</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>5.3.1.2.2 Summary</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>5.3.1.3 Temporal Trends</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>5.3.1.3.1 Summary</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>5.3.1.4 Aquifers</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>5.3.1.4.1 Summary</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>5.3.1.5 Routine Monitoring Data</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>5.3.1.5.1 Summary</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>5.3.2 SULPHUR ISOTOPES</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>5.3.3 STRONTIUM ISOTOPES</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>5.4 CONCLUSIONS</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>6.1 SUMMARY</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>6.2 COMPARISONS</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>6.3 LIMITATIONS</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>6.4 FUTURE RESEARCH/RECOMMENDATIONS</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>6.5 CONCLUSIONS</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>REFERENCES</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>A.1 METHODS</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>A.1.1 SAMPLE PREPARATION</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>A.1.2 ANALYSIS</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>A.1.2.1 Petrography</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>A.1.2.2 XRD</td>
<td>277</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

TABLE 3.1. Selected maceral groups, macerals and an interpretation of the maceral sources after ICCP (1963) and Stach et al. (1982).................................13
TABLE 3.2. Summary of references relating to the impact of igneous intrusions on coal...19
TABLE 3.3. Properties of coal and intrusion from each location listed in Table 3.2..20
TABLE 3.4. The minerals identified by Watkins (1996) in thermally altered coal and interpreted sources..23
TABLE 3.5. Zones of alteration in the coal studied by Goodarzi and Cameron (1990)..25
TABLE 3.6. Results from Ward et al. (1989) showing the relative abundance of different elements in the unaltered coal, coke, altered dyke and unaltered dyke material and an interpretation of the differences in abundance ..28
TABLE 3.7. A summary of the findings of the authors listed in Table 3.3 and Francis (1961)..30
TABLE 3.8. Mean maximum vitrinite reflectance in oil, R_{max}, of seven drill core samples..41
TABLE 3.9. Summary of texture of coal samples from the drill core...42
TABLE 3.10. Summary of composition of dyke samples, as determined by petrography...47
TABLE 3.11. A summary of the mineral composition of the entire 61 samples from the drill core and Hunter Tunnel..52
TABLE 3.12. The major and minor minerals identified near the intrusion/coal contact in altered coals by other authors........................54
TABLE 3.13. Principal component analysis on the coal samples from the drill core...61
TABLE 3.14. Element groupings based on trends, PCA and correlations in the geochemistry of the drill core coal..63
TABLE 3.15. Alteration zones in thermally altered coal identified by other authors...63
TABLE 3.16. Principal component analysis on the coal samples from the Hunter Tunnel ..68
TABLE 3.17. Element groupings based on trends, PCA and correlations in the geochemistry of the Hunter Tunnel coal..........................69

TABLE 4.1. The δ¹³C and δ¹⁸O composition of carbonates, reported by various authors..80
TABLE 4.2. Summary of minerals found in association with dawsonite...88
TABLE 4.3. Summary of worldwide occurrences of dawsonite ..89
TABLE 4.4. Mineral composition of face and butt cleats..99
TABLE 4.5. δ¹³C_{PDB} and δ¹⁸O_{SMOW} values for the 26 mono-mineralic dawsonite samples ...101

TABLE 5.1. The amount of total dissolved solids in each groundwater sample..149
TABLE 5.2. The percentage of each anion compared to the total anions averaged over the entire data set...152
TABLE 5.3. The percentage of each cation compared to the total cations averaged over the entire data set...152
TABLE 5.4. Elements included and excluded in the groundwater analyses and the number of values for each element ..156
TABLE 5.5. Principal component analysis of the combined groundwater data, on elements that are represented in at least 20 samples..............................157
TABLE 5.6. Groups of elements in the combined groundwater data based on affinities ..158
TABLE 5.7. Principal component analysis, shallow samples only161
TABLE 5.8. Groups of elements based on affinities, shallow samples only..............162
TABLE 5.9. Principal component analysis, deep samples only164
TABLE 5.10. Groups of elements based on affinities, deep samples only..............165
TABLE 5.11. Comparison of the percentage variance explained by each group in the three data sets...169
TABLE 5.12. A comparison of the average ratios of the elements that are common in modern seawater; the seawater composition is from Krauskopf (1967)..180
TABLE 5.13. Comparison of the dilution and enrichment factors of the average concentrations of the shallow and deep data compared to modern seawater ..180
TABLE 5.14. Principal component analysis of the groundwater by sample183
TABLE 5.15. Samples that have elevated Al levels ..184
TABLE 5.16. Occurrence of rare earth elements ..186
TABLE 5.17. Temporal pattern for multiple samples ...206
TABLE 5.18. Routine sampling periods at Dartbrook ..216
TABLE 5.19. Components analysed in Dartbrook’s routine groundwater samples ..216
TABLE 5.20. Principal component analysis by element on the routine monitoring data ...231
TABLE 5.21. Sulphur isotope composition of 40 groundwater samples232
TABLE 5.22. δ^{34}S of groundwater reported by other authors233
TABLE 5.23. Range of δ^{34}S values of various sulphur sources234
TABLE 5.24. δ^{34}S values of coal from several locations worldwide235
TABLE 5.25. Strontium isotope composition of each sample in decimal form and δ^{87}Sr form ..240
TABLE 5.26. The 87Sr/86Sr values of groundwater reported by other authors241
TABLE 5.27. Comparison of certified values with the measured values determined by INAA of major and trace elements for two IAEA certified reference materials (Soil-5 and SL-1) ...281
TABLE A.1. The technique used, either XRF or INAA, to analyse each element in the coal and rock samples ...283
TABLE A.2. Chemistry of the drill core samples ..284
TABLE A.3. Chemistry of the Hunter Tunnel samples ...288
TABLE A.4. Correlation Matrix for coal samples from the drill core291
TABLE A.5. Elements omitted from rock chemistry results due to incomplete records ..296
TABLE A.6. Correlation Matrix for coal samples from the Hunter Tunnel297
TABLE B.1. The location of studies on the composition of carbonates in sedimentary environments ...301
TABLE B.2. Mineral composition of butt and face cleat samples303
TABLE B.3. Isotopic composition of all carbonates ...306

TABLE C.1. The detection limit of each element analysed in the groundwater by ICPMS at CSIRO ...310
TABLE C.2. Chemistry of the 53 groundwater samples311
TABLE C.3. Correlation matrix for combined groundwater samples314
TABLE C.4. Correlation matrix for shallow groundwater samples318
TABLE C.5. Correlation matrix for deep groundwater samples322
TABLE C.6. Elements that were omitted due to incomplete records326
TABLE C.7. Correlation matrix for the routine monitoring groundwater data326

TABLE D.1. Location of cleat samples and the analyses performed on each sample ...327
List of Figures

FIGURE 2.1. Location of Dartbrook Coal Pty Ltd in NSW, Australia, after Sherwin and Holmes (1986) ...4
FIGURE 2.2. A map of Dartbrook mine ...5
FIGURE 2.3. Stratigraphy at Dartbrook in the Upper Hunter Valley (after Doyle and Lohe, 1996) ...6
FIGURE 2.4. Location of Hydra and Roman Road dykes plotted relative to the Dartbrook mine-lease...9

FIGURE 3.1. Location of Hunter Tunnel and drill core transects plotted relative to the Dartbrook mine-lease ..32
FIGURE 3.2. Photograph of drill core prior to sampling ...34
FIGURE 3.3. Photograph of the Hydra dyke, intersected in the Hunter Tunnel ..35
FIGURE 3.4. Comparison of the major element chemistry of two samples from 2836 m along the Hunter Tunnel ...36
FIGURE 3.5. Position of the seven samples analysed for vitrinite reflectance in the drill core ..39
FIGURE 3.6. Vitrinite Reflectance versus distance along the drill core ...40
FIGURE 3.7. Proposed mechanism for fracturing and mineralisation of coal ..45
FIGURE 3.8. Position of the five samples analysed petrographically in the drill core ..48
FIGURE 3.9. Mineralogy versus distance along the drill core ...48
FIGURE 3.10. Mineralogy versus distance along the Hunter Tunnel ...51
FIGURE 3.11. XRD diffractogram for tuff sample AG7..58
FIGURE 3.12. XRD diffractogram for dyke sample AG48..58
FIGURE 3.13. Variation of Na (Group A), Sm (Group B), Sr (Group C), and Yb (Group D) concentrations with distance from the first finger of the Roman Road dyke ..59
FIGURE 3.14. Variation of Fe (Group E), Se (Group F), and Br (Group G) concentrations with distance from the first finger of the Roman Road dyke ...62
FIGURE 3.15. Variation of V (Group J), Sc (Group K), Sm (Group L), and Rb (Group M) concentrations with distance from the first finger of the Hydra dyke ..67
FIGURE 3.16. Variation of Mg (Group N), Pb (Group O), S (Group P) and Cl (Group Q) concentrations with distance from the first finger of the Hydra dyke ...70

FIGURE 4.1. Photomicrograph showing the fine fibrous habit of dawsonite (from Loughnan and Goldbery, 1972) ..87
FIGURE 4.2. Cleat sampling locations plotted against Easting and Northing on the ISG grid (metres) ..91
FIGURE 4.3. Photograph of block of coal showing the orange face cleat and white butt cleat material ..93
FIGURE 4.4. XRD diffractogram of cleat sample containing mono-mineralic dawsonite ..95
FIGURE 4.5. XRD diffractogram of cleat sample containing dawsonite and kaolinite ..95
FIGURE 5.49. Muswellbrook mean monthly rainfall .. 222
FIGURE 5.50. Temporal variations in S concentration over the ten sampling periods ... 223
FIGURE 5.51. Temporal variations in K concentration over the ten sampling periods ... 224
FIGURE 5.52. Temporal variations in HCO$_3$ concentration over the ten sampling periods ... 225
FIGURE 5.53. Variation in HCO$_3$ composition at the routine Dartbrook sampling locations ... 226
FIGURE 5.54. The major cation and anion composition for the first five sampling periods, routine sampling location BRO3 228
FIGURE 5.55. The major cation and anion composition for the second five sampling periods, routine sampling location BRO3 229
FIGURE 5.56. Variation in δ^{34}S with reduced level ... 236
FIGURE 5.57. Variation in δ^{34}S with depth in RDH473 .. 236
FIGURE 5.58. Variation in δ^{34}S along the Hunter Tunnel .. 237
FIGURE 5.59. Temporal trends in δ^{34}S at 1425 m ... 237
FIGURE 5.60. Temporal trends in δ^{34}S at 3050 m ... 238
FIGURE 5.61. Temporal trends in δ^{34}S at 22MH ... 238
FIGURE 5.62. Variation in 87Sr/86Sr with distance along the Hunter Tunnel 241
FIGURE 5.63. Variation in 87Sr/86Sr with RL (masl) ... 243
FIGURE 5.64. Variation in 87Sr/86Sr with RL (masl) in RDH473 243
FIGURE 5.65. Variation in 87Sr/86Sr with the reciprocal of Sr concentration 244
Abstract

Igneous intrusions affect the safety, productivity and economic viability of many coal mines due to thermal and geochemical alteration of the coal, alteration of groundwater chemistry, and the production of methane and carbon dioxide, which elevates the threat of spontaneous combustion and outbursting. In addition, the intrusions themselves commonly create difficult and expensive mining conditions and the nearby coal is coked, rendering it useless.

Dartbrook Coal mine is located in the Upper Hunter Region, on the boundary between the Sydney and Gunnedah Basins, NSW, Australia. This thesis has investigated the impact that two major dykes have had on the coal of the Late Permian Wynn seam, cleat carbonates, and groundwater composition at the mine. Samples of coal were collected in transects, starting close to the intrusions and extending away from the intrusions. Vitrinite reflectance, mineralogy, and geochemistry were analysed on the coal samples to determine the extent of thermal alteration. Additional coal samples were collected throughout the mine-lease and the cleat carbonate was extracted. The mineralogy, δ^{18}O and δ^{13}C composition were analysed on the cleat-infill to determine the source of the dominant carbonate. Groundwater samples were also collected throughout the mine-lease and the geochemistry, δ^{34}S and 87Sr/86Sr composition were analysed to determine if groundwater can be used to detect the intrusions.

The vitrinite reflectance, mineralogy, and geochemistry of the coal seams intruded by dykes change dramatically approaching the intrusions. Proximal to the igneous intrusions, the coal changes through four alteration zones comprising normal coal (R_o max = 0.8), slightly thermally altered coal (R_o max = 1.8), brecciated coke (R_o max = 2.5 to 5.0), and natural coke (R_o max = 7.0). The greatest alteration occurs between the fingers of the dyke but the pattern of alteration is not uniform; the outer dyke finger caused the most alteration by far, because it acted as a conduit for subsequent intrusions of magma and hydrothermal fluids. Geochemical data for the coal indicate that elements exhibit affinities for minerals (e.g. Na, Al, and Si for aluminosilicate minerals) and display trends of accumulation and depletion.
approaching the contact depending on those affinities. The majority of elements (e.g. Ca, Mg, Mn, and Fe) are enriched at the coal/intrusion contact.

The dominant cleat carbonate is dawsonite (NaAlCO$_3$(OH)$_2$), with δ^{13}C$_{PDB}$ values between -1.7 and +2.4‰ (standard deviation = 0.7‰) and δ^{18}O$_{SMOW}$ values between +13.6 and +19.8‰, and a narrow standard deviation (1.7‰). The narrow range of δ^{13}C values and the occurrence of major igneous activity at Dartbrook indicates that the carbon in the dawsonite has a magmatic source, whereas the broad range of δ^{18}O values reflects the direct or indirect impact of local intrusions. The dawsonite formed at a late stage by the interaction of Na$_2$CO$_3$- or NaHCO$_3$-rich solutions with hydroaluminosilicates present in the coal.

The groundwater composition displays spatial variations near the two major dykes. The δ^{34}S values range from –0.3 to +63.8‰ (average = +22.8‰), while the 87Sr/86Sr values range from 0.704984 to 0.706647. The 87Sr/86Sr data indicate that the igneous influence is all-pervasive in the study area. The groundwater chemistry exhibited a localised igneous signal near one dyke, which was detected using the products of potassic alteration of K-rich feldspars (weathering products from the dyke).

The finding that igneous intrusions can be detected using groundwater composition indicates that the technique can be used during mining exploration. The advantage to early-detection of intrusions is that they can be avoided during mining and a better estimate of the size of the recoverable coal reserves can be made.
Acknowledgements

My greatest thanks go to my fellow student and partner Daniel Palamara. He has helped me with my fieldwork and sample preparation, read countless drafts, supported me through the rough patches, and generally kept me sane. I thank my parents Jozef and Kathleen for their enduring assistance and support in getting me to this stage of higher learning.

I also thank my supervisors Associate Professor Paul Carr and Rod Doyle. Paul has provided invaluable help and guidance throughout my project and always managed to keep me on-track. Rod’s assistance with collecting samples, gathering information and data, and reading drafts was excellent. Special thanks go to Associate Professor Adrian Hutton for performing the petrological analyses on the coal and reviewing Chapter three. Thanks also to Professor Allan Chivas for his assistance in planning the research undertaken for Chapter four and to many of the staff in the School of Geosciences.

From CSIRO I would like to thank Dave Whitford, Angela Giblin, and Anita Andrew for assisting with the experimental design and numerous queries. Thanks also to Karen Blacklock for efficiently analysing so many of my samples. From ANSTO I would like to thank Henk Heijnis and Gordon McOrist.

I am very grateful to the ARC for providing the very generous funding for the SPIRT APAI. Thanks to AINSE for their generous support in the form of a PGRA. I would also like to thank the Linnean Society of NSW for their ‘Betty Mayne Scientific Research Fund’ grant.

I also extend my gratitude to my friends and fellow PhD students who helped make the entire process enjoyable, particularly, Kate Panayotou, Mark Dickson and Simon Clarke. Our office was always a happy and vibrant place to work and chat. I must also thank my wonderful dog Lily for taking me for daily walks. Finally, thanks to anyone else I may have missed that has helped me complete my thesis.