The role of kynurenine and UV light in lens protein modification

Nicole R. Parker
University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
THE ROLE OF KYNURENNINE
AND UV LIGHT IN
LENS PROTEIN MODIFICATION

A thesis submitted in partial fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

From

UNIVERSITY OF WOLLONGONG

By

Nicole Renee Parker, Bachelor of Biotechnology (Hons)

Chemistry Department

2005
CERTIFICATION

I, Nicole Renee Parker, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Nicole Renee Parker

8/7/05
In memory of Hossein,
By wisdom the LORD laid the earth’s foundations,
by understanding he set the heavens in place;
by his knowledge the deeps were divided
and the clouds let drop the dew.

My son, preserve sound judgement and discernment,
do not let them out of your sight;
they will be life for you,
an ornament to grace your neck.

Let the favour of the Lord our God be upon us,
And establish the work of of our hands

Proverbs 19-22 & Psalm 90:17
ACKNOWLEDGEMENTS

I would like to thank Dr Joanne Jamie, Associate Professor Roger Truscott and Professor Michael Davies, for the privilege to undertake this research project, and for their invaluable technical expertise and advice.

I am forever thankful for the love and encouragement of my family, Brian, Karin, Lisa and Kellie, who are always amazing in their love and support.

I am also thankful for the friendship and support of my friends Ainslie Mitchell, Rachael Williams and Leonie Wood.

Thankyou to Dr Jen Burgess, Larry Hick and Dr Peter Hains for your technical assistance in mass spectrometry and Dr Santiago Vazquez and Dr Lisa Taylor for technical advice at the beginning of my research project.

I would like to acknowledge past and present members of the Australian Cataract Research Foundation, including Ana Korlimbinis, Yoke Berry, Karl Heys, Michael Friedrich, Dr Peter Hains, Dr Isla Streete, Ines Ricafuente and Eric Wei, who have all contributed to a great and memorable experience during my time in the Cataract Lab. Thanks guys for your friendship, encouragement and advice!!
PUBLICATIONS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>CERTIFICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xxvi</td>
</tr>
</tbody>
</table>

Chapter 1 .. 1

General Introduction .. 1

1.1 Age-related Nuclear (ARN) Cataract... 1

1.2 The eye ... 2

1.2.1 Structure of the human eye ... 2

1.2.1.1 Lens physiology ... 4

1.2.1.2 Lens proteins ... 6

1.2.1.2.1 Alpha crystallin .. 7

1.2.1.2.2 Beta/gamma crystallin .. 7

1.2.2 Low molecular mass species in the lens ... 10

1.2.2.1 Tryptophan metabolites ... 10

1.2.2.1.1 UV filter function ... 12

1.2.2.2 Glutathione ... 13

1.2.2.3 Ascorbate .. 14

1.3 Aging of the human lens .. 15

1.3.1 Accommodation of the lens ... 15

1.3.2 Protein modifications .. 15

1.3.2.1 Increase in lens protein colouration and fluorescence 15

1.3.2.1.1 UV filter modification of lens protein ... 16

1.3.2.1.2 Glycation and Glycoxidation ... 17

1.3.3 Other age-related protein modification ... 20

1.3.3.1 Truncation .. 20
1.3.3.2 Deamidation ... 20
1.3.3.3 Racemisation ... 21
1.3.3.4 Age-related formation of high molecular mass, water-insoluble protein aggregates ... 22
1.3.3.5 Decrease in Lens anti-oxidants ... 22
1.3.3.6 Lens barrier .. 23

1.4 Features of the cataractous lens .. 24
1.4.1 Absorbance and fluorescence properties 24
1.4.2 Urea-insoluble lens protein ... 25
1.4.3 Protein oxidation .. 25
1.4.3.1 Disulfide bond formation, mixed disulfides and GSH content 25
1.4.3.2 Oxidation of Methionine and other amino acids 26
1.4.4 Non-disulfide cross-linking of lens protein 27

1.5 Potential Risk Factors for cataract ... 28
1.5.1 Ultraviolet light ... 28
1.5.1.2 UV light and age-related nuclear cataract 29

1.6 UV light and protein damage .. 30
1.6.1 Reactive oxygen species ... 31
1.6.1.1 Singlet oxygen .. 31
1.6.1.2 Superoxide radical-anion ... 33
1.6.1.3 Hydroxyl radical .. 35
1.6.1.3.1 Peroxyl radical .. 36
1.6.1.3.2 Hydroperoxides .. 36
1.6.2 Effect of reactive oxygen species on lens protein 37
1.6.3 UV Filter compounds as photosensitisers 38
1.6.4 The photosensitisers present in the human lens 40
1.6.5 Photochemistry of protein-bound chromophores 41
1.6.6 Do protein-bound UV filters act as photosensitisers in the human lens? ... 41

1.7 Aims .. 42

Chapter 2 .. 44
Formation, characterisation, and stability of Kyn-amino acid adducts 44
2.1 Introduction .. 44
2.2 Materials and Methods

2.2.1 Synthesis and purification of Kyn-amino acids
2.2.2 Reversed-phase HPLC purification of Kyn-amino acids
2.2.3 Synthesis and purification of the sulfoxide derivative of Kyn-t-Boc-Cys
2.2.4 Mass Spectrometry of Kyn-amino acids
2.2.5 Fluorescence and UV-visible absorbance spectrophotometric measurements
2.2.6 Rate of formation of Kyn-amino acids
2.2.7 Reversed-phase HPLC conditions for measurement of Kyn-amino acid formation
2.2.8 Incubation of Kyn with Poly-L-Arg
2.2.9 Identification of cystine by Thin Layer Chromatography (TLC)
2.2.10 Measurement of thiol levels in an incubation of Kyn and L-cysteine
2.2.11 Stability studies of Kyn-amino acid adducts
2.2.12 Incubation of Kyn-Cys in the presence of excess t-Boc-His

2.3 Results

2.3.1 Synthesis and purification of Kyn-amino acid adducts and derivatives
2.3.2 Characterisation of Kyn-amino acid adducts
2.3.2.1 Mass Spectroscopy of Kyn-amino acid adducts and derivatives
2.3.2.2 Fluorescence properties of Kyn-amino acid adducts
2.3.2.3 UV-Vis absorbance of Kyn-amino acid adducts
2.3.3 Kinetic study: rate of reaction of DL-kynurenine with nucleophilic amino acids
2.3.3.1 Preliminary kinetic study
2.3.3.2 Final kinetic study
2.3.4 Stability studies of Kyn-amino acid adducts
2.3.4.1 Stability of Kyn-t-Boc-Lys at physiological pH and temperature
2.3.4.2 Stability of Kyn-t-Boc-His at physiological pH and temperature
2.3.4.3 Stability of Kyn-Cys derivatives at physiological pH and temperature
2.3.4.4 Stability of Kyn-Cys in the presence of excess t-Boc-His. Transfer of the Kyn moiety...96
2.3.4.5 Stability of the t-Boc protected derivative of Kyn-Cys98
2.3.4.6 Stability of Kyn-amino acid adducts in the presence of hydrogen peroxide..100
2.3.4.7 Stability of the sulfoxide derivative of Kyn-t-Boc-Cys102

2.4 Discussion.. 111

Chapter 3 .. 120

Formation, characterisation, and stability of Kyn-modified lens crystallins 120

3.1 Introduction... 120

3.2 Materials and Methods.. 122

3.2.1 Extraction of lens protein (total crystallins) from bovine lenses122
3.2.2 Modification of calf lens protein with Kyn at His, Cys and Lys residues ..123
3.2.3 Modification of calf lens protein with Kyn at Cys residues......... 123
3.2.4 Purification of Kyn-modified lens protein 124
3.2.5 Acid hydrolysis of human lens protein and Kyn-modified protein ..124
3.2.6 Evaluation of Kyn-amino acid recovery following acid hydrolysis .125
3.2.7 Reversed-phase HPLC of acid hydrolysates 125
3.2.8 Fluorescence and UV-visible absorbance spectrophotometric measurements .. 126
3.2.9 Stability of the Kyn-Cys adduct under tryptic digest conditions127
3.2.10 Tryptic digestion of Kyn-modified protein 127
3.2.11 RP-HPLC of tryptic digests ... 127
3.2.12 Mass spectrometry of tryptic peptides 128
3.2.13 Rate of formation of protein-bound Kyn-amino acid adducts128
3.2.14 Stability of protein-bound Kyn at physiological pH 129
3.2.14.1 Incubations performed at 20 mg mL⁻¹ and 37°C 129
3.2.14.2 Incubation performed at 20 mg mL⁻¹ and 60°C 130
3.2.14.3 Incubation performed at 5 mg mL⁻¹ and 37°C 130
3.2.15 Reversed-phase HPLC of low molecular mass fractions 131
3.2.16 Measurement of protein sulfhydryl (PSH) levels in Kyn-modified protein .. 131
3.2.17 Carboxymethylation of Kyn-modified protein and incubation under physiological conditions ... 132
3.2.18 Synthesis of the Kyn dimer ... 132
3.2.19 LCZ mass spectrometry analysis of low molecular mass fraction (< 20 000 Da) from modified protein incubation 133
3.2.20 Human Lenses .. 133
3.2.21 Dissection of human lenses .. 134
3.2.22 Ethanol extraction of human lenses .. 134
3.2.23 Extraction of Cataract lens ... 134
3.2.24 SDS PAGE of Kyn-modified lens protein .. 135

3.3 Results ... 137

3.3.1 Characterisation of Kyn-modified lens crystallins 137
3.3.1.2 Quantification of Kyn modification .. 137
3.3.1.3 Fluorescence properties of Kyn-modified calf lens protein 141
3.3.1.4 UV-Vis absorbance of Kyn-modified protein 143
3.3.1.5 Tryptic digestion of Kyn-modified lens protein 144
3.3.2 Rate of formation of protein-bound kynurenine-amino acid adducts at pH 7 .. 153
3.3.3 Stability of protein-bound kynurenine at physiological pH and temperature .. 159
3.3.3.1 Short term incubation ... 160
3.3.3.2 Carboxymethylation of sulfhydryl groups in Kyn-modified lens protein .. 165
3.3.3.3 Effect of protein conformation on the binding of deaminated Kyn to lens proteins ... 166
3.3.3.4 Long term incubation of Kyn-modified lens protein 167
3.3.3.5 Stability of Kyn-Amino acids in proteins to conditions of acid hydrolysis ... 171
3.3.3.6 Long term incubation of Kyn-modified lens protein in the absence of a solubilizing agent ... 173
3.3.4 Comparison of Kyn-modified protein with normal aged and cataractous lens protein ... 175
3.3.4.1 Acid digests of Kyn-modified protein and human lens protein 175
LIST OF FIGURES

Figure 1.1 Structure of the human eye ... 3

Figure 1.2 Diagram of the mammalian lens .. 5

Figure 1.3 The synthesis of kynurenine-based UV filters from tryptophan 11

Figure 1.4 The role of glutathione (GSH) in the reduction of protein disulfides (PSSP) 14

Figure 1.5 Modification of lens protein by tryptophan metabolites 17

Figure 1.6 Deamidation of Asn in lens protein to Asp, via a succinimide intermediate 21

Figure 1.7 Pirie’s Classification system for cataract lenses 24

Figure 1.8 Metal-ion catalysed formation of hydroxyl radical from hydrogen peroxide 27

Figure 1.9 Diagram of the eye, showing the wavelengths of light that penetrate the human lens ... 30

Figure 1.10 Formation of the superoxide radical-anion \(\left(\text{O}_2^\cdot \right) \) (equations 1, 2 and 3) and the reduction of metals ions or formation of hydrogen peroxide (equations 4 and 5) by the superoxide radical anion 34

Figure 1.11 Sources of the hydroxyl radical \(\left(\text{HO}^\cdot \right) \), including the action of high energy radiation on water (1), the photolysis of hydrogen peroxide (2) and Fenton chemistry (3) 35

Figure 1.12 Reactions of the peroxyl radical. Shown are hydrogen abstraction (1), oxidation (2 and 3) and radical-radical (4) reactions 36

Figure 1.13 Decomposition of hydroperoxides to alkoxy radicals \(\left(\text{Protein-O}^\cdot \right) \) (1) 37

Figure 2.1 Deamination of a Kyn based UV filter to form an \(\alpha,\beta \)-unsaturated carbonyl compound 45

Figure 2.2 Structure of Kyn-amino acid adducts Kyn-t-Boc-His (A) and Kyn-t-Boc-Lys (B), Kyn-t-Boc-Cys (C) and Kyn-Cys (D) 47

Figure 2.3 Semi-preparative RP-HPLC purification of Kyn-amino acid adducts Kyn-t-Boc-His (A) and Kyn-t-Boc-Lys (B) 57

Figure 2.4 Semi-preparative RP-HPLC purification of Kyn-amino acid adducts Kyn-t-Boc-Cys (A), the sulfoxide derivative of Kyn-t-Boc-Cys (B), and Kyn-Cys (C) 58

Figure 2.5 The positive ESI mass spectrum of Kyn-t-Boc-His 60
Figure 2.6 The positive ESI mass spectrum of Kyn-t-Boc-Lys ..62
Figure 2.7 Positive nanospray MS of Kyn-t-Boc-Cys ..64
Figure 2.8 The positive ESI mass spectrum of Kyn-Cys ..65
Figure 2.9 Positive nanospray MS of the sulfoxide derivative of Kyn-t-Boc-Cys67
Figure 2.10 Three-dimensional fluorescence spectra of Kyn-t-Boc-His70
Figure 2.11 Three-dimensional fluorescence spectra of Kyn-t-Boc-Lys71
Figure 2.12 Three-dimensional fluorescence spectra of Kyn-Cys..................................72
Figure 2.13 Three-dimensional fluorescence spectra of Kyn-t-Boc-Cys73
Figure 2.14 Three-dimensional fluorescence spectra of Kyn ..74
Figure 2.15 Fluorescence intensity for Kyn and Kyn-amino acid adducts75
Figure 2.16 UV spectra of Kyn-t-Boc-His (A) and Kyn-t-Boc-Lys (B)77
Figure 2.17 UV spectra of Kyn-Cys (A) and Kyn (B) ..78
Figure 2.18 Incubation of DL-Kyn (3 mM) with a 25-fold molar excess of L-Cys, t-Boc-L-His or t-L-Boc-Lys ...81
Figure 2.19 Thiol concentration in an incubation of DL-Kyn (3 mM) with a 25-fold molar excess of L-Cys or in a control incubation of L-Cys (at 75 mM)82
Figure 2.20 Incubation of DL-Kyn with a 25-fold molar excess of t-Boc-L-Cys, t-Boc-L-His or t-Boc-L-Lys ..84
Figure 2.21 Incubation of DL-Kyn and poly-L-Arg (110:1 molar ratio), in 200 mM phosphate buffer, containing 4 M urea (pH 7.2, under argon, at 37 , 48 h).85
Figure 2.22 Incubation of Kyn-t-Boc-Lys in 200 mM phosphate buffer (pH 7.2) and at 37°C ...86
Figure 2.23 Incubation of Kyn-t-Boc-Lys in 200 mM phosphate buffer (pH 7.2) and at 37°C, bubbled with argon or air. Shown is a RP-HPLC profile from the 80 h time point (argon incubation). ..87
Figure 2.24 Positive ion electrospray MS analysis of HPLC peak 1, which was formed during the incubation of Kyn-t-Boc-Lys in 200 mM phosphate buffer (pH 7.2) and at 37°C, under argon or in air ...88
Figure 2.25 Positive ion electrospray MS analysis of HPLC peak 3, which was formed during the incubation of Kyn-t-Boc-Lys at pH 7.2 and 37°C, under argon or in air ..89
Figure 2.26 Proposed pathway for the formation of breakdown products during the incubation of Kyn-t-Boc-Lys under physiological conditions90
Figure 2.27 Relative rate of formation of deaminated Kyn dimer (A) and Kyn-Kyn-t-Boc-Lys (B) at pH 7.2 and 37°C, with increasing incubation time.................................91
Figure 2.28 Incubation of Kyn-t-Boc-His in 200 mM phosphate buffer (pH 7.2) and at 37°C...92
Figure 2.29 Incubation of Kyn-Cys in 200 mM phosphate buffer (pH 7.2) and at 37°C, under argon. ...93
Figure 2.30 Incubation of Kyn-Cys in 200 mM phosphate buffer (pH 7.2), under argon, and at 37°C. Shown is a RP-HPLC profile from the 60 h time point (A). The relative rates of formation of breakdown products formed during the incubation of Kyn-Cys are shown in (B)..94
Figure 2.31 Positive nanospray MS analysis of HPLC peak (retention time 32 min), formed during the incubation of Kyn-Cys at pH 7.2, 37°C, under argon.95
Figure 2.32 Incubation of Kyn-Cys in the presence of 25-fold molar excess of t-Boc-His, under physiological conditions...97
Figure 2.33 Incubation of Kyn-t-Boc-Cys in 200 mM phosphate buffer (pH 7.2), at 37°C, under argon...99
Figure 2.34 Incubation of Kyn-t-Boc-Cys in 200 mM phosphate buffer (pH 7.2), under argon, and at 37°C. Shown is a RP-HPLC profile from the 80 h time point99
Figure 2.35 Incubation of Kyn-t-Boc-His and Kyn-t-Boc-Lys in 200 mM phosphate buffer (pH 7.2), at 37°C, under argon, in the presence of an equimolar concentration of hydrogen peroxide...100
Figure 2.36 Incubation of Kyn-t-Boc-Lys in 200 mM phosphate buffer (pH 7.2), at 37°C, under argon, in the presence of an equimolar concentration of hydrogen peroxide. Shown is the RP-HPLC profile obtained from the 80 h incubation time point. ...101
Figure 2.37 Incubation of the sulfoxide derivative of Kyn-t-Boc-Cys in 200 mM phosphate buffer (pH 7.2), at 37°C, under argon. ..104
Figure 2.38 HPLC profile obtained following the incubation of the sulfoxide derivative of Kyn-t-Boc-Cys under physiological conditions (A). The rate of formation of each breakdown product is shown in plot (B)...105
Figure 2.39 Positive nanospray MS of a breakdown product formed during the incubation of the sulfoxide derivative under physiological conditions (Peak 2, retention time 26 min) ...106
Figure 2.40 Positive nanospray MS of a breakdown product formed during the incubation of the sulfoxide derivative under physiological conditions (peak 3, retention time 32 min). .. 107

Figure 2.41 Positive nanospray MS of a breakdown product formed during the incubation of the sulfoxide derivative under physiological conditions (Peak 4, retention time 45 min). .. 108

Figure 2.42 Positive nanospray MS of a breakdown product formed during the incubation of the sulfoxide derivative under physiological conditions (peak 5, retention time 50 min). .. 109

Figure 2.43. Structure of the sulfoxide derivative and the proposed structure for a sulfone oxidation product. .. 110

Figure 2.44 Mechanism for the general base catalysis of the Kyn-Cys adduct by phosphate anions. .. 115

Figure 2.45 Decomposition of sulfoxide compounds by a syn β-elimination reaction. .. 116

Figure 3.1 HPLC profiles of acid digests of calf lens protein modified by Kyn under two experimental conditions. .. 139

Figure 3.2 Nanospray mass spectra for Kyn-His, Kyn-Lys and Kyn-Cys, each purified from acid digests of Kyn-modified protein. .. 140

Figure 3.3 3D fluorescence contour plots of Kyn-modified calf lens protein. .. 142

Figure 3.4 UV scan of unmodified calf lens protein (CLP) and Kyn-modified calf lens protein (CLP-Kyn). .. 143

Figure 3.5 Stability of Kyn-Cys under conditions used for tryptic digestion. .. 144

Figure 3.6 HPLC profiles of a tryptic digest of Kyn-modified calf lens protein, using (A) UV detection (360 nm) and (B) fluorescence detection (Ex 420/Em 490 nm). Lens protein was modified in ammonium bicarbonate buffer (pH 9). .. 147

Figure 3.7 Tandem mass spectrum of a triply charged m/z 756.72 precursor ion for a Kyn-modified peptide, derived from bovine βB2 crystallin (T4 peptide). .. 149

Figure 3.8 Tandem mass spectrum of a doubly charged m/z 815.26 precursor ion for a Kyn-modified peptide, derived from bovine βB1 crystallin (T8 peptide). .. 150

Figure 3.9 Tandem mass spectrum of a doubly charged m/z 666.84 precursor ion for a Kyn-modified peptide, derived from bovine βB1 crystallin (T18 peptide). .. 151
Figure 3.10 HPLC profile of a tryptic digest of Kyn-modified calf lens protein, using (A) UV detection (280 nm) and (B) fluorescence detection (Ex 420/ Em 490 nm). Lens protein was modified with Kyn at pH 9.5 (in sodium bicarbonate buffer).

Figure 3.11 Rate of formation of Kyn-Cys and Kyn-His in protein.

Figure 3.12 Yellowing of lens protein due to modification by Kyn at pH 7.2 and 37°C.

Figure 3.13 The low molecular mass compounds formed during the reaction of CLP and Kyn at pH 7.2, analysed by RP-HPLC.

Figure 3.14 Nanospray mass spectrum (A) and tandem mass spectrum (B) of the compound formed during the reaction of calf lens protein and Kyn, at pH 7.2 and 37°C, for 14 days (HPLC retention time 41-42 min).

Figure 3.15 Formation of Kyn dimer and deaminated Kyn during the reaction of CLP (10 mg mL⁻¹) with Kyn (2 mg mL⁻¹), in 200 mM phosphate buffer (pH 7.2), at 37°C, under argon, for a period of 14 days.

Figure 3.16 Mechanism for the formation of Kyn dimer.

Figure 3.17 Stability of Kyn-amino acid adducts in protein. Kyn-modified calf lens protein was dissolved at 20 mg mL⁻¹ in 200 mM phosphate buffer, containing 2 M Urea (pH of 7.2) and incubated at 37°C under argon.

Figure 3.18 Low molecular mass compounds released by incubation of Kyn-modified protein at pH 7. Analysis of the filtrate was carried out by HPLC/MS using LCZ, with 360 nm optical detection (A) and mass spectrometry (B).

Figure 3.19 Incubation of carboxymethylated Kyn-modified CLP (1.0 mg mL⁻¹) in 200 mM phosphate buffer, pH 7.2.

Figure 3.20. Incubation of Kyn-modified lens protein at 60°C (at 20 mg mL⁻¹ in phosphate buffer, pH 7.2, under argon).

Figure 3.21 Long term incubation of Kyn-modified CLP, at 20 mg mL⁻¹ in 200 mM phosphate buffer, containing 2 M urea, pH 7.2.

Figure 3.22 Low molecular mass compounds formed by incubation of Kyn-modified protein at 20 mg mL⁻¹, as described in the legend to Figure 3.21.

Figure 3.23 Nanospray mass spectrometry of a compound eluting at 22 min by RP-HPLC (Figure 3.22) (A).

Figure 3.24 Percentage recovery of Kyn-Cys adduct following acid hydrolysis, in the presence or absence of protein, with or without anti-oxidants.
Figure 3.25 Incubation of protein modified by Kyn at pH 7.2 and 37°C. Lens protein was modified with Kyn at pH 7.2, for 14 days, and purified from non-covalently bound Kyn by dialysis. Protein samples were acid hydrolysed in the presence of anti-oxidants .. 174

Figure 3.26 Acid digest of an aged normal human lens (donor aged 55 y, lens code: 9973). Shown are HPLC profiles of the acid digest using UV detection (360 nm) and fluorescence detection (Ex 420/Em 490) ... 176

Figure 3.27 Positive nanospray MS of a doublet peak (HPLC elution time 31-32 min) detected in the acid digest of an aged normal human lens ... 178

Figure 3.28 HPLC of the acid digest of Kyn-modified calf lens protein (A) and unmodified CLP (B). Shown are the HPLC profile of the acid digest using UV detection (360 nm) and an ammonium acetate buffer system (pH 5.2) 179

Figure 3.29 Positive nanospray MS of the doublet peak (HPLC elution time 31-32 min) detected in the acid digest of Kyn-modified protein, incubated for 96 h at pH 7.2. ... 180

Figure 3.30 HPLC of the acid digest of aged normal human lens (donor aged 55 y, lens code 10119). Shown are HPLC profiles of the acid digest using UV detection (360 nm) and fluorescence detection (Ex 420/Em 490). ... 181

Figure 3.31 Positive nanospray MS of a peak (Figure 3.30 RP-HPLC elution time 25 min) detected in the acid digest of an aged normal human lens. .. 182

Figure 3.32 UV scans of Kyn-modified protein (incubated for 6 and 14 days at pH 7.2 and 37°C, at a concentration of 20 mg mL⁻¹, under argon) (section 3.3.3.4), versus cataractous lens protein fractions (Type IV) and a calf lens protein control. 185

Figure 3.33 SDS PAGE of Kyn-modified protein, incubated at 20 mg mL⁻¹ (in 200 mM phosphate buffer, containing 2 M urea (pH 7.2), and at 37°C, for a period of 7 days, in the presence of air, in the dark. ... 187

Figure 4.1 Solutions of control protein (CLP) or Kyn-modified lens protein were photolysed using a system as shown in photograph (A), and as illustrated in diagram (B). ... 205

Figure 4.2 Measurement of hydroperoxides using the Fe (II)-xylenol orange (FOX) assay ... 206

Figure 4.3 Concentration of peroxides generated on illumination, at 4°C, of Kyn-modified calf lens protein (1.17 mole of Kyn-Cys / mole protein) for increasing
time periods, using a broad spectrum 125 W unfocussed mercury arc lamp and a
345 nm cut-off filter (1.1 mW cm⁻²). ...209

Figure 4.4 Effect of wavelength of illuminating light on peroxide production.210

Figure 4.5 Effect of different levels of Kyn bound to calf lens protein on the formation
of peroxides. ..212

Figure 4.6 Effect of oxygen and nitrogen atmospheres on the yield of peroxides formed
during illumination of Kyn-modified calf lens protein.214

Figure 4.7 Effect of sample preparation in D₂O versus H₂O on peroxide formation. 215

Figure 4.8 Peroxides formed following photolysis of Kyn-modified lens protein (1.0
mg mL⁻¹, 0.06324 µmole of Kyn / mg protein) for 2 h, using a 345 nm cut off
filter. Samples were prepared in H₂O (control), D₂O (A), or in H₂O containing 10
mM sodium azide (B). Catalase was added to each of these treatments post-
photolysis ...216

Figure 4.9 Peroxide formation with time on illumination of calf lens protein with free
Kyn, or Kyn-amino acid adducts, versus protein-bound Kyn...............................218

Figure 4.10 RP-HPLC profile of the acid digest of a photolysed sample of Kyn-
modified protein, irradiated for 2 h using a 345 nm cut off filter.220

Figure 4.11 Levels of DOPA (A) and di-Tyr (B) generated after 120 mins photolysis at
4ºC of Kyn-modified protein (1.0 mg mL⁻¹, 0.06324 µmole of Kyn / mg protein),
non-illuminated modified protein (concentrations as above) and non-modified
protein (1.0 mg mL⁻¹, white bars), using a 345 nm cut-off filter.221

Figure 4.12 DOPA formation following 2 h of photolysis of Kyn-modified CLP and
CLP (control), at 0.5 mg mL⁻¹. Photolysis was performed as mentioned in Figure
4.3. ..222

Figure 4.13 Time course of formation of di-Tyr (A) and DOPA (B) during irradiation
of Kyn-modified lens protein (1.0 mg mL⁻¹, 0.06324 µmole of Kyn / mg protein) or
unmodified lens protein (1.0 mg mL⁻¹) with a 345 nm cut off filter.........................223

Figure 4.14 Effect of oxygen and nitrogen atmosphere on the levels of di-Tyr (A) and
DOPA (B) generated on photolysis of Kyn-modified lens protein at 4ºC (1.0 mg
mL⁻¹, 0.06324 µmole of Kyn / mg protein).with a 345 nm cut off filter224

Figure 4.15 Effect of D₂O and sodium azide (10 mM) versus H₂O on the levels of
DOPA generated after irradiation of Kyn-modified lens protein at 4ºC (1.0 mg mL⁻¹
, 0.06324 µmole of Kyn / mg protein) with a 345 cut off filter..............................225
Figure 4.16 Proposed pathway for the formation of Tyr oxidation products, DOPA and di-Tyr, following the exposure of Kyn-modified lens protein to UV light...........229
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Physical and chemical properties of human lens crystallins.</td>
<td>9</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Advanced glycation end products (AGEs) identified in the human lens</td>
<td>19</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Rates of reaction of singlet oxygen (1O$_{2}$) with amino acid side chains, and products formed</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Proposed structures for major product ions observed in the positive ESI-MS/MS spectrum of Kyn-t-Boc-His</td>
<td>61</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Proposed structures for major product ions observed in the positive ESI-MS/MS spectrum of Kyn-t-Boc-Lys</td>
<td>63</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Proposed structures for major product ions observed in the spectra for Kyn-t-Boc-Cys and Kyn-Cys, analysed by positive nanospray MS/MS and positive ESI-MS/MS, respectively</td>
<td>66</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Proposed structures for the major products observed in the positive nanospray MS/MS spectrum of the sulfoxide derivative</td>
<td>68</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Absorbance maxima for Kyn-amino acid adducts and Kyn control, prepared at 1.0 mg mL$^{-1}$, at pH 7, 4 and 2.</td>
<td>79</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>His, Cys and Lys composition of bovine lens crystallins</td>
<td>83</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>A summary of the decomposition products formed during incubation of Kyn-t-Boc-Lys under physiological conditions (pH 7.2, 37°C)</td>
<td>113</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>A summary of the decomposition products formed during incubation of the sulfoxide derivative of Kyn-t-Boc-Cys under physiological conditions (pH 7.2, 37°C)</td>
<td>117</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Summary of peptide sequencing data for tryptic digestion of Kyn-modified lens protein prepared in ammonium bicarbonate buffer, pH 9, containing 1.17 mole Kyn-Cys/mole protein</td>
<td>148</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Summary of literature, showing sites of UV filter modification on crystallin peptides.</td>
<td>194</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
<td></td>
</tr>
<tr>
<td>ACN</td>
<td>acetonitrile</td>
<td></td>
</tr>
<tr>
<td>ACR</td>
<td>acrolein</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>advanced glycation end products</td>
<td></td>
</tr>
<tr>
<td>AHBG</td>
<td>4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-β-D-glucoside</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>arginine</td>
<td></td>
</tr>
<tr>
<td>ARN</td>
<td>age-related nuclear</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>asparagine</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>aspartic acid</td>
<td></td>
</tr>
<tr>
<td>Boc</td>
<td>butyloxycarbonyl</td>
<td></td>
</tr>
<tr>
<td>CEL</td>
<td>N'-carboxymethyl-L-lysine</td>
<td></td>
</tr>
<tr>
<td>CLP</td>
<td>calf lens protein</td>
<td></td>
</tr>
<tr>
<td>CML</td>
<td>N’-(carboxymethyl)-L-lysine</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>cysteine</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>dioptre</td>
<td></td>
</tr>
<tr>
<td>Da</td>
<td>dalton</td>
<td></td>
</tr>
<tr>
<td>D₂O</td>
<td>deuterium oxide</td>
<td></td>
</tr>
<tr>
<td>DTNB</td>
<td>5,5’-dithio-bis(2-nitrobenzoic acid)</td>
<td></td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
<td></td>
</tr>
<tr>
<td>di-Tyr</td>
<td>di-tyrosine</td>
<td></td>
</tr>
<tr>
<td>DOPA</td>
<td>3,4-dihydroxyphenylalanine</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
<td></td>
</tr>
<tr>
<td>Em</td>
<td>emission</td>
<td></td>
</tr>
</tbody>
</table>
EPR electron paramagnetic resonance
ESI-MS electrospray ionisation mass spectrometry
Ex excitation
Gln glutamine
GOLD glyoxal lysine dimer
GR glutathione reductase
GSH glutathione
GSHPX glutathione peroxidase
HOHICA hexahydro-1H-indol-2-carboxylic acid
His histidine
RP-HPLC reversed-phase high performance liquid chromatography
H$_2$O$_2$ hydrogen peroxide
OH$^-$ hydroxyl radical
OH$^-$ hydroxyl ion
4HNE 4-hydroxynonenal
IAEDANS H-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine
IDO indoleamine 2,3-dioxygenase
KAT kynurenine aminotransferase
Kyn kynurenine
Leu leucine
Lys lysine
MES 2-[N-morpholino]ethanesulfonic acid
Met methionine
MIANS 6-(4'-maleimidyl-anilino)naphthalene-2-sulfonic acid
MG-H methylglyoxal hydroimidazolone
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLD</td>
<td>methylglyoxal lysine dimer</td>
</tr>
<tr>
<td>NADH</td>
<td>nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NaN₃</td>
<td>sodium azide</td>
</tr>
<tr>
<td>NFK</td>
<td>L-(N)-formylkynurenine</td>
</tr>
<tr>
<td>NIR</td>
<td>near infrared</td>
</tr>
<tr>
<td>OH⁻</td>
<td>hydroxyl radical</td>
</tr>
<tr>
<td>(^1)O₂</td>
<td>singlet oxygen</td>
</tr>
<tr>
<td>O₂⁻⁻</td>
<td>superoxide radical anion</td>
</tr>
<tr>
<td>3-OHK</td>
<td>3-hydroxykynurenine</td>
</tr>
<tr>
<td>3-OHKG</td>
<td>3-hydroxykynurenine O-(\beta)-D-glucoside</td>
</tr>
<tr>
<td>Phe</td>
<td>phenylalanine</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethanesulfonyl fluoride</td>
</tr>
<tr>
<td>PSH</td>
<td>protein sulphydryl</td>
</tr>
<tr>
<td>PSSC</td>
<td>protein-S-S-Cys</td>
</tr>
<tr>
<td>PSSG</td>
<td>mixed disulfide</td>
</tr>
<tr>
<td>PSSGC</td>
<td>protein-S-S-(\gamma)-glutamylcysteine</td>
</tr>
<tr>
<td>PSSSP</td>
<td>protein disulfide</td>
</tr>
<tr>
<td>ROO.</td>
<td>peroxyl radical</td>
</tr>
<tr>
<td>ROOH</td>
<td>hydroperoxide</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>reversed phase high performance liquid chromatography</td>
</tr>
<tr>
<td>SDS PAGE</td>
<td>sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>TFA</td>
<td>trifluoroacetic acid</td>
</tr>
<tr>
<td>TNB</td>
<td>5-thio-2-nitrobenzoate anion</td>
</tr>
</tbody>
</table>
TLC thin layer chromatography
TPCK N-tosyl-L-phenylalanine chloromethyl ketone
Trp tryptophan
Tyr tyrosine
Val valine
WISS water-insoluble sonicate supernatant
ABSTRACT

Human lens proteins become progressively modified by tryptophan-derived UV filter compounds in an age-dependent manner. Kynurenine, for example, undergoes deamination at physiological pH, and the product binds covalently to the nucleophilic residues in protein via a Michael addition. Key sites of kynurenine modification in human lens proteins include cysteine, histidine and lysine residues.

The factors determining the levels of Kyn-amino acid adducts in vivo are not known. An aim of this study was to determine the rate of reaction of Kyn with nucleophilic amino acids (His, Cys and Lys) under physiological conditions (pH 7.2, 37°C) and to evaluate the stability of the Kyn-amino acid adducts under these conditions. Kinetic and stability studies were performed using both free amino acids and modified calf lens protein, and reactions analysed by high performance liquid chromatography and mass spectrometry.

Kinetic studies using free amino acids revealed that Cys reacted with Kyn at approximately three times the rate of His and four times the rate of Lys. Kyn-t-Boc-His was found to be the most stable of all the Kyn-amino acid adducts under physiological conditions, followed by Kyn-t-Boc-Cys and Kyn-t-Boc-Lys. Kyn-t-Boc-Lys and Kyn-Cys decomposed under physiological conditions, releasing deaminated Kyn. Kyn-Cys was the least stable of the Kyn-amino acid adducts. Incubation of Kyn-Cys in the presence of excess of t-Boc-L-His resulted in a decrease in Kyn-Cys and a corresponding increase in Kyn-t-Boc-His, due to the transfer of deaminated Kyn. Addition of a t-Boc group to the α-amino group of Cys increased the stability of the Kyn-Cys adduct by a factor of three. Oxidation of Kyn-t-Boc-Cys to a sulfoxide derivative decreased the stability by a factor of three.

Kinetic studies performed with calf lens protein incubated with Kyn showed that Cys was the preferred site of Kyn modification, followed by His and Lys, respectively. Following 14 days of incubation, Kyn-Cys was present at 12- and 17-fold greater levels than Kyn-His and Kyn-Lys. Protein-bound Kyn-Cys appeared more stable than the free Kyn-Cys adduct and was similar in stability to the free Kyn-t-Boc-Cys adduct. Under these conditions, protein-bound Kyn-His levels increased by 38%, whereas Kyn-Lys decreased by 28% with incubation time. Protein-bound Kyn-Lys was also relatively more stable compared the free Kyn-amino acid adduct.
Both the free amino acid and calf lens protein studies confirmed that Cys was the best nucleophile at physiological pH, followed by His and Lys. Kyn-His, however, was the most stable modification. The final pattern of Kyn-modification was shown to be a factor of amino acid reactivity and stability rather than amino acid abundance.

Another aim of this study was to explore the hypothesis that protein-bound Kyn is oxidised in the cataractous lens, as the levels of Kyn-His and Kyn-Lys decrease by a factor of 4 with increasing severity of age-related nuclear (ARN) cataract.

Model studies were performed in which Kyn-t-Boc-His and Kyn-t-Boc-Lys were incubated in the presence of an equimolar concentration of hydrogen peroxide. These studies showed that hydrogen peroxide did not affect the decomposition of either adduct under physiological conditions, suggesting that decomposition of these species in the cataractous lens may be the result of other factors, for example, stronger oxidising agents.

The final aim of this study was to investigate the photochemistry of protein-bound Kyn. Previous studies have shown that Kyn, when free in solution, is an inefficient sensitizer of oxidative damage. However, the photochemistry of protein-bound UV filter molecules has not been investigated and this may be of significance, especially for the older human lens, as a result of the decline in free Kyn and an increase in the bound form.

Lens proteins covalently modified with kynurenine were susceptible to photodecomposition by wavelengths of light that penetrate the cornea (UVA light λ>305, >345 and >385 nm). These wavelengths were chosen because light in the 300-400 nm band are absorbed by the lens. Hydrogen peroxide and protein-bound peroxides were found to accumulate in a time-dependent manner after exposure to UV light (λ 305-385 nm), with shorter wavelength light generating more peroxides. Peroxide formation was accompanied by increases in the levels of protein-bound tyrosine oxidation products di-tyrosine and 3,4-dihydroxyphenylalanine, species known to be elevated in human cataract lens proteins. Experiments using D₂O, which enhances the lifetime of singlet oxygen, and azide, a potent scavenger of this species, are consistent with oxidation being mediated by singlet oxygen. These findings provide a mechanistic explanation of UV light-mediated protein oxidation in cataract lenses, and also rationalise the occurrence of age-related cataract in the nuclear region of the lens, as modification of lens protein by UV filters occurs primarily in this region.