2008

The isotopic signature of nitrous oxide emitted from agricultural soils measured by FTIR spectroscopy

Stephen Parkes
University of Wollongong

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
The Isotopic Signature of Nitrous Oxide

Emitted from Agricultural Soils

measured by FTIR Spectroscopy

A thesis submitted in fulfilment of the requirements for the award for the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

By

Stephen Parkes, Bsc (Hons.)

School of Chemistry, 2008
Certification

I, Stephen Parkes, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Stephen Parkes
Acknowledgements

Many people have made this work possible, to all I am grateful and owe my sincere thanks and acknowledgement:

- My academic supervisors, Associate Professor Stephen Wilson, Professor David Griffith, and Dr Ray Leuning, for their encouragement, advice and constructive criticisms throughout this project

- Associate Professor Deli Chen for his advice on field campaigns and soil measurements

- The University of Wollongong and CSIRO Marine and Atmospheric Research for their scientific and financial support, and the University of Melbourne Institute of Land and Food Resources for their scientific support.

- Graham Kettlewell for his assistance and perseverance with building some of the hardware used in this work

- Fellow members of the Centre for Atmospheric Chemistry for their encouragement, especially the morning coffee group

- Sue Butler and Cathy Lancaster for allowing me to use the equipment required to complete many of the soil analyses

- Ron Teo for completing some of the soil analyses on short notice

- Steve Cooper and Geoff Hurt for building important pieces of hardware for this project

- My family and friends for their support

I would like to give my sincerest thanks to my partner Elise Costello, who without her support over the last four years I would not have progressed to stage where I would be writing this now.
Publications

Sections of this work described in this thesis have been reported in the following publications:

Abbreviations and Symbols

\[446 = \text{^{14}N}^{14}\text{N}^{16}\text{O} \]
\[456 = \text{^{14}N}^{15}\text{N}^{16}\text{O} \]
\[546 = \text{^{15}N}^{14}\text{N}^{16}\text{O} \]
\[448 = \text{^{14}N}^{14}\text{N}^{18}\text{O} \]
\[447 = \text{^{14}N}^{14}\text{N}^{17}\text{O} \]
\[556 = \text{^{15}N}^{15}\text{N}^{16}\text{O} \]

\[C^{456} = \text{456 mole fraction in percent of total N}_2\text{O in a sample} \]
\[C^{546} = \text{546 mole fraction in percent of total N}_2\text{O in a sample} \]
\[C^{446}_{meas} = \text{measured 446 mole fraction in percent of total N}_2\text{O in a sample} \]
\[C^{546}_{meas} = \text{measured 456 mole fraction in percent of total N}_2\text{O in a sample} \]
\[C^{546}_{meas} = \text{measured 546 mole fraction in percent of total N}_2\text{O in a sample} \]

\[\sum C^{N,O,meas}_\text{meas} = \text{sum of the measured mole fractions of all N}_2\text{O isotopomers and isotopologues} \]

\[C^{446}_{\text{reference}} = \text{mole fraction of 446 in the N}_2\text{O reference used for isotopic measurements} \]
\[C^{446}_{\text{sample}} = \text{mole fraction of 446 in a N}_2\text{O sample} \]

\[\delta^{\text{SP}} = \text{^{15}N site preference of N}_2\text{O (‰)} \text{ (equation 1.4)} \]
\[\delta^{456} = \text{456 composition of N}_2\text{O (‰) (equation 1.6)} \]
\[\delta^{546} = \text{546 composition of N}_2\text{O (‰) (equation 1.7)} \]
\[^{15}\text{N}_{\text{bulk}} = \text{Total} \text{^{15}N composition of N}_2\text{O (atom %} \text{^{15}N) (equation 2.3)} \]
\[\delta^{448} = \text{^{18}O composition of N}_2\text{O (‰)} \]
\[\delta^{447} = \text{^{17}O composition of N}_2\text{O (‰)} \]
\[R^{\text{SP}} = C^{456}/C^{546} \text{ ratio for a N}_2\text{O sample/standard} \]

\[\text{FTIR = Fourier Transform InfraRed} \]
\[\text{ZPD = Zero optical Path Difference} \]
\[\text{ILS = Instrument Line Shape} \]
\[\text{MALT = Multiple Atmospheric Layer Transmission} \]
\[S_{\text{RS}} = \text{N}_2\text{O reference standard} \]
\[S_{\text{WS}} = \text{N}_2\text{O working standard used as reference for isotopic measurements of N}_2\text{O} \]
\[S_{\text{WS}2} = \text{second N}_2\text{O working standard} \]
S_{RS} dilution series = a sequential dilution series where S_{RS} is diluted with a N$_2$O working standard with an unknown δ_{SP} value

S_{456} = near isotopically pure 456 working gas

S_{456} = near isotopically pure 456 working gas

S_{556} = near isotopically pure 556 working gas

x_{RS} = mole fraction of the reference standard (S_{RS}) in a dilution series (equation 3.4/3.5)

x_{546} = mole fraction of 546 derived form S_{RS} in a dilution series (equation 3.10/3.13)

S_{RS} dilution curve = where measured δ_{SP} values are plotted as function of x_{546} for a S_{RS} dilution series

δ_{RS}^{SP} = the absolute site preference value for the reference standard

δ_{U}^{SP} = the absolute site preference value for the N$_2$O diluent used for a dilution series

δ_{meas}^{SP} = raw-measured δ_{SP} value

C^{I} = mole fraction of total isotopic impurities in a near-isotopically pure N$_2$O standard

C_{meas}^{I} = measured mole fraction of total isotopic impurities

C_{added}^{I} = mole fraction of total isotopic impurities added to a near isotopically pure N$_2$O standard.

$P^{15}N$ = average partial pressure of 456 and 546 in a measurement of N$_2$O (equation 3.21)

$P^{14}N$ = partial pressure of 446 in a measurement of N$_2$O

WFPS = Water Filled Pore Space (WFPS)

15NH$_4^{+}$ = 15N composition of soil NH$_4^{+}$ (atom % 15N)

15NO$_3^{-}$ = 15N composition of soil NO$_3^{-}$ (atom % 15N)

15N$_2$O = N$_2$O emissions derived from denitrification

15N$_2$O = N$_2$O emissions derived from nitrification

High NH$_4^{+}$ = 100kg-N.ha$^{-1}$ NH$_4^{+}$ treatment

Low NH$_4^{+}$ = 50kg-N.ha$^{-1}$ NH$_4^{+}$ treatment

High NO$_3^{-}$ = 100kg-N.ha$^{-1}$ NH$_4^{+}$ treatment

Low NO$_3^{-}$ = 50kg-N.ha$^{-1}$ NH$_4^{+}$ treatment

$F^{N,O}$ = flux of N$_2$O (kg-N.ha$^{-1}$.day$^{-1}$)

$\sum F^{N,O}$ = mean cumulative N$_2$O emissions for flux chambers receiving the same
single treatment

EF = N$_2$O emission factor

N_{applied} = Nitrogen application rate (kg-N.ha$^{-1}$)

$F_{\text{ert}}^{N_2O}$ = mean daily N$_2$O emissions derived from fertiliser nitrogen pool

$F_{\text{soil}}^{N_2O}$ = mean daily N$_2$O emissions derived from existing soil nitrogen pool

δ_N^{SP} = δ^{SP} of N$_2$O emitted from nitrification

δ_D^{SP} = δ^{SP} of N$_2$O emitted from denitrification

(δ_D^{SP})$_{\text{prod}}$ = δ^{SP} of N$_2$O emitted from denitrification with no reduction of N$_2$O to N$_2$

(δ_D^{SP})$_{\text{obs}}$ = the observed δ^{SP} of the N$_2$O emitted from denitrification

x_N = fraction of the total N$_2$O emissions produced from nitrification

x_D = fraction of total N$_2$O emissions produced from denitrification

$x_{N,D}^{N_2O}$ = fraction of N$_2$O emissions derived from the applied nitrogen

$F_{\text{ert}}^{N_2O}$ = N$_2$O emissions derived from denitrification

$F_D^{N_2}$ = N$_2$ emissions derived from denitrification

F_D^N = Total denitrification emissions ($F_D^{N_2O}$ + $F_D^{N_2}$)

$^{15}N_N$ = $^{15}N_{\text{bulk}}$ of N$_2$O emitted from nitrification

$^{15}N_D$ = $^{15}N_{\text{bulk}}$ of N$_2$O emitted from denitrification

ε = isotopic enrichment factor

α = isotopic fractionation factor
Abstract

Agriculture contributes 16% to Australia’s greenhouse gas emissions, of which 23% are the result of nitrous oxide (N\textsubscript{2}O) emissions. Global N\textsubscript{2}O emissions from agricultural activities have increased substantially since the beginning of the industrial revolution. This has been driven by the increase in the amount of nitrogen added to agricultural soils, stimulating the N\textsubscript{2}O-producing nitrification and denitrification processes.

Currently there is a poor quantitative understanding of N\textsubscript{2}O emissions from nitrification and denitrification and their controlling parameters. This is difficult to quantify since N\textsubscript{2}O emissions from nitrification and denitrification occur simultaneously. As N\textsubscript{2}O produced from these microbial processes have different stable isotopic signatures, stable isotope measurements have shown promise as a method to partition N\textsubscript{2}O emissions. Additionally, the intramolecular 15N site preference of N\textsubscript{2}O presents a further stable isotopic measurement which can be used for studies of N\textsubscript{2}O emissions from nitrification and denitrification.

In this thesis, the absolute intramolecular 15N site preference of N\textsubscript{2}O measured using high resolution FTIR. The FTIR system was fully calibrated for site preference measurements of 15N enriched N\textsubscript{2}O sample. In addition, using the FTIR system the absolute site preference value for the N\textsubscript{2}O working standard used as a reference for isotopic measurements was determined. Using this absolute site preference value, it was possible to determine a value of 19.9 (±2.1)‰ for the absolute site preference of tropospheric N\textsubscript{2}O. The absolute site preference value of the N\textsubscript{2}O working standard was used to report measurements of field collected N\textsubscript{2}O samples on the absolute scale.

To determine the intramolecular site preference of N\textsubscript{2}O produced from nitrification and denitrification, a 2 week field campaign was completed at a dairy farm in south eastern Australia. Soil plots were treated with 15N-labelled NH\textsubscript{4}+ or NO\textsubscript{3}-, either at application rates of 100 or 50 kg-N.ha-1, followed by irrigation. Following treatment, daily measurements were made of the N\textsubscript{2}O emissions, isotopic composition of N\textsubscript{2}O, soil mineral nitrogen concentrations and 15N composition, as well as soil moisture. From the interpretation of the collected data, intramolecular site preference signatures of -17 (±5)‰ was determined for nitrification and a range of 0.5 to 12.3‰ was attributed to denitrification. Using the 15N measurements of N\textsubscript{2}O, it was possible to estimate the N\textsubscript{2}O emissions produced from nitrification and denitrification. For all treatments, emissions produced from denitrification far outweighed those from nitrification. These measurements indicated that the reduction of N\textsubscript{2}O to N\textsubscript{2} was a key process controlling N\textsubscript{2}O emissions. Additionally, there was a clear relationship between the intramolecular site preference of N\textsubscript{2}O, and the amount of N\textsubscript{2}O reduced to N\textsubscript{2}. This relationship was used to estimate that for treatments receiving NH\textsubscript{4}+, 5 – 22% of the applied nitrogen was emitted as N\textsubscript{2}.
Table of Contents

Acknowledgements ... iii
Publications .. iv
Abbreviations and Symbols.. v
Abstract... viii
Table of Contents ... ix
List of Figures ... xiii
List of Tables .. xv
List of Tables .. xv

1 Introduction.. 1
 1.1 The Earth’s energy balance.. 2
 1.1.1 Solar radiation and Earth’s atmospheric radiative balance... 2
 1.1.2 The natural greenhouse effect ... 2
 1.1.3 The enhanced greenhouse effect .. 3
 1.2 N₂O sources ... 5
 1.3 The Nitrogen Cycle ... 8
 1.3.1 Nitrification and denitrification – controlling parameters 12
 1.3.1.1 Substrate concentration ... 12
 1.3.1.2 Soil Moisture ... 15
 1.3.1.3 Soil temperature .. 17
 1.3.1.4 Soil pH ... 18
 1.3.1.5 Soil organic carbon .. 19
 1.4 Determining the source of N₂O – nitrification or denitrification?
 20
 1.4.1 Stable isotopes of N₂O ... 22
 1.4.2 Intramolecular 15N site preference of N₂O (δ^{sp}) ... 24
 1.5 Modelling N₂O fluxes .. 30
 1.6 Introduction to this work ... 32
 1.7 References ... 34

2 The Fourier Transform InfraRed (FTIR) spectroscopic analysis
 of the isotopic composition of N₂O .. 42
 2.1 InfraRed (IR) Spectrum of N₂O ... 42
 2.2 FTIR ... 44
 2.2.1 Michelson Interferometer .. 44
 2.2.2 Resolution .. 47
 2.2.3 The Fourier Transform .. 47
 2.2.4 Instrument line shape (ILS) .. 48
 2.2.4.1 Finite Optical Path Difference - Apodisation 49
 2.2.4.2 Beam divergence ... 51
 2.2.4.3 Phase errors ... 52
 2.3 FTIR measurements of N₂O ... 54
 2.3.1 MALT5 (Multiple Atmospheric Layer Transmission) 54
3 Absolute calibration for the measurements of the 15N site preference of N$_2$O

3.1 Existing absolute calibrations for the N$_2$O site preference

3.2 Using high resolution FTIR to determine the absolute site preference value of a N$_2$O working standard

3.3 Determination of the site preference value for the reference standard

3.4 Determination of the absolute site preference value of two N$_2$O working standards

3.5 Intercomparison of measurements of tropospheric N$_2$O

3.6 Implications of the instrument effect for measurements of the site preference of 15N enriched N$_2$O samples

3.7 Conclusions

3.8 References
4 Quantification of N$_2$O emissions from nitrification and denitrification using 15N labelling studies and site preference (δ^{SP}) measurements of N$_2$O: a field study ...124

4.1 Introduction ..124
4.2 Field campaign experimental design ..125
4.3 Material and Methods ...126
4.3.1 Site Description ...126
4.3.2 Experimental Design ..127
4.3.2.1 Flux Chambers and Soil Plots ...127
4.3.3 N$_2$O flux measurements ..130
4.3.4 Sample Collection for isotopic composition of N$_2$O ...133
4.3.4.1 Sampling for isotopic analysis of N$_2$O ...133
4.3.5 Isotopic Measurements of N$_2$O ...139
4.3.6 Soil mineral nitrogen analysis ..140
4.3.6.1 Soil Sampling ..140
4.3.6.2 Mineral nitrogen analysis ..140
4.3.7 Mineral nitrogen 15N measurements ...141
4.3.8 Soil Moisture Measurements ..142
4.4 Results ..144
4.4.1 N$_2$O emissions ..144
4.4.2 Soil moisture ...145
4.4.3 Isotopic measurements of N$_2$O ...150
4.4.3.1 15N composition of N$_2$O (15N$_{bulk}$) ...150
4.4.3.2 δ^{SP} measurements of N$_2$O ..154
4.4.3.3 δ^{44} measurements ..155
4.4.4 Soil mineral nitrogen ..155
4.4.4.1 Soil mineral nitrogen concentration ...155
4.4.4.2 15N composition of the soil mineral nitrogen ..157
4.5 Discussion ..158
4.5.1 Spatial variability ..158
4.5.2 N$_2$O emissions ..161
4.5.2.1 Cumulative N$_2$O emissions ..162
4.5.2.2 N$_2$O emissions from the existing soil nitrogen pool164
4.5.3 Time sequence of N$_2$O emission rates for NO$_3^-$ treatments165
4.5.3.1 Day 1 – Denitrification the source of N$_2$O (NO$_3^-$ treatments)166
4.5.3.2 Day 1-7 - Decreasing N$_2$O emissions and an increase in the amount of N$_2$O reduced to N$_2$..167
4.5.3.3 Days 8-11 – a decrease in the δ^{SP} ..174
4.5.3.4 Days 11-13 – increase in δ^{SP} and N$_2$O emissions177
4.5.3.5 Quantifying N$_2$O emissions from nitrification and denitrification177
4.5.3.6 Nitrification and denitrification N$_2$O δ^{SP} signatures180
4.5.4 N$_2$O production mechanisms for the NH$_4^+$ treatments183
4.6 Conclusions ..188
4.7 References ..190

5 Modelling the N$_2$ emission rate from denitrification using 15N site preference measurements of N$_2$O ...193
5.1 Aims of chapter 5 ... 193
5.2 Importance of the N$_2$ emission rate for determining total N emissions from soils and modelling of N$_2$O emission rates 194
5.3 Rayleigh distillation ... 196
 5.3.1 Calculation of the N$_2$ emission rate for the NO$_3^-$ treatments 198
 5.3.2 Rayleigh distillation model for N$_2$O reduction 199
5.4 Cumulative N$_2$ and total N emissions for NH$_4^+$ treatments 205
 5.4.1 Calculation of the N$_2$ emission rate from NH$_4^+$ treatments 206
 5.4.2 N$_2$ and total nitrogen emissions ... 207
 5.4.3 Implications of the estimated N$_2$ emissions 212
5.5 Conclusions and future directions .. 212
5.6 References ... 214

6 Conclusions .. 217
 6.1 Future work ... 222
 6.2 References .. 224

Appendix A : Derivation of equations for dilution curves in chapter 3 .. 225

Appendix B : Kyabram field campaign data 231
List of Figures

Figure 1.1: Trend for the atmospheric concentrations of CO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O for the past 2000 years. ... 4
Figure 1.2: The agricultural nitrogen cycle including perturbations by human activities. ... 9
Figure 1.3: “Hole-in-the-pipe” model of N\textsubscript{2}O emissions from nitrification and denitrification. Adapted from Firestone and Davidson (1989). 11
Figure 1.4: Simulated Michaelis-Menten enzyme kinetics for nitrification. Adapted from Meier et al. (2006). .. 13
Figure 2.1: Fundamental vibrations of N\textsubscript{2}O and their frequencies (Plyler and Barker 1931). ... 43
Figure 2.2: Simulated IR spectra for the 5 most abundant isotopomers and isotopologues of N\textsubscript{2}O .. 44
Figure 2.3: Schematic representation of the Michelson interferometer employed in FTIR spectrometers. T\textsubscript{L} is the transmitted light and R\textsubscript{L} is the reflected light. 45
Figure 2.4: Interferogram collected on the Bruker-IFS125HR FTIR. 46
Figure 2.5: Effect of different apodisation functions on the Instrument Line Shape (ILS). .. 50
Figure 2.6: Two consecutive spectra of pure N\textsubscript{2}O collected on the Bomem-DA8 (top panel), and Bruker-IFS125HR (bottom panel). 53
Figure 2.7: The output from the analysis for a transmission spectrum of pure N\textsubscript{2}O sample using MALT5. ... 57
Figure 2.8: Schematic diagram of the sampling manifold used to introduce samples to the White cell. .. 61
Figure 2.9: 3D surface plot for the δ^{15}N measurement precision (1\textsigma) as a function of the spectral window limits. 67
Figure 2.10: Measurement scatter and instrumental drift for δ^{15}N over 5 hours. 69
Figure 2.11: Calibration of 15N\textsubscript{bulk} measurements on the Bomem-DA8 ... 71
Figure 2.12: Fitted phase error for repeat measurements of S\textsubscript{WS} on the Bomem-DA8 and Bruker-HR125. ... 73
Figure 2.13: Consecutive measurements of the isotopic composition of N\textsubscript{2}O made using the Bruker-IFS125HR. ... 74
Figure 3.1: Expansion series used for determining the volume ratio (f) between the White cell and sampling manifold.. 84
Figure 3.2: Calculated volume ratio for consecutive expansions from 105 – 0.05 mb. .. 85
Figure 3.3: Simulated S\textsubscript{RS} dilution series, where δ^{15}N values are plotted as a function x_{RS}. ... 86
Figure 3.4: Fitted spectrum for the pure 456 standard. 91
Figure 3.5: Fitted spectrum for the pure 546 standard. 91
Figure 3.6: Standard addition curves for S\textsubscript{456} and S\textsubscript{546}. ... 96
Figure 3.7: Dilution curve collected on 1/10/07 (Diluting from pure S\textsubscript{RS}, $x_{546} = 1$). ... 101
Figure 3.8: The Pressure reduction experiment plotted as a function of measurement pressure (top panel), P456 (middle panel) and P15N (bottom panel). The CO\textsubscript{2} dilution experiment is also shown as a function of P15N (bottom panel). ... 106
Figure 3.9: Fit of the S\textsubscript{RS} pressure reduction experiment as a function of the measured P15N. ... 109
Figure 3.10: Fit of the CO\textsubscript{2} dilution experiment as a function of the measured P15N.

Figure 3.11: S\textsubscript{RS} dilution curves after correction for the instrument effect.

Figure 3.12: S\textsubscript{WS} pressure reduction experiment collected with a measurement pressure of 0.27mb, and analysed in the spectral window 2130-2240cm-1.

Figure 4.1: Enclosure at the Kyabram Dairy Centre where the flux chambers and soil plots were deployed.

Figure 4.2: Field extraction line used for the collection of concentrated N\textsubscript{2}O samples for isotopic analysis.

Figure 4.3: Vacuum line used for purification of N\textsubscript{2}O samples for isotopic analysis. RDT - Russian Doll Trap. PH - Pressure Head. SV - Sample Vial.

Figure 4.4: Shown is all the data collected from the NO\textsubscript{3}- treatments.

Figure 4.5: Shown is all the data collected from the NH\textsubscript{4}+ treatments.

Figure 4.6: Time series of fertiliser (F\textsubscript{fer}\textsuperscript{N\textsubscript{2}O}) and soil (F\textsubscript{soil}\textsuperscript{N\textsubscript{2}O}) derived N\textsubscript{2}O emission rates.

Figure 4.7: Relationship between the δ\textsubscript{SP} and δ\textsubscript{448} measurements for N\textsubscript{2}O emitted from NO\textsubscript{3}- treatments.

Figure 4.8: Linear fits of 15N\textsubscript{bulk} data from NO\textsubscript{3}- treatments used to determine the 15N\textsubscript{bulk} of the N\textsubscript{2}O emissions produced from denitrification.

Figure 5.1: Rayleigh distillation plot for the relationship between δ\textsubscript{SP} and the fraction of N\textsubscript{2}O reduced to N\textsubscript{2} for denitrification.

Figure 5.2: Measured N\textsubscript{2}O emission rate and estimated N\textsubscript{2} emission rate for NH\textsubscript{4}+ treatments on the Kyabram filed campaign.
List of Tables

Table 1.1: Global Warming Potentials (GWP) for a number of greenhouse gases determined for a 100 year time horizon. Modified from Brasseur et al. (1999). .. 5
Table 1.2: The global N₂O sources adapted from Denman and Brasseur (2007). .. 6
Table 1.3: N₂O isotopologues and isotopomers and the symbol used for each in this thesis. .. 22
Table 1.4: Standard conditions used for the isotopic analysis of N₂O on the Bomem-DA8 and Bruker-IFS125HR. .. 75
Table 1.5: Measurement precision for the isotopic composition of N₂O measured on the Bomem-DA8 and Bruker-IFS125HR. .. 75
Table 2.1: Spectral Windows corresponding to the best measurement precision (1σ) for the δSP at different measurement pressures. .. 67
Table 2.2: Measurement precision for δSP as a function of the number of co-adds. .. 70
Table 3.1: Isotopic composition of S₄⁵⁶ and S₅⁴₆ presented as mole fraction (in %). .. 92
Table 3.2: Data used to calculate the δSP value of the reference standard, and the uncertainty of this value. .. 99
Table 3.3: Summary of results for absolute δSP values of N₂O working standards determined from the corrected dilution curves. .. 112
Table 3.4: Summary of values to calculate the uncertainty of the δSP values of the two N₂O working standards, and the calculated δSP. .. 114
Table 3.5: Measurements of the δSP of tropospheric N₂O made relative to Sws. .. 117
Table 4.1: Selected soil properties of soil for the Kyabram Dairy Centre. .. 127
Table 4.2: Cumulative N₂O emissions (Σ FₔDₕₙ) .. 145
Table 4.3: Cumulative N₂O emissions (Σ FₔDₙₕ), cumulative fertiliser (Σ FₔDₙₕfₜ) and existing soil nitrogen derived (Σ FₔDₙₕsₜ) N₂O emissions (kg-N.ha⁻¹), and the proportion of mean cumulative N₂O emissions derived from fertiliser nitrogen pool (xₔDₙₕfₜ). .. 154
Table 4.4: Average ¹⁵N composition of the soil mineral nitrogen for the measurement period. .. 157
Table 4.5: Calculated δSP for the high NO₃⁻ treatment. .. 182
Table 4.6: Calculated δSP for the low NO₃⁻ treatment. .. 182
Table 5.1: Cumulative N₂O (Σ FₔDₙₕ), N₂ (Σ FₔDₙ) and total nitrogen (Σ FₔD N) emissions. Units for the N emissions are kg-N.ha⁻¹. .. 208
Table A: Data collected from the high NO₃⁻ treatment (100kg-N.ha⁻¹) on the Kyabram field campaign. .. 231
Table B: Data collected from the low NO₃⁻ treatment (50kg-N.ha⁻¹) on the Kyabram field campaign. .. 232
Table C: Data collected from the high NH₄⁺ treatment (100kg-N.ha⁻¹) on the Kyabram field campaign. .. 233
Table D: Data collected from the high NH₄⁺ treatment (50kg-N.ha⁻¹) on the Kyabram field campaign. .. 234

xv