2008

Detailed molecular analysis of antibiotic resistance regions within a collection of multi-drug resistant Salmonella spp. from Australian sources

Renee S. Levings
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Detailed molecular analysis of antibiotic resistance regions within a collection of multi-drug resistant *Salmonella* spp. from Australian sources

A thesis submitted in fulfilment of the requirements for the award of the degree in Doctor of Philosophy from The University of Wollongong.

By Renee S. Levings

Department of Biological Sciences

2008
I, Renee S. Levings, declare that this thesis is submitted in accordance with the regulations required of the University of Wollongong in fulfilment of the degree of Doctor of Philosophy, in the Department of Biological Sciences. This thesis does not include work previously published by another person unless appropriate reference is stated in the text. This document has not been submitted for qualifications at any other academic institution.

Renee S. Levings

May 2008
Acknowledgements

There are many people that I would like to thank for helping me along the way of my PhD journey. Firstly, Dr Steven Djordjevic and Professor Mark Walker for giving me the opportunity and the necessary laboratory tools and space to undertake my further studies. I am sincerely grateful to Mark Walker for taking the time to proof read and comment on the draft of my thesis. I would like to thank Steve for his constant enthusiasm, it did prove to be a successful data generating technique.

A very special and personal thanks to Professor Ruth Hall. Your knowledge and commitment to this area is remarkable. Particularly, the way in which you selflessly share your wisdom with others. I will always be appreciative of our day long discussions and the insight you gave me into this area. I would also like to thank Dr Sally Partridge for all the Bioinformatics advice and guidance. I don't know what I would have done without the detailed notes on annotation among other things that you so patiently wrote out for me. To Dr Diane Lightfoot and the staff down at MDU, I am extremely grateful to you, for not only giving me access to this diverse collection of strains, but also for the serotype and antibiotic susceptibility testing information provided.

To Dr Cheryl Jenkins, you have been a truly supportive friend, throughout this experience. Thanks for all the laughs and hour plus conversations we shared along the dreaded M5 motorway (often in the form of a car park). I am also particularly grateful for the fact that you read through a draft of my literature review and provided very useful comments. Big thanks to Linda Falconer for not only technical help but for being a dear friend and a smiley face to go to. To Dr Tracey Kuit, who was there at
the very beginning, thankyou also for the laughs, the wonderful friendship that we have shared and your ongoing support. To my other lab confined friends that I have met and shared some very memorable and enjoyable in and out of work experiences with, Jenny Liu, Carola Venturini and Angela Reeves, thanks for all your friendships and the wonderful memories you have given me. To the remaining members of Team Base camp (Bodgy, Ania and new recruit Connor), thankyou for your friendships and putting up with my somewhat annoying habit of singing nursery rhymes among other things.

Finally to my long suffering family, I made it. Mum and Dad, thanks for your belief in me from a very young age and giving me all the opportunities in life to get to the place I am now. Thankyou Rod, for a loving and supportive partnership and your sound advice to keep pushing on when I sometimes didn't have the momentum and energy to keep going.
Abstract

Salmonella spp., in particular *Salmonella Typhimurium* is an important zoonotic pathogen both here in Australia and internationally. Over the past few decades the use of antimicrobials in human, agricultural and aquacultural settings has created significant selection pressures, giving rise to multiply antibiotic resistant bacteria, including *Salmonella*. The acquisition and dissemination of the genes responsible for antimicrobial resistance has been largely attributed to mobile genetic elements, including Class 1 integrons and the gene cassettes they contain. The initial aim of this study was to examine a collection of 136 multiply resistant *Salmonella* of different serovars from varying Australian sources (predominately animal and to a lesser extent human) for the presence of Class 1 integrons and to identify the gene cassettes present. Using PCR to amplify up specific regions within the Class 1 integron structure, 51.4% of the isolates examined were found to contain the Class 1 integron associated *intI1* integrase. All of these, apart from 11 isolates, contained cassette arrays which were characterised using restriction enzyme analysis and DNA sequencing. The gene cassettes identified among the collection were almost solely responsible for resistance to trimethoprim and aminoglycosides. The *dfrA5* gene cassette (responsible for resistance to trimethoprim) was the most prevalent cassette, particularly among the bovine isolates. Three new gene cassettes responsible for resistance to aminoglycosides, trimethoprim and lincosamides (*aacCA5, dfrB6* and *linG*, respectively) were identified. SGI1 (*Salmonella Genomic Island 1*), a 43 kb chromosomal island known to contain a large multi-drug resistance integron, In104 was found to be present in 10 experimental isolates and associated with 4 new serovars, namely Kiambu, Dusseldorf, Cerro and Emek. The integron in the *Salmonella* Emek strain was found to have inserted via transposition at a unique site.
within the island backbone and this structure has been named SGI2. This unique insertion site suggests that SGI2 has evolved independently of SGI1.

A second collection of multi-drug resistant *Salmonella* Paratyphi BdT⁺ isolates sourced from human infections in Melbourne and the corresponding home aquaria of infected patients were examined for clonality and the presence of SGI1. All *S.* Paratyphi BdT⁺ from infected individuals were indistinguishable from the isolates from their respective fish tanks, using IS200 profiling techniques and pulse field gel electrophoresis of *Xba*I digested chromosomal DNA. SGI1 (containing the *aadA2* and *blaP1* gene cassettes) was found to be present in all the *S.* Paratyphi BdT⁺ isolates examined. This is the first definitive molecular study showing that ornamental fish tanks are a reservoir for multiply resistant *Salmonella* Paratyphi BdT⁺. Studies examining the molecular mechanisms involved in antimicrobial resistance, and the way in which mobile elements are incorporated and clustered into large multi-drug resistance regions such as SGI1, provide useful information needed for the ongoing surveillance of multiply resistant *Salmonella* and other bacterial pathogens involved in outbreaks domestically and internationally.
Chapter 1: Review of the Literature

1.1 The Genus: *Salmonella* 1

1.2 *Salmonella* infections 3

1.3 Antibiotics and the emergence of resistance 6

1.3.1 Antibiotics and their usage 6

1.3.2 Major classes of antibiotics 7

1.3.3 Emergence of multiply antibiotic resistant bacteria 7

1.3.4 Global clones of MR *Salmonella* Typhi and MR *Salmonella* Typhimurium DT104 10

1.4 Mobile genetic elements 13

1.4.1 Mobile genetic elements and their role in the acquisition and dissemination of resistance genes 13

1.4.2 Plasmids 14

1.4.3 Transposons and IS elements 15

1.4.4 Integrons: a natural cloning and expression system 17

1.4.4.1 Class 1 integrons: basic structure 19
1.4.4.2 The 5′CS
1.4.4.3 The 3′CS
1.4.4.4 Gene Cassettes

1.4.4.4.1 Gene cassette integration
1.4.4.5 Class 2, Class 3 and Class 4 integrons
1.4.5 Genomic Islands

1.4.5.1 Vibrio cholerae SXT element and Salmonella Genomic Island 1 (SGI1)

Chapter 2: General Methods and Materials

2.1 Bacterial strains and culture conditions
2.2 DNA preparation
2.2.1 Crude DNA extraction procedure
2.2.2 Phenol/chloroform DNA extraction procedure
2.3 PCR analysis and conditions for initial screening experiments
2.3.1 Multiplex PCR for identification of Class 1 integrons
2.3.2 Gene cassette variable region PCR
2.4 Restriction enzyme analysis of L1/R1 PCR products
2.5 Agarose gel electrophoresis
2.6 Southern hybridisation of digested chromosomal DNA probed with digoxigenin (DIG) labelled DNA probes
2.6.1 Nitrocellulose membrane preparation and DNA transfer
2.6.2 DIG-labelled DNA probe preparation and hybridisation
2.6.3 Development of southern membranes
2.7 DNA sequencing
2.8 Cloning of novel gene cassettes
2.8.1 PwoI PCR amplification of L2/R1 PCR products for cloning
2.8.2 Ligation of L2/R1 PCR products into pPCR-script™ Amp SK(+) cloning vector

2.8.3 Transformation of pPCR-script™ Amp SK(+) vector containing L2/R1 inserts into E. coli 294 and E. coli DH5α cells

2.9 Antimicrobial susceptibility testing of clones and controls

Chapter 3: Molecular analysis of Class 1 integrons in a collection of multi-drug resistant Australian Salmonella spp. from human, animal and environmental sources

3.1 Introduction

3.2 Materials and Methods

3.2.1 PCR amplification and restriction enzyme analysis

3.2.2 Southern hybridisation of BglII digested DNA with sul1 DIG-labelled probe and PstI digested S. Infantis DNA with IS200 DIG-labelled DNA probe

3.2.2.1 sul1 digoxigenin DNA probe preparation

3.2.2.2 IS200 digoxigenin DNA probe preparation

3.2.2.3 BglII and PstI chromosomal DNA digestions

3.2.2.4 Nitrocellulose membrane preparation, transfer and hybridisation

3.2.3 Cloning of novel gene cassettes and antimicrobial susceptibility testing

3.3 Results

3.3.1 L2/L3 multiplex PCR screening of Salmonella isolates

3.3.2 Southern hybridisation of BglII digested chromosomal DNA with the DIG-labelled sul1 DNA probe

3.3.3 L1/R1 gene cassette PCR

3.3.4 Rsal restriction enzyme digestion analysis of gene cassette amplicons

3.3.5 DNA sequence analysis of gene cassette amplicons with different Rsal profiles
3.3.6 Analysis of new cassette arrays

3.3.6.1 Analysis of cassette array amplicon from SRC54

3.3.6.1.1 Protein alignment of cassette array and 59 base element from SRC54 with cassettes with similar identities

3.3.6.1.2 Gradient plate antibiotic susceptibility results for E. coli DH5α strain containing cloned aadA2-linG cassette array

3.3.6.2 Analysis of cassette array amplicon from SRC73

3.3.6.2.1 Protein alignment of cassette array and 59 base element from SRC73 with cassettes with similar identities

3.3.6.2.2 Antibiotic susceptibility disc results for E. coli 294 strain containing the cloned aacCA5-aadA7 cassette array

3.3.6.3 Analysis of cassette array amplicon from SRC70

3.3.6.3.1 Protein alignment of cassette array and 59 base element from SRC70 with cassettes with similar identities

3.3.6.3.2 Gradient plate antibiotic susceptibility results for E. coli DH5α strain containing cloned dfrB6-aadA1 cassette array

3.3.6.4 SRC22 Δorff-aadA2 cassette array

3.3.7 Potential SGI1 containing strains

3.3.8 IS200 profiles and the genetic relationship between the dfrB6-aadA1 containing S. Infantis strains

3.4 Discussion

Chapter 4: A detailed analysis of the Salmonella Genomic Island SGI1 containing a multiple antibiotic resistance region and variants thereof, from a collection of different Salmonella spp.

4.1 Introduction

4.2 Materials and Methods

4.2.1 SGI1 specific screening PCRs
4.2.2 Antimicrobial resistance testing for florfenicol
4.2.3 Southern hybridisation of *Bsa*I digested chromosomal DNA probed with *tetA*(G) and CR3 (orf2) DIG-labelled DNA probes
4.2.4 DNA sequencing

4.3 Results
4.3.1 SGI1 major junction PCRs
4.3.2 Cassette PCRs and *Rsa*I digestions of SGI1 containing strains
4.3.3 Location of the gene cassettes within In104
4.3.4 Southern hybridisations of *Bsa*I digested chromosomal DNA probed with *tetA*(G) and CR3 DIG-labelled probes
4.3.5 Summary of resistance genes and other gene linkages identified in SGI1 containing *Salmonella* spp.
4.3.6 Further linkage analysis of trimethoprim resistant SGI1 strains not containing the *dfrA1*-orfC cassette array

4.4 Discussion

Chapter 5: A molecular and epidemiological study of multiply antibiotic resistant *Salmonella* Paratyphi BdT+ containing SGI1 sourced from ornamental fish tanks and human infections in Australia

5.1 Introduction
5.2 Materials and Methods
5.2.1 Bacterial collection
5.2.2 SGI1 PCR amplification and In104 cassette analysis
5.2.3 Pulse field gel electrophoresis (PFGE) of *Xba*I digested *S. Paratyphi* BdT+ isolates
5.2.4 Southern hybridisation of *Pst*I digested whole cell *S. Paratyphi* DNA probed with DIG-labelled IS200
5.2.4.1 Whole cell DNA digestion with *Pst*I and membrane preparation/transfer
5.2.4.2 IS200 DIG-labelled DNA probe preparation
5.2.4.3 Hybridisation and development of southern membrane

5.3 Results
5.3.1 PCR identification of SGI1 containing strains and the cassettes they contain

5.3.2 PFGE analysis of XbaI digested chromosomal DNA for S. Paratyphi BdT+ isolates

5.3.3 IS200 profiles of PstI digested chromosomal DNA for S. Paratyphi BdT+ isolates

5.4 Discussion

Chapter 6: General Discussion and future studies

6 General Discussion

References

Appendix
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Chapter 1: Review of the Literature</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Likely routes of transmission of Salmonella spp. between animals and humans.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Worldwide distribution of antibiotic resistant strains of Salmonella enterica serotype Typhi 1990-2002.</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>The range of gene transfer among bacteria and other taxa.</td>
<td>14</td>
</tr>
<tr>
<td>1.4A</td>
<td>Insertion sequence (IS) – the simplest transposable element.</td>
<td>16</td>
</tr>
<tr>
<td>1.4B</td>
<td>Transposon Tn21.</td>
<td>16</td>
</tr>
<tr>
<td>1.5</td>
<td>Plasmid NR1 (R100).</td>
<td>18</td>
</tr>
<tr>
<td>1.6</td>
<td>General structure of commonly described Class 1 integrons.</td>
<td>19</td>
</tr>
<tr>
<td>1.7</td>
<td>Tn402, the ancestral model for Class 1 integrons.</td>
<td>21</td>
</tr>
<tr>
<td>1.8</td>
<td>The boundaries of gene cassettes.</td>
<td>24</td>
</tr>
<tr>
<td>1.9</td>
<td>SGI1 and its major genetic components.</td>
<td>28</td>
</tr>
</tbody>
</table>

Chapter 2: General Methods and Materials

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A diagrammatic representation of Class 1 integron primers and their amplification targets.</td>
<td>36</td>
</tr>
<tr>
<td>2.2</td>
<td>Diagram of pPCR-Script™ Amp SK (+) cloning vector used in this study.</td>
<td>42</td>
</tr>
<tr>
<td>2.3A</td>
<td>Gradient plate method for testing antibiotic susceptibility.</td>
<td>44</td>
</tr>
<tr>
<td>2.3B</td>
<td>Antibiotic disc susceptibility testing method.</td>
<td>44</td>
</tr>
</tbody>
</table>

Chapter 3: Molecular analysis of Class 1 integrons in a collection of multi-drug resistant Australian *Salmonella* spp. from human, animal and environmental sources

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Genetic variability of the 3’CS of Class 1 integrons.</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Agarose gel electrophoresis results for the L2/L3 and Salm3/Salm4 multiplex PCR.</td>
<td>54</td>
</tr>
</tbody>
</table>
3.3 Southern blot of BglII digested DNA for representative Salmonella strains using a DIG-labelled sul1 PCR probe.

3.4 An agarose gel of all the representative L1/R1 PCR amplicons.

3.5 An agarose gel of the 14 different L1/R1 amplicons digested with RsaI.

3.6 Alignment of the Lin proteins.

3.7 Alignment of linF and linG 59-be.

3.8 Alignment of AacC-A proteins in the AAC(3)-I family.

3.9 Alignment of the 59-be of the six known aacC-A gene cassettes.

3.10 Alignment of DfrB proteins in the DfrB family.

3.11 Alignment of the 59-be of the six known dfrB gene cassettes.

3.12 A diagrammatic representation of the putative deletion event in the dfrA12-orfF-aadA2 cassette array.

3.13 Crossover region leading to the formation of 5'-'CS-orfF boundary in SRC22.

3.14 PstI digested DNA of a representative of all the S. Infantis strains after hybridisation with the dig-labelled IS200 probe.

Chapter 4: A detailed analysis of the Salmonella Genomic Island SGI1 containing a multiple antibiotic resistance region and variants thereof, from a collection of different Salmonella spp.

4.1 A theoretic model of SGI1 excision from and integration into the chromosome of S. enterica and E. coli.

4.2A Diagrammatic representation of all major junction PCR primer sites used to characterise the genetic content of In104 in SGI1 containing isolates.

4.2B Diagrammatic representation of all major linkage PCR primer sites used to characterise the genetic content of In104 in SGI1 containing isolates.

4.3 Diagram of primer amplification products for the CR1 (orf513)-dfrA10 insertion found in variants of SGI1.
4.4A A representative agarose gel of SGI1 left junction PCR results.

4.4B A representative agarose gel of SGI1 right junction PCR results.

4.5 DNA sequence obtained for the SGI1 backbone and In104 junctions for SRC19 (Emek) and DT104.

4.6 Diagrammatic representation of new insertion site of In104Emek into S023 in the SGI1 backbone.

4.7A L1/R1 products for isolates that were positive for the left (SGI1 LJ) and right arm (SGI1 RJ) PCRs for SGI1.

4.7B RsaI digestion of L1/R1 PCR products for isolates that were positive for the left (SGI1 LJ) and right arm (SGI1 RJ) PCRs for SGI1.

4.8A S026-FW/aadA2-R2 linkage PCRs on SGI1 containing strains.

4.8B groEL(F)/pse-R2 linkage PCRs on SGI1 containing strains.

4.9 Diagrammatic representation of the 4.1 kb BsaI fragment that hybridised with the tetA(G) CR3 (orf2) DIG labelled DNA probes.

4.10 Southern hybridisation blot of CR3 (orf2) DIG-labelled probe to BsaI digested chromosomal DNA for all SGI1 containing strains.

4.11 Southern hybridisation of tetA(G) DIG-labelled probe to BsaI digested chromosomal DNA for all experimental SGI1 containing strains.

4.12A Agarose gel of floR PCR products.

4.12B Agarose gel of tetA(G) PCR products.

4.13 Agarose gel of orf5-F/IS6100 (Rv-2) linkage PCR on SGI1 containing strains.

4.14 Agarose gel of dfrA10 PCR products.

4.15 CR1 to dfrA10 (orf513(F)/RH380) (PCR 1) and dfrA10 to sul1 linkage PCRs.

4.16 Maps of all In104 variants found in this study.
Chapter 5: A molecular and epidemiological study of multiply antibiotic resistant *Salmonella* Paratyphi BdT+ containing SGI1 sourced from ornamental fish tanks and human infections in Australia

5.1 Structure of SGI1 region of serovar Typhimurium DT104 and primer locations for SGI1 screening of MR *S*. Paratyphi BdT+ isolates. 113

5.2 Agarose gel of L2/L3 multiplex PCR on MR *S*. Paratyphi isolates. 116

5.3 Agarose gel of L1/R1 gene cassette PCR on the MR *S*. Paratyphi isolates. 117

5.4 Agarose gel of *Rsa*I digestions of L1/R1 gene cassette PCR amplicons obtained for the MR *S*. Paratyphi isolates. 117

5.5 Agarose gel of S026-FW/aadA2-R2 PCR for a representative number of *S*. Paratyphi isolates. 118

5.6 Agarose gel of *groEL*-F/pse-R2 PCR for a representative number of *S*. Paratyphi isolates. 118

5.7 Pulsed field gel electrophoresis (PFGE) of *Xba*I digested whole cell DNA for a set of representatives of SGI1 containing *Salmonella enterica* serovar Paratyphi B dT+ isolates. 119

5.8 Southern hybridisation blots of *Pst*I digested whole cell DNA from *S*. Paratyphi isolates containing SGI1 hybridised with IS200 digoxigenin (DIG) labelled DNA probe. 120
List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Page No.</th>
<th>Chapter 1: Review of the Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>2</td>
<td>Host adaption of S. enterica from a series of epidemiological assays.</td>
</tr>
<tr>
<td>1.2</td>
<td>8</td>
<td>Major antibiotic classes, their introduction and therapeutic use, and mechanisms of action.</td>
</tr>
</tbody>
</table>

Chapter 2: General Methods and Materials

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>30</td>
<td>Salmonella experimental isolates (collection 1) used in this study.</td>
</tr>
</tbody>
</table>

Chapter 3: Molecular analysis of Class 1 integrons in a collection of multi-drug resistant Australian *Salmonella* spp. from human, animal and environmental sources

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>55</td>
<td>Summary of L2/L3 intI1 PCR results.</td>
</tr>
<tr>
<td>3.2</td>
<td>58</td>
<td>BlastN sequence search results for strains representing each of the different L1/R1 RFLP profiles and their identity to previously published cassette arrays.</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
<td>Relationships between members of the AacC-A or AAC(3)-I protein family.</td>
</tr>
<tr>
<td>3.4</td>
<td>63</td>
<td>Antibiotic susceptibility assay for pCR-script containing aacC5-aadA7 cassette array and pCR-Script negative control.</td>
</tr>
<tr>
<td>3.5</td>
<td>64</td>
<td>Relationships between members of the DfrB protein family.</td>
</tr>
</tbody>
</table>

Chapter 4: A detailed analysis of the *Salmonella* Genomic Island SGI1 containing a multiple antibiotic resistance region and variants thereof, from a collection of different *Salmonella* spp.

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>88</td>
<td>SGI1 primer table.</td>
</tr>
<tr>
<td>4.2</td>
<td>93</td>
<td>PCR results for major SGI1 junctions.</td>
</tr>
<tr>
<td>4.3</td>
<td>100</td>
<td>Antibiotic resistance profiles and resistance genes of Salmonella spp. containing SGI1 and variants of SGI1.</td>
</tr>
</tbody>
</table>
Chapter 5: A molecular and epidemiological study of multiply antibiotic resistant *Salmonella* Paratyphi BdT+ containing SGI1 sourced from ornamental fish tanks and human infections in Australia

5.1 A summary of genetic characteristics of *Salmonella enterica* serovar Paratyphi BdT+ isolates used in this study.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>amino acid</td>
</tr>
<tr>
<td>ANGIS</td>
<td>Australian National Genomic Information Service</td>
</tr>
<tr>
<td>Ap</td>
<td>ampicillin</td>
</tr>
<tr>
<td>59 be</td>
<td>59 base element</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>Cm</td>
<td>chloramphenicol</td>
</tr>
<tr>
<td>CR</td>
<td>common region</td>
</tr>
<tr>
<td>5'CS</td>
<td>5' conserved segment</td>
</tr>
<tr>
<td>3'CS</td>
<td>3' conserved segment</td>
</tr>
<tr>
<td>Cp</td>
<td>ciprofloxacin</td>
</tr>
<tr>
<td>Cp'</td>
<td>intermediate resistance to ciprofloxacin</td>
</tr>
<tr>
<td>CSPD</td>
<td>Disodium 3-(4-methoxyspiro {1,2-dioxetane-3,2'-(5')-chloro } tricyclo [3.3.1.1^{3,7}] } decan}-4-yl) phenyl phosphate</td>
</tr>
<tr>
<td>DANMAP</td>
<td>The Danish Integrated Antimicrobial Resistance Monitoring Program</td>
</tr>
<tr>
<td>dfr</td>
<td>dihyrdofolate reductase</td>
</tr>
<tr>
<td>DHPS</td>
<td>dihydropteroic acid synthetase</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxigenin</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>deoxyribonucleotide triphosphates</td>
</tr>
<tr>
<td>°C</td>
<td>degrees celsius</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>EMAI</td>
<td>Elizabeth Macarthur Agricultural Institute</td>
</tr>
<tr>
<td>Fl</td>
<td>florfenicol</td>
</tr>
<tr>
<td>g</td>
<td>g forces for centrifugation</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>Gm</td>
<td>gentamicin</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>In</td>
<td>integron</td>
</tr>
<tr>
<td>Inc</td>
<td>Incompatibility group</td>
</tr>
<tr>
<td>IR</td>
<td>inverted repeats</td>
</tr>
<tr>
<td>IS</td>
<td>insertion sequence</td>
</tr>
<tr>
<td>JETACAR</td>
<td>Joint Expert Technical Advisory Committee on Antibiotic Resistance</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>kD</td>
<td>kilodalton</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>Km</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kV</td>
<td>kilovolts</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>MDU</td>
<td>Microbiological Diagnostic Unit (Melbourne)</td>
</tr>
<tr>
<td>MIC</td>
<td>minimal inhibitory concentration</td>
</tr>
<tr>
<td>MMR's</td>
<td>multi-resistance regions</td>
</tr>
<tr>
<td>MR</td>
<td>multiply antibiotic resistant</td>
</tr>
</tbody>
</table>
µ micro
min minute
ml millilitre
n nano
Na nalidixic acid
NaCl sodium chloride
NaOH sodium hydroxide
NCBI National Centre for Biotechnology Information
NEPSS National Enteric Pathogens Surveillance System
NNDSS National Notifiable Diseases Surveillance System
OD optical density
ORF open reading frame
% percentage
PBS phosphate buffered saline
PCR polymerase chain reaction
p pico
pH pondus Hydrogeni
PT phage type
PFGE pulse field gel electrophoresis
RDNC results do not conform
RNA ribonucleic acid
rpm revolutions per minute
RT room temperature
s second
SDS sodium dodecyl sulfate
SGI1 Salmonella Genomic Island 1
Sm streptomycin
Sp spectinomycin
spp. species
SRC Salmonella reference collection
SSC sodium citrate
Su sulphathiozole/sulfonamides
TBE tris-borate EDTA
TE tris EDTA
Tc tetracycline
Tn transposon
Tp trimethoprim
Tra transposition region
U units
UV ultra-violet
V volts
v/v volume/volume
w/v weight/volume
WHO World Health Organisation

