Excess Mg addition MgB2 /Fe wires with enhanced critical current density

Rong Zeng
University of Wollongong, rzeng@uow.edu.au

Lin Lu
University of Wollongong, ll972@uowmail.edu.au

Wenxian Li
University of Wollongong, wenxian@uow.edu.au

Jianli Wang
University of Wollongong, jianli@uow.edu.au

Dongqi Shi
University of Wollongong, dongqi@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation
Zeng, Rong; Lu, Lin; Li, Wenxian; Wang, Jianli; Shi, Dongqi; Horvat, Josip; Dou, S X.; Bhatia, M; Sumption, M D; Collings, Edward W.; Yoo, Jaimoo; Tomsic, Mike; and Rindfleisch, M, "Excess Mg addition MgB2 /Fe wires with enhanced critical current density" (2008). Australian Institute for Innovative Materials - Papers. 103.
https://ro.uow.edu.au/aiimpapers/103

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Excess Mg addition MgB2 /Fe wires with enhanced critical current density

Abstract
MgB2 /Fe wires with 10 at. % excess Mg produced by in situ powder-in-tube processing were compared to normal stoichiometric MgB2 /Fe wires prepared by the same method. It was found that the critical current density Jc and the irreversibility field (H_{irr}) were significantly enhanced for MgB2 /Fe wires with excess Mg. The transport Jc for 10 at. % Mg excess samples sintered at 800 degrees C, measured at a field of up to 14 T, increased by a factor of 2 compared to that for the normal MgB2 wires. The best Jc results for the 10 at. % Mg excess sample were obtained by heating the sample at 600 degrees C for 1 h; the Jc at a field of 8 T and at temperature of 10 K reached 3104 A/cm2. The detailed analysis of the effect of excess Mg on the microstructures, the Jc, and the H_{irr}, of MgB2 /Fe wires are presented in this paper.

Keywords
Excess, addition, MgB2, wires, enhanced, critical, current, density

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Rong Zeng, Lin Lu, Wenxian Li, Jianli Wang, Dongqi Shi, Josip Horvat, S X. Dou, M Bhatia, M D Sumption, Edward W. Collings, Jaimoo Yoo, Mike Tomsic, and M Rindfleisch

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/103
Excess Mg addition MgB2/Fe wires with enhanced critical current density

R. Zeng,1,a) L. Lu,1 W. X. Li,1 J. L. Wang,1 D. Q. Shi,1 J. Horvat,1 S. X. Dou,1 M. Bhatia,2 M. Sumption,2 E. W. Collings,2 J. M. Yoo,3 M. Tomsic,4 and M. Rindfleisch4
1Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
2The Ohio State University, Columbus, Ohio 43210, USA
3Korea Institute of Machinery and Materials, Kyungnam, Changwon 641-010, South Korea
4Hyper Tech Research, Inc., 110 E, Canal Street, Troy, Ohio 45373, USA

(Received 15 November 2007; accepted 22 February 2008; published online 24 April 2008)

MgB2/Fe wires with 10 at. % excess Mg produced by in situ powder-in-tube processing were compared to normal stoichiometric MgB2/Fe wires prepared by the same method. It was found that the critical current density (Jc) and the irreversibility field (Hirr) were significantly enhanced for MgB2/Fe wires with excess Mg. The transport Jc for 10 at. % Mg excess samples sintered at 800 °C, measured at a field of up to 14 T, increased by a factor of 2 compared to that for the normal MgB2 wires. The best Jc results for the 10 at. % Mg excess sample were obtained by heating the sample at 600 °C for 1 h; the Jc at a field of 8 T and at temperature of 10 K reached 3 × 104 A/cm2. The detailed analysis of the effect of excess Mg on the microstructures, the Jc, and the Hirr of MgB2/Fe wires are presented in this paper. © 2008 American Institute of Physics. [DOI: 10.1063/1.2909203]

I. INTRODUCTION

Since the discovery of magnesium diboride (MgB2) superconductor, it has been extensively studied by many research groups that aim for high current applications. Intensive research has been performed to fabricate MgB2/Fe wires/tapes with high critical current density Jc. Recently, kilometer-long MgB2 wires have been fabricated. Some research groups have produced small magnets using MgB2 wire. However, most of these efforts are focused on the improvement of the high field Jc and Hirr by broad chemical doping. Little attention has been paid in improving the connectivity up until now. Among the chemically doped materials, nano-SiC, nanocarbon, and carbon nanotube doped samples have reached the dirty limit and demonstrated the highest Hirr and high field Jc However, their low field Jc remains unchanged, and, in some cases, it is even degraded. High field range is very important to many MgB2 applications that require large critical current densities. Thus, the connectivity problem responsible for a relatively low Jc in a high field range must be addressed. In our previous paper, we discussed the effect of excess Mg on the superconducting properties, especially on the magnetic Jc and Hirr of bulk samples. In this paper, the microstructure, the transport Jc, and Hirr of normal stoichiometric and excess Mg MgB2/Fe wires sintered at different temperatures were compared. We demonstrate that enhancement in transport Jc can be achieved by a combination of excess Mg and optimal processing.

II. EXPERIMENTAL PROCEDURE

MgB2/Fe wire samples were prepared by an in situ reaction method. Magnesium (Mg, 99%) and amorphous boron (B, 99%) powder were mixed for fabrication of MgB2/Fe wires. For the excess Mg addition samples, a mixture of Mg and B powder with a ratio of 1:1:2 was prepared. The well-mixed powders were formed into MgB2/Fe wires by the standard powder-in-tube technique. The powder-in-tube composites were drawn down to thin wires with diameters of 0.8 mm. All the samples were then sealed in iron tubes and sintered at 600 °C for 1 h at 700 to 900 °C for 30 min under argon flow. All samples were characterized by x-ray diffraction (XRD), the results were analyzed by using the Rietveld refinement XRD to determine the a and c lattice parameters and the MgO content. Transport Jc of wire samples was measured using pulsed and direct current (dc) methods at a magnetic field range of up to 14 T and temperatures of 4.2, 10, and 20 K. The magnetoresistivity \(\rho(H,T) \) was measured with \(H \) applied perpendicular to the current direction using the four probe method in the temperature range from 4.2 to 300 K and the field range from 0 to 9 T. The irreversibility fields Hirr and Hirr can be deduced using the criteria of 0.1 and 0.9 of \(\rho(H,T) \), respectively.

III. RESULTS AND DISCUSSION

Figure 1 shows the field dependence of pulse current (PC) and dc transport \(J_c \) at 4.2, 10, and 20 K for the normal stoichiometric and the 10 at. % excess Mg MgB2/Fe wires (the overall diameter is \(\Phi=0.8 \) mm): (a) PC and dc transport \(J_c \) at 4.2, 10, and 20 K for samples heat treated at 800 °C, (b) PC transport \(J_c \) at 10 and 20 K for all samples, and (c) dc transport \(J_c \) at 20 K for samples treated at 600 °C for 1 h, and 700 and 800 °C for 30 min. Only dc transport \(J_c \) values at a high field region and at 4.2 and 20 K are shown in the Figs. 1(a) and 1(c), because it is difficult to precisely measure \(J_c \) values at low fields due to the heat generation at current contacts. The PC transport \(J_c \) values at the high field region are precise, which is confirmed by dc measurements.

a) Electronic mail: rzeng@uow.edu.au.
at 4.2 K and at high fields of up to 14 T as shown in Fig. 1(a), and dc measurements at 20 K and up to 8.7 T as shown in Fig. 1(c). The best J_c results for the 10 at. % Mg excess samples are obtained for the samples heat treated at 600 °C for 1 h; the J_c at a field of 8 T and at temperature 10 K reaches 3×10^4 A/cm2. This may be caused by the improved grain connectivity and the enhanced flux pinning induced by the addition of excess Mg (Ref. 9) and the low sintering temperature. The transport J_c at a field of up to 14 T for 10 at. % Mg excess samples increased by a factor of 2 compared to that for the normal MgB$_2$ samples.

Figure 2 shows the XRD patterns of the superconducting cores of Fe sheathed (a) normal stoichiometric MgB$_2$, and (b) 10 at. % Mg excess wire samples treated from 600 to 900 °C. There is no indication of the MgB$_4$ phase; however, peaks corresponding to the unreacted crystalline Mg and impurity phase MgO can be observed in both normal and 10 at. % excess Mg wire samples sintered at 600 °C. In contrast to the reaction in bulk samples (Fig. 3), in which Mg and B completely reacted after sintering at 650 °C for 0.5 h, the complete reaction temperature between Mg and B in wire samples increased. For MgB$_2$ wire samples with normal stoichiometric MgB$_2$, the complete reaction temperature is 700 °C, while for the wire sample with excess Mg, this temperature is increased to 800 °C. It is also noted that the Bragg peaks corresponding to MgB$_2$ become sharper and stronger with the increase in the sintering temperature. The grain size of MgB$_2$ increases with the sintering temperature, as calculated from full width at half maximum (FWHM) (Table I). This different behavior of the MgB$_2$ phase formation in the bulk and Fe sheathed wire samples is probably due to the fact that the bulk sample was sealed in an Fe tube with a large volume; therefore, the Mg vapor pressure during sintering may be slightly lower than that of wire sintering.
The excess of Mg could increase the Mg vapor pressure in the Fe tube, thus speeding up the formation of MgB$_2$ and suppressing the large crystal formation of MgB$_2$ by generating more nuclei for crystallization.

Figures 4 and 5 show the scanning electron microscopy (SEM) images of normal wire samples and 10 at. % Mg excess wire samples treated at (a) 600 °C, (b) 700 °C, (c) 800 °C, and (d) 900 °C. The SEM observation shows that there is a large amount of spherical holes in the cores of both normal wire samples and 10 at. % Mg excess samples, which is the nature of in situ MgB$_2$ processing. Most of the holes are close to the size of the Mg particles in the mixed Mg+2B powder precursor. These holes could be produced by the volume reduction in the Mg+2B reaction, but they could also be partially attributed to the evaporation of the Mg particles during the sintering of the wires. It can be seen from Figs. 4 and 5 that the MgB$_2$ particle size for the normal samples is slightly larger than that for the 10 at. % excess Mg samples. This is understandable because the excess Mg provided more melted or evaporated Mg to react with B particles during sintering. More MgB$_2$ nucleation seeds would be formed and the MgB$_2$ grain size would be smaller. Another interesting phenomenon we would like to point out, is that the edge of normal MgB$_2$ particles is sharp, while the edge of particles in excess Mg samples looks smooth, and the particles are aggregated together. The connectivity of MgB$_2$ particles in the excess Mg samples is much better. The melted excess Mg may play an important role in cleaning the grain boundary and healing the microcracks as well.

Since our wires are very thin ($\Phi=0.8$ mm), it is difficult to remove the Fe sheath without damaging the core. We can use the bulk samples’ magnetoresistance results for compar-
The difference between the superconducting properties of the normal MgB$_2$ and the excess Mg samples was found in the wire samples, and unreacted Mg can significantly affect the resistivity. The difference between the 10 at. % Mg excess samples and the normal samples treated at the same temperature. The resistivity of these samples shows an opposite trend to that of samples sintered at temperatures lower than 750 °C. That is, the resistivity of the 10 at. % excess Mg samples is higher than that of the normal samples. This suggests that the enhancement in H_{c2} is a result of scattering from impurities in B sites. The O substitution for B in the excess Mg sample can explain the strong enhancement in H_{c2}. According to the dual reaction model proposed by the authors’ group, easy and optimal doping can be achieved when the substitution by the doping reagent takes place at the same time as MgB$_2$ formation. Sintering at 650 °C creates an ideal condition for oxygen incorporation into the lattice, as 600–650 °C is the optimal temperature range for MgB$_2$ formation from Mg and amorphous B powders in the in situ process. We speculate that, at elevated sintering temperature, the Mg(B,O)$_2$ alloying phase decomposes to form precipitates which do not contribute to an increase in H_{c2}, but act as pinning sites to improve J_c, which we have explained in our previous paper. The resistivity of the 10 at. % excess Mg sample is lower than that of the normal sample when the sintering temperature is higher than 750 °C.

Figure 7 shows the resistivity versus temperature for the normal MgB$_2$ samples [Fig. 7(a)] and the excess Mg samples [Fig. 7(b)] sintered at temperatures ranging from 650 to 950 °C. By comparing Fig. 7(a) with 7(b), it is found that the resistivity of the normal MgB$_2$ and the excess Mg samples is different. Some unreacted Mg was found in the wire samples, and unreacted Mg can significantly affect the resistivity. The difference between the 10 at. % Mg excess samples and the normal samples treated at the same temperature. The resistivity of these samples shows an opposite trend to that of samples sintered at temperatures lower than 750 °C. That is, the resistivity of the 10 at. % excess Mg samples is higher than that of the normal samples. This suggests that the enhancement in H_{c2} is a result of scattering from impurities in B sites. The O substitution for B in the excess Mg sample can explain the strong enhancement in H_{c2}. According to the dual reaction model proposed by the authors’ group, easy and optimal doping can be achieved when the substitution by the doping reagent takes place at the same time as MgB$_2$ formation. Sintering at 650 °C creates an ideal condition for oxygen incorporation into the lattice, as 600–650 °C is the optimal temperature range for MgB$_2$ formation from Mg and amorphous B powders in the in situ process. We speculate that, at elevated sintering temperature, the Mg(B,O)$_2$ alloying phase decomposes to form precipitates which do not contribute to an increase in H_{c2}, but act as pinning sites to improve J_c, which we have explained in our previous paper. The resistivity of the 10 at. % excess Mg sample is lower than that of the normal sample when the sintering temperature is higher than 750 °C, as shown in Fig. 7. The residual resistivity ratio, defined as $\rho(300 \text{ K})/\rho(40 \text{ K})$, and the active area fraction (A_F) of each sample were listed in Fig. 7.

Table I. Comparison of FWHM, irreversibility field (H_{irr}), and transport J_c (10^4 A/cm^2) at 20 K, 4 T and at 10 K, 8 T for normal MgB$_2$ and 10 at. % excess Mg MgB$_2$ wires sintered at different temperatures.

<table>
<thead>
<tr>
<th>Samples</th>
<th>T (°C) and time (h)</th>
<th>FWHM (110) (deg)</th>
<th>H_{irr} (T)</th>
<th>H_{c2} (T)</th>
<th>$J_c (10^4 \text{ A/cm}^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal MgB$_2$ wire</td>
<td>600 and 1 h</td>
<td>0.610</td>
<td>>8.7</td>
<td>6.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>700 and 0.5 h</td>
<td>0.570</td>
<td>8.1</td>
<td>4.9</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>800 and 0.5 h</td>
<td>0.48</td>
<td>7.2</td>
<td>2.4</td>
<td>0.57</td>
</tr>
<tr>
<td>10 at. % excess Mg wire</td>
<td>600 and 1 h</td>
<td>0.810</td>
<td>>8.7</td>
<td>7.8</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>700 and 0.5 h</td>
<td>0.784</td>
<td>8.4</td>
<td>5.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>800 and 0.5 h</td>
<td>0.520</td>
<td>7.6</td>
<td>4.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

FIG. 4. SEM images of normal samples treated at (a) 600 °C, (b) 700 °C, (c) 800 °C, and (d) 900 °C.

FIG. 5. SEM images of 10 at. % Mg excess samples treated at (a) 600 °C, (b) 700 °C, (c) 800 °C, and (d) 900 °C.
The A_F was estimated from a modified version of Rowell’s formulas, as
$$A_F = \frac{\rho(T) - \rho(40 \text{ K})}{\rho(300 \text{ K})}$$
where $\rho(T)$ is our experimentally measured resistivity at temperature T. The connectivity in the Mg excess samples is better than that in the normal samples except for the 650 °C treated samples. Both A_F of 650 °C treated normal and excess Mg samples are the same = 0.1. This may due to the competition results of Mg vaporizing and grain size (grain boundary scattering) since a lower temperature results in less Mg vaporizing, and a smaller grain size results in more electron scattering. The connectivity of the high temperature treated samples is better than that of the low temperature treated samples.

The influence of the flux pinning and connectivity on J_c in the MgB$_2$/Fe wire samples is very complicated. It is well known that low temperature sintering results in small grain size and grain distortion (shown in our recent Raman spectrum results), which lead to more grain boundaries and more point defect pinning centers shown in our recent result, thereby enhancing the flux pinning. However, more grain boundaries will also increase the normal-state resistivity. In our experiment, we found that excess Mg can decrease the particle size and grain size of MgB$_2$ as well. Therefore, it will further enhance the flux pinning. Moreover, excess Mg decreases the content of MgO impurity and reduces the microcracks, which will significantly improve the connectivity. Table I shows the comparison of FWHM, irreversibility field (H_{irr}), and transport J_c (104 A/cm2) at 20 K, 4 T and at 10 K, 8 T for normal MgB$_2$ and 10 at. % excess Mg MgB$_2$ wires sintered at different temperatures. It can be seen that the low temperature sintered excess Mg samples have the highest J_c, although there is still some unreacted Mg in the wire that is heat treated at 600 °C for 1 h, as shown in Fig. 2(b). Excess Mg addition appears to be a promising
method to enhance J_c of MgB$_2$ wires. We believe that this approach still has a huge potential in further J_c enhancement through process optimization.

IV. CONCLUSIONS

We have investigated the effect of Mg excess on the microstructure and the J_c of MgB$_2$/Fe wires. By comparing to normal MgB$_2$/Fe wire samples, the excess Mg samples show smaller grain size and lower MgO content, thus significantly enhancing the critical current density and irreversibility field. The enhancements in J_c and H_{irr} are strongly dependent on the sintering temperature. The highest J_c results for the 10 at. % Mg excess sample were obtained in the wire samples that were heat treated at 600 °C for 1 h; the J_c at a field of 8 T and at temperature 10 K reached 3 $\times 10^4$ A/cm2, and the H_{irr} at 20 K is larger than 8.7 T.

ACKNOWLEDGMENTS

The authors thank Dr. T. Silver for their help and useful discussions. This work was supported by the Australian Research Council, Hyper Tech Research, Inc., and CMS Alphatech International Ltd.
