Synthesis and characterization of nanostructured electrode materials for rechargeable lithium ion batteries

Min Sik Park
University of Wollongong
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Synthesis and Characterization of Nanostructured Electrode Materials for Rechargeable Lithium Ion Batteries

A thesis submitted in fulfillment of the requirements

for the award of

DOCTOR OF PHILOSOPHY

By

MIN SIK PARK

University of Wollongong

Institute for Superconducting and Electronic Materials

Faculty of Engineering

2008
© 2008

Min-Sik Park

All Right Reserved
Declaration

I, Min-Sik Park declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the Institute for Superconducting and Electronic Materials, in the Faculty of Engineering, University of Wollongong, is wholly original work unless otherwise referenced or acknowledged. This thesis has not been submitted for qualifications at any other academic institution.

Wollongong, Australia

March 2008
“Anybody who has been seriously engaged in scientific work of any kind realizes that over the entrance to the temple of science are written the words: ‘You must have faith.’ It is a quality which the scientist cannot dispense with.”

-Max Planck (The Nobel Prize in Physics, 1918)-
Acknowledgements

This thesis is the result of my research work during the past three and half years, which was conducted in the Institute for Superconducting and Electronic Materials (ISEM) at the University of Wollongong in Australia and in the Tokyo Institute of Technology in Japan. I would like to express my deep and sincere gratitude to all those who gave me the possibility to complete this thesis. In the first place, I want to thank Prof. Shi-Xue Dou, the Director of ISEM, and Prof. Hua-Kun Liu, my academic supervisor, for their financial support and excellent supervision for my PhD degree. I wish to acknowledge the support of Prof. Guo-Xiu Wang for his helpful supervision and encouragement throughout my PhD candidature. I am also grateful to my external supervisors, Prof. Yong-Mook Kang at Kongju National University in the Republic of Korea, and Prof. Atsuo Yamada at the Tokyo Institute of Technology in Japan, for their valuable guidance and fruitful discussions of my research work. Many thanks should be addressed to all the technical and academic members of ISEM at the University of Wollongong in Australia. I also wish to extend my warmest thanks to all those who have helped me with my work at the Tokyo Institute of Technology in Japan. In particular, I wish to thank Dr. Tania Silver, for revising the English of my manuscripts and Dr. David Wexler and Dr. Jung-Ho Kim for their professional advice and experience sharing on analysis work.

I feel a deep sense of gratitude to my mother and brother. Without their encouragement and understanding it would have been impossible for me to finish this work. My special gratitude is due to my father, who passed away during my research abroad, for his loving support of my intellectual growth. I dedicate this thesis to my family.
Abstract

State-of-the-art rechargeable lithium-ion battery technology has now paved the way for advanced energy storage systems to take their place in a variety of portable electronics. High cell voltage, good cycle life, and an attractive combination of energy and power generation are on the verge of being guaranteed for high-power and large-scale applications, such as plug-in hybrid vehicles. This investigation examines the circumstances attending the development of the rechargeable lithium-ion battery, to seek a better understanding of the factors affecting its electrochemical performance. The major objective of this work is to determine the advantages and drawbacks of tin dioxide (SnO$_2$) nanostructured materials as alternative anode materials and to suggest promising structural modifications in order to improve their electrochemical properties. Another important objective is to identify the correlation between electrochemical performance and particle size minimization in the lithium iron phosphate (LiFePO$_4$) system, a promising cathode material, and to give further evidence supporting the incomplete room-temperature reaction mechanism.

The selection and assembly of nanostructured materials have been considered as central issues in the development of alternative anode materials that possess higher capacity and better cyclic retention compared to commercial graphite. SnO$_2$ has shown high capacity and a relatively low reaction potential with Li$^+$, and is thus under consideration as a possible candidate for high-power and high-energy applications. We have synthesized various types of SnO$_2$ nanostructured materials, such as nanopowders, nanowires, and nanotubes in this work, and their electrochemical properties have been carefully compared in order to demonstrate the effects of their morphological differences on the electrochemical performance, based on
thermodynamic and kinetic considerations. By incorporating structural modifications into the SnO$_2$ nanostructured materials, we have formed Carbon encapsulated SnO$_2$ nanopowders and nanowires by simple decomposition of malic acid (C$_4$H$_6$O$_5$) at low temperature, which effectively improved specific capacity and cyclic performance. Combining surfactant mediated synthesis and the sol–gel vacuum suction method, SnO$_2$–mesoporous organo-silica nano-array (MOSN) nanocomposites were prepared for controlling the large volume variation of SnO$_2$ during cycling, where the MOSN could act as a mechanical buffer, resulting in a strong enhancement of cyclic retention.

On the other hand, the reaction mechanism and phase transition of LiFePO$_4$ at room temperature have not been fully understood yet. In pursuit of extending our understanding, we have prepared LiFePO$_4$/C nanocomposites with different particle sizes and characterized their fundamental crystal structure, which is directly related to the electrochemical behavior. Considering the fact that the room temperature phase diagram is essential to understand the facile electrode reaction of Li$_x$FePO$_4$ (0 < x < 1), here, we have suggested experimental evidence for isolation of an intermediate solid solution phase at around $x = 0.93$ at room temperature, which strongly supports the incomplete miscibility gap model. More interestingly, the impacts of air exposure on the LiFePO$_4$/C nanocomposites have been systematically investigated as a function of temperature. We found that Li$^+$ could be spontaneously extracted from the host structure, even at room temperature under air atmosphere. This finding also can explain the room temperature phase transition of LiFePO$_4$ and provide the reason for the undesirable Li$^+$ loss that is induced by external factors at room temperature.
Table of Contents

1. Introduction 1

2. Literature Review 7
 2.1. Lithium Ion Battery 7
 2.1.1. Rechargeable Lithium Ion Battery 7
 2.1.2. Reaction Mechanism of Rechargeable Lithium Ion Battery 9
 2.1.3. A Brief History 10
 2.2. Electrochemical Considerations 12
 2.2.1. Electrochemical Thermodynamics 12
 2.2.2. The Cell Voltage 14
 2.2.3. Electrochemical Kinetics 16
 2.2.4. Gibbs Phase Rule 19
 2.3. Electrode Materials 24
 2.3.1. Anode Materials 24
 2.3.1.1. Carbonaceous Materials 25
 2.3.2.1. Lithium Alloys 27
 2.3.2.2. Oxides, Nitrides and Others 29
 2.3.2.3. Advanced Anode Materials 31
 2.3.3. Cathode Materials 31
 2.3.3.1. Layered Structures 32
 2.3.3.2. Spinel Structures 34
 2.3.3.3. Olivine Structures 36
2.3.3.4. Advanced Cathode Materials 37
2.3.4. Electrolytes 38
 2.3.4.1. Organic Solvents 39
 2.3.4.2. Lithium Salts 41
2.3.5. Prospects for Nanostructured Materials 41

3. Experimental 43
 3.1. Overview 43
 3.2. Preparation of Materials 44
 3.2.1. Thermal Evaporation Method 44
 3.2.2. Sol-Gel Processing 45
 3.2.3. Templating Method 47
 3.2.4. Solid State Reaction 48
 3.2.5. Low Temperature Approaches 49
 3.2.5.1. Synthesis of Mesoporous Nanomaterials 49
 3.2.5.2. Carbon Encapsulation Process 50
 3.3. Methods of Characterization 51
 3.3.1. X-ray Diffraction 51
 3.3.1.1. Powder X-ray Diffraction 51
 3.3.1.2. Pole-Figure X-ray Diffraction 52
 3.3.2. Electron Microscopy 53
 3.3.2.1. Scanning Electron Microscopy 53
 3.3.2.2. Transmission Electron Microscopy 55
 3.3.3. Raman Spectroscopy 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.4. X-ray Photoelectron Spectroscopy</td>
<td>57</td>
</tr>
<tr>
<td>3.3.5. Electrical Conductivity</td>
<td>59</td>
</tr>
<tr>
<td>3.3.6. Surface Area and Particle Size Measurements</td>
<td>61</td>
</tr>
<tr>
<td>3.3.7. Mössbauer Spectroscopy</td>
<td>62</td>
</tr>
<tr>
<td>3.4. Electrochemical Assessment</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1. Electrode Fabrication and Cell Assembly</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1.1. Electrode Fabrication</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1.2. Test Cell Assembly</td>
<td>64</td>
</tr>
<tr>
<td>3.4.2. Galvanostatic Charge-Discharge Testing</td>
<td>65</td>
</tr>
<tr>
<td>3.4.3. Cyclic Voltammetry</td>
<td>66</td>
</tr>
<tr>
<td>3.4.4. Electrochemical Impedance Spectroscopy</td>
<td>67</td>
</tr>
</tbody>
</table>

PART I

I.A. Overview

I.B. SnO₂ Anode Material

I.C. Thermodynamic Considerations on the Li-Sn-O System

I.D. Thermodynamic of Nanostructured Materials

4. Preparation and Electrochemical Properties of SnO₂ Nanowires

for Application in Lithium-Ion Batteries

4.1. Introduction

4.2. Experimental

4.2.1. Preparation of SnO₂ Nanowires

4.2.2. Structural and Electrochemical Characterization
4.2.3. Self-catalyzed Growth

4.3. Results and Discussion

4.3.1. Structural and Morphological Characterization

4.3.2. Electrochemical Properties

4.4. Summary

5. The Effect of Morphological Modification on the Electrochemical Properties of SnO$_2$ Nanomaterials

5.1. Introduction

5.2. Experimental

5.2.1. Preparation of SnO$_2$ Nanopowders

5.2.2. Preparation of SnO$_2$ Nanotubes

5.2.3. Preparation of SnO$_2$ Nanowires

5.2.4. Electrochemical Experiments

5.2.5. Structural and Morphological Characterization

5.3. Results and Discussion

5.3.1. Material Preparation and Characterization

5.3.2. Electrochemical Properties

5.4. Summary

6.1. Introduction

6.2. Experimental
6.2.1. Preparation of C-encapsulated SnO₂ Nanocomposite 115
6.2.2. Structural Characterization 115
6.2.3. Electrochemical Experiments 116
6.3. Results and Discussion 116
 6.3.1. Structural and Morphological Characterization 116
 6.3.2. Electrochemical Properties 123
6.4. Summary 126

7. Reduction-free Synthesis of Carbon Encapsulated SnO₂ Nanowires 127
 and Their Superiority in Electrochemical Performance 127

7.1. Introduction 127
7.2. Experimental 128
 7.2.1. Preparation of C-encapsulated SnO₂ Nanowires 128
 7.2.2. Structural and Electrochemical Characterization 129
7.3. Results and Discussion 130
 7.3.1. Structural and Morphological Characterization 130
 7.3.2. Electrochemical Properties 136
7.4. Summary 138

8. Mesoporous Organo-Silica Nanoarray for Energy Storage Media 139

8.1. Introduction 139
8.2. Experimental 140
 8.2.1. Preparation of Mesoporous Organo-Silica Nanoarray 140
 8.2.2. Preparation of SnO₂-MOSN Nanocomposite 141
PART II 151

II.A. Overview 151

II.B. LiFePO₄ Cathode Material 152

II.C. Reaction Mechanism of LiFePO₄ 154

II.D. Phase Diagram of LiFePO₄ 158

9. Isolation of Solid Solution Phase in LiₓFePO₄ at Room Temperature 161

9.1. Introduction 161

9.2. Experimental 162

9.2.1. Synthesis of LiₓFePO₄ 162

9.2.2. Structural Characterization 163

9.2.3. Electrochemical Characterization 164

9.3. Results and Discussion 165

9.4. Summary 172

10. Air Exposure Effects on the Electrochemical Performance of LiFePO₄ 173

10.1. Introduction 173
10.2. Experimental

10.2.1. Synthesis of LiFePO₄ 174
10.2.2. Structural Characterization 176
10.2.3. Electrochemical Characterization 177

10.3. Results and Discussion 177
10.4. Summary 200

11. Conclusion 201

12. References 205

List of Figures 223
List of Tables 233
List of Symbols and Abbreviations 234
List of Materials and Chemicals 242
Curriculum Vitae 244