2008

Estimation for state space models: quasi-likelihood and asymptotic quasi-likelihood approaches

Raed Ahmad Hasan Al zghool

University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Estimation for State Space Models: Quasi-likelihood and Asymptotic Quasi-likelihood Approaches

A thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy

from

THE UNIVERSITY OF WOLLONGONG

by

Raed Ahmad Hasan Al zghool

B.Sc., M.Sc. Statistics

School of Mathematics and Applied Statistics

Wollongong 2522, NSW, Australia

March 2008
Dedicated to

My Parents
Abstract

In this thesis, parameter estimation for multivariate heteroscedastic models with unspecified correlations is considered. Two alternative approaches for estimating the state variables and unknown parameters in nonlinear and non-Gaussian state space models with unspecified correlations are developed; these are the quasi-likelihood and asymptotic quasi-likelihood methods.

Quasi-likelihood and asymptotic quasi-likelihood approaches have been found to be useful in parameter estimation, especially when the underlying system dynamic probability distribution cannot be fully specified. The quasi-likelihood method relaxes the distributional assumptions and only assumes knowledge of the first two conditional moments. A limitation of quasi-likelihood is that the nature of the conditional covariance matrix is not always known. An alternative approach, asymptotic quasi-likelihood, is described. Semiparametric treatment is considered in this thesis. It involves a nonparametric kernel approach to estimating the unknown covariance matrix and it integrates the estimation of the covariance matrix with the standard quasi-likelihood approach.

Applications of the quasi-likelihood and asymptotic quasi-likelihood approaches to state space models are demonstrated via simulation studies. One simulation study based on the Poisson model and another based on the basic stochastic volatility model are presented. Results from these simulation studies show that the performance of the quasi-likelihood and asymptotic quasi-likelihood approaches are com-
parable to other methods, with no knowledge required of the underlying system’s probability structure.

Sensitivity of the quasi-likelihood and asymptotic quasi-likelihood estimation procedures to initial values assigned to state variables and starting parameters is investigated. A suggestion on choosing the initial value of state variables, without knowing the system’s probability structure is given. Standard steps used to improve the grid search method for obtaining better estimation of unknown parameters, in nonlinear and non-Gaussian state space models, are established.

Finally techniques developed in this thesis are applied to real data. Three datasets are considered: (i) the daily exchange rate of US Dollar/Australian Dollar and British Pound/Australian Dollar for the period from 1/1/2003 to 1/1/2006; (ii) the monthly number of cases of poliomyelitis reported by the U.S. Center for Disease Control for the years 1970 to 1983 and (iii) the exchange rates of Pound/Dollar from 1/10/81 to 28/6/85. Results, including residual analysis for the various modelling approaches, demonstrate that techniques developed in this thesis are applicable and have advantages when compared with other technical approaches.
Certification

I, Raed Ahmad Hasan Al zghool, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Mathematics and Applied Statistics, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Raed Ahmad Hasan Al zghool

31 March 2008
Acknowledgements

First of all, I express my deep sense of gratitude to my supervisor Associate Professor Yan-Xia Lin, for her great effort and invaluable guidance in helping me throughout my study. She has taught me a great deal of interesting inferential statistics. As a supervisor, she gave me the opportunity to explore challenging research problems and she has been a constant source of guidance and inspiration.

I express my gratitude to Dr Chandra Gulati for his comments and suggestions on the final form of this work. I also thank Professor David Steel for his financial support of my conference trips during my study.

I also express my appreciation to staff in the School of Mathematics and Applied Statistics for their help and support.

My studies and stay in Australia have been sponsored by Al-Balqa’ Applied University, Jordan.

Finally, I owe my deepest thanks and gratitude to my parents, my brothers, and my sisters; the gift of unbounded love and support has no equal.
List of Publications

The following publications have been published by the author during his studies.

Part of materials of Papers 2, 4 and 5 are presented in Chapter 4 and part of Chapter 5 and 6. The material of paper 3 is given in Chapter 3 and Section 6.1 in Chapter 6.
Table of Contents

Abstract .. iii
Certification .. v
Acknowledgements .. vi
List of Publications ... vii
Table of Contents ... viii
List of Figures .. x
List of Tables ... xiv

1 Introduction ... 1
 1.1 State Space Models 1
 1.1.1 Linear State Space Models 1
 1.1.2 Nonlinear State Space Models 2
 1.1.3 Applications of the SSMs in Time Series Analysis 3
 1.2 Kalman Filter Algorithm 11
 1.3 Estimation Problem for Nonlinear and/or Non-Gaussian SSMs 14
 1.4 Summary of Thesis 16

2 The Preliminaries and Literature Review 19
 2.1 Preliminary Definitions 19
 2.2 The Quasi-likelihood Approach 21
 2.3 The Asymptotic Quasi-likelihood 25

3 Asymptotic Quasi-likelihood Based on Kernel Smoothing 36
 3.1 Kernel Function and Notation 37
 3.2 AQL Based on Kernel Smoothing for Multivariate Heteroscedastic Models 39
 3.2.1 Main Results 42
 3.2.2 Proof of Theorem 3.2.1 56
 3.3 Simulation Study 60
 3.4 Discussion .. 64
4 Parameters Estimation for SSMs: QL and AQL Approaches

4.1 Introduction ... 67
4.2 The Kalman Filter and the Quasi-likelihood Method 70
 4.2.1 The Simple State Space Model 71
 4.2.2 Correlated Measurement and Transition Equation Disturbances 73
4.3 Parameter Estimation .. 75
 4.3.1 Parameter Estimation Using the QL Approach 76
 4.3.2 Parameter Estimation Using the AQL Approach 78
4.4 Simulation Studies ... 81
 4.4.1 Poisson Model ... 81
 4.4.2 Stochastic Volatility Models (SVM) 90
4.5 Discussion .. 96

5 The Issues of Initial Values in the Estimation Procedures

5.1 Effect of Initialisation of α_0 100
 5.1.1 Poisson model ... 100
 5.1.2 Stochastic Volatility Models (SVM) 105
5.2 Determination of $\hat{\alpha}_0$ 109
 5.2.1 Poisson Model ... 112
 5.2.2 Stochastic Volatility Model 116
5.3 The Starting Values for System Parameter θ_0 119
5.4 Determination of the Estimation of the System Parameter θ 126
5.5 Summary .. 131

6 Applications to Real Data

6.1 Application for Multivariate Heteroscedastic Models 132
6.2 Applications for SSMs .. 138
 6.2.1 Application to SVM 138
 6.2.2 Application to PM ... 143

7 Conclusions

Chapter

A FORTRAN Programs

A.1 AQL estimation for Multivariate Heteroskedastic Models 159
A.2 QL and AQL estimation for PM 168
A.3 QL and AQL estimation for SVM 184
A.4 Functions .. 198
 4.4.1 Function gasdev ... 198
 4.4.2 Function Ran2 ... 199
 4.4.3 Function poidev ... 201

B R Programs

B.1 Application for Multivariate Heteroscedastic Models 204
B.2 Application to PM ... 214

References ... 239
List of Figures

5.1 The blue line shows the true state and the green line shows its QL estimate when the initial state is assigned as 0. .. 103

5.2 The blue line shows the true state and the green line shows its QL estimate when the initial state is assigned as 4. 103

5.3 The blue line shows the true state and the green line shows its AQL estimate when the initial state is assigned as 0. 104

5.4 The blue line shows the true state and the green line shows its AQL estimate when the initial state is assigned as 4. 104

5.5 The blue line shows the true state and the green line shows its QL estimate when the initial state is assigned as 0. 107

5.6 The blue line shows the true state and the green line shows its QL estimate when the initial state is assigned as 4. 108

5.7 The blue line shows the true state and the green line shows its AQL estimate when the initial state is assigned as 0. 108

5.8 The blue line shows the true state and the green line shows its AQL estimate when the initial state is assigned as 4. 109
5.9 The blue line shows the true state, and the green line and red line show its QL estimate when the initial state is assigned as $\alpha_0 = 0$ and $\hat{\alpha}_0$ respectively. 114

5.10 The blue line shows the true state, and the green line and red line show its AQL estimate when the initial state is assigned as $\alpha_0 = 0$ and $\hat{\alpha}_0$ respectively. 114

5.11 The blue line shows the true state, and the green line and red line show its QL estimate when the initial state is assigned as $\alpha_0 = 0$ and $\hat{\alpha}_0$ respectively. 118

5.12 The blue line shows the true state, and the green line and red line show its AQL estimate when the initial state is assigned as $\alpha_0 = 0$ and $\hat{\alpha}_0$ respectively. 119

5.13 Histogram of QL estimations of β in the PM, based on 2,000 different starting values. 121

5.14 Histogram of QL estimation of ϕ in the PM based, on 2,000 different starting values. 121

5.15 Histogram of AQL estimations of β in PM, based on 2,000 different starting values. 122

5.16 Histogram of AQL estimation of ϕ in the PM, based on 2,000 different starting values. 122

5.17 Histogram of QL estimation of γ in SVM, based on 2,000 different starting values. 124

5.18 Histogram of QL estimation of ϕ in SVM, based on 2,000 different starting values. 124

5.19 Histogram of AQL estimation of γ in SVM, based on 2,000 different starting values. 125
5.20 Histogram of AQL estimations of ϕ in SVM, based on 2,000 different starting values. 125

6.1 Plot of daily returns of $z_{1,t} = USD/AUD$ (US Dollar/Australian Dollar) 133

6.2 Plot of daily returns of $z_{2,t} = GBP/AUS$ (British Pound/Australian Dollar) 133

6.3 Plot of $y_{1,t} = \log(z_{1,t}/z_{1,t-1})$.. 134

6.4 Plot of $y_{2,t} = \log(z_{2,t}/z_{2,t-1})$.. 134

6.5 Histogram of QL estimates of γ in SVM, based on 2,000 different starting values. 140

6.6 Histogram of QL estimates of ϕ in SVM, based on 2,000 different starting values. 141

6.7 Histogram of AQL estimates of γ in SVM, based on 2,000 different starting values. 141

6.8 Histogram of AQL estimates of ϕ in SVM, based on 2,000 different starting values. 142

6.9 The histogram of QL estimates of β_1 in PM based on 10000 different starting values. 145

6.10 Histogram of QL estimates of β_2 in PM, based on 10,000 different starting values. 146

6.11 Histogram of QL estimates of β_3 in PM, based on 10,000 different starting values. 146

6.12 Histogram of QL estimates of β_4 in PM, based on 10,000 different starting values. 147
6.13 Histogram of QL estimates of β_5 in PM, based on 10,000 different starting values. ... 147

6.14 Histogram of QL estimates of β_6 in PM, based on 10,000 different starting values. ... 148

6.15 Histogram of QL estimates of ϕ in PM, based on 10,000 different starting values. ... 148

6.16 Histogram of AQL estimates of β_1 in PM, based on 10,000 different starting values. ... 149

6.17 Histogram of AQL estimates of β_2 in PM, based on 10,000 different starting values. ... 149

6.18 Histogram of AQL estimates of β_3 in PM, based on 10,000 different starting values. ... 150

6.19 Histogram of AQL estimates of β_4 in PM, based on 10,000 different starting values. ... 150

6.20 Histogram of AQL estimates of β_5 in PM, based on 10,000 different starting values. ... 151

6.21 Histogram of AQL estimates of β_6 in PM, based on 10,000 different starting values. ... 151

6.22 Histogram of AQL estimates of ϕ in PM, based on 10,000 different starting values. ... 152

6.23 Plots of y_t and \hat{y}_t given by the QL approach ... 153

6.24 Plots of y_t and \hat{y}_t given by the AQL approach ... 154
List of Tables

3.1 Comparison of AQL and OLS estimates based on 1000 replication with $c = 0.01$. The root mean square error of each estimate is reported below that estimate. .. 62

3.2 Comparison of AQL and OLS estimates based on 1000 replication with $c = 0.1$. The root mean square error of each estimate is reported below that estimate. .. 63

3.3 Comparison of (AQL1 and OLS1($c = 0.01$)) and (AQL2 and OLS2 ($c = 0.1$)) estimates based on 1000 replication. The root mean square error of each estimate is reported below that estimate. 64

4.1 Comparison of AL, MCL, and QL estimates based on 1000 replication. The root mean square error of each estimate is reported below that estimate. .. 85

4.2 Comparison of AQL and QL estimates for PM based on 1000 replication. The root mean square error of each estimate is reported below that estimate. .. 89

4.3 Comparison of AL, MCL, and QL estimates based on 1000 replication. The root mean square error of each estimates is reported below that estimate. .. 93

4.4 Comparison of AQL and QL estimates for SVM based on 1000 replication. The root mean square error of each estimates is reported below that estimate. .. 97
5.1 QL and AQL estimates based on 1000 replications. The root mean square error of each estimate is reported below that estimate, based on different initial values for α_0. (T = 500). .. 102

5.2 QL and AQL estimates, based on 1,000 replications. The root mean square error of each estimate is reported below that estimate, based on different initial values for α_0 (T = 500). .. 106

5.3 QL and AQL estimates based on 1,000 replications. The root mean square error of each estimate is reported below that estimate. $\hat{\alpha}_0^*$ is different from sample to sample. (T = 500). .. 115

5.4 QL and AQL estimates based on 1,000 replication. The root mean square error of each estimate is reported below that estimate. $\hat{\alpha}_0^*$ is different from sample to sample. (T = 500). .. 117

5.5 QL, AQL, QL^*, and AQL^* estimates, and RSS_y are reported below each estimate. .. 130

6.1 Comparison of AQL, OLS estimates based on the daily returns of (Australian Dollar/US Dollar) and (Australian Dollar/British Pound) for the period from 1/1/2003 to 1/1/2006. .. 137

6.2 Estimates of γ, ϕ and σ_η^2 for Pound/Dollar exchange rate data. .. 142

6.3 Parameter estimates for polio incidence data by AQL, QL, AL and IWLS .. 152