2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite

Jichao Zhang

University of Wollongong, jz417@uowmail.edu.au

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Zhang, Jichao, "2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite" (2012). Faculty of Science, Medicine and Health - Papers: part A. 87.
https://ro.uow.edu.au/smhpapers/87

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite

Abstract
2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite is a colorless viscous liquid, which is soluble in most organic solvents. It is a widely used phosphitylating reagent for the preparation of various phosphorylated biomolecules, such as nucleoside carbohydrate conjugates, phospholipids and glycopeptides. In particular, this reagent is highly effective for automated solid-phase DNA/RNA oligonucleotide synthesis. 2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite has shown great utility in the coupling of nucleobases or carbohydrates via their phosphotriesters in the presence of activators such as 1H-tetrazole, in moderate yields under mild conditions. Additionally, 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite is cheaper and more stable than 2-cyanoethyl N,N-diisopropylchlorophosphorodiamidite, the other commonly used phosphinylating reagent. 2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite is commercially available but can also be prepared in an inexpensive manner using a two-step, one-pot procedure and purified by vacuum distillation (Scheme [1]).

Keywords
2, n, cyanoethyl, tetraisopropylphosphorodiamidite

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/87
2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite reagent

Compiled by – Jichao Zhang.

Jichao Zhang was born in Dalian, Liaoning Province, P. R. of China. He graduated from Shenyang Pharmaceutical University and received a B.E. in pharmaceutical engineering. Currently, he is working towards his M.Sc. (Research) degree under the supervision of Dr Danielle Skropeta in Organic and Medicinal Chemistry at University of Wollongong, Australia. His research interests focus on the development of glycosyltransferase inhibitors as anticancer agents.

Correspondence information - School of Chemistry and Centre for Medicinal Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia.
E-mail: jz417@uowmail.edu.au.

Introduction

2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite is a colorless viscous liquid, which is soluble in most organic solvents. It is a widely used phosphitylating reagent for the preparation of various phosphorylated biomolecules, such as nucleoside carbohydrate conjugates, phospholipids and glycopeptides. In particular, this reagent is highly effective for automated solid-phase DNA/RNA oligonucleotide synthesis.

2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite has shown great utility in the coupling of nucleobases or carbohydrates via their phosphotriesters in the presence of activators such as 1H-tetrazole, in moderate yields under mild conditions. Additionally, 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite is cheaper and more stable than 2-cyanoethyl N,N-diisopropylchlorophosphorodiamidite (the other commonly used phosphinylation reagent).

2-Cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite is commercially available but can also be prepared in an inexpensive manner using a two-step, one-pot procedure and purified by vacuum distillation (Scheme 1).

![Scheme 1 Synthesis of 2-cyanoethyl N,N,N',N'-tetraisopropyl phosphorodiamidite.](image-url)

(A) 2-Cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite was used by Sheppard and co-workers to prepare carbohydrate phosphoramidites as nucleoglycoconjugate building blocks in good yield in the presence of activators such as diisopropylammonium tetrazolide under anhydrous conditions. Then, the monosaccharide phosphoramidite was coupled with DNA oligonucleotides by solid-phase chemistry.

(B) Recently, Yamada and co-workers used 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphorodiamidite to synthesize the uridine 3'-phosphoribidite building block in good yield with diisopropylammonium tetrazolide as a catalyst under anhydrous conditions, for developing oligonucleotides containing new 2'-O-modified ribonucleosides as nucleic acid based drugs.
Lin and colleagues used 2-cyanoethyl \(N,N',N'\)tetraisopropylphosphorodiimide as the phosphitylating reagent in the presence of diisopropylammonium tetrazole to couple with \(2',3',\text{di-O-acetyl}
adenosine to generate boron-containing ADP analogues (in overall yield of 36%).

Smith and co-workers developed an efficient method to prepare aldose phosphate diesters using 2-cyanoethyl \(N,N',N'\)tetraisopropylphosphorodiimide. A 5-O-Protected diol was first reacted with the phosphitylating reagent and \(1H\)-tetrazole as an activator at room temperature, followed by oxidation, generating cyclic phosphate triester diastereoisomers in high yield.

2-Cyanoethyl-\(N,N',N'\)tetraisopropylphosphorodiimide was used to prepare glycoconjugate polymers which carry GGPL analogues, bioactive segments of main cell membrane glycolipids of \textit{Mycoplasma fermentans}. Therein, Nishida and co-workers reacted p-nitrophenyl \(2,3,4\)-tri-O-benzyl-a-D-glucopyranoside with 2-cyanoethyl \(N,N',N'\)tetraisopropylphosphorodiimide in the presence of \(1H\)-tetrazole, then reacted with choline tosylate, followed by oxidation and removal of the cyanoethyl group, generating p-nitrophenyl \(2,3,4\)-tri-O-benzyl-6-O-phosphorylcholine-a-D-glucopyranoside (in an overall 54% yield).

Rodríguez and colleagues reported the synthesis of glucose-nucleoside conjugates as anti-HIV produgs by using 2-cyanoethyl \(N,N',N'\)tetraisopropylphosphorodiimide as the phosphitylating reagent. Glucosyl phosphoramidite was firstly prepared in the presence of pyridinium trifluoroacetate under anhydrous conditions, and then coupled with nucleosides generating the desired compounds.

References