2007

Role of group A Streptococcus HtrA in the maturation of SpeB protease

J. N. Cole
University of Wollongong, jcole@uow.edu.au

J. A. Aquilina
University of Wollongong, aquilina@uow.edu.au

P. G. Hains
University of Sydney

A. Henningham
University of Wollongong, anna_henningham@uow.edu.au

K. S. Sriprakash
Queensland Institute of Medical Research

See next page for additional authors

Publication Details
Role of group A Streptococcus HtrA in the maturation of SpeB protease

Abstract
The serine protease HtrA (DegP) of the human pathogen Streptococcus pyogenes (group A Streptococcus; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease SpeB. Here we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5ΔhtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5ΔhtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type. Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5ΔhtrA supernatant. HtrA was unable to directly process SpeB zymogen to the active form in vitro. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.

Keywords
HtrA, SpeB, Streptococcus pyogenes

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Authors

This journal article is available at Research Online: http://ro.uow.edu.au/scipapers/74
Role of group A Streptococcus HtrA in the maturation of SpeB protease

Jason N. Cole¹, J. A. Aquilina¹, Peter G. Hains², Anna Henningham¹, Kadaba S. Sriprakash³, Michael G. Caparon⁴, Victor Nizet⁵,⁶, Malak Kotb⁷, Stuart J. Cordwell⁸, Steven P. Djordjevic⁹ and Mark J. Walker¹

¹School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
²Sydney Eye Hospital, The University of Sydney, Sydney, New South Wales, Australia
³Queensland Institute of Medical Research, Herston, Queensland, Australia
⁴Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
⁵Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
⁶Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
⁷Department of Molecular Sciences, University of Tennessee, Memphis, TN, USA
⁸School of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, Australia
⁹NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, New South Wales, Australia

*Corresponding author: Professor Mark J. Walker, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia. Tel: 0061-2-4221 3439; Fax: 0061-2-4221 4135; E-mail: mwalker@uow.edu.au

Abbreviations: GAS, group A Streptococcus; HtrA, High-temperature requirement A; proSpeB, SpeB zymogen; SpeB, streptococcal pyrogenic exotoxin B; WT, wild-type

Keywords: HtrA / SpeB / Streptococcus pyogenes
Abstract

The serine protease HtrA (DegP) of the human pathogen *Streptococcus pyogenes* (group A *Streptococcus*; GAS) is localized to the ExPortal secretory microdomain and is reportedly essential for the maturation of cysteine protease SpeB. Here we utilize HSC5 (M5 serotype) and the in-frame isogenic mutant HSC5ΔhtrA to determine whether HtrA contributes to the maturation of other GAS virulence determinants. Mutanolysin cell wall extracts and secreted proteins were arrayed by 2-DE and identified by MALDI-TOF PMF analysis. HSC5ΔhtrA had elevated levels of cell wall-associated M protein, whilst the supernatant had higher concentrations of M protein fragments and a reduced amount of mature SpeB protease, compared to wild-type. Western blot analysis and protease assays revealed a delay in the maturation of SpeB in the HSC5ΔhtrA supernatant. HtrA was unable to directly process SpeB zymogen to the active form *in vitro*. We therefore conclude that HtrA plays an indirect role in the maturation of cysteine protease SpeB.
1 Introduction

The multifunctional chaperone and serine protease HtrA (DegP) is involved in the degradation of misfolded or aggregated proteins within the periplasm of Gram-negative bacteria [1, 2]. Homologues of HtrA have been identified in numerous organisms including Gram-positive bacteria, fungi, yeast, plants, and mammals [1]. Although Gram-positive bacteria lack a periplasmic compartment, a growing body of evidence suggests that HtrA plays an important role in the pathogenesis of several Gram-positive species, including Streptococcus pyogenes [3], Streptococcus mutans [4], Streptococcus pneumoniae [5], Bacillus subtilis [6], Staphylococcus aureus [7], Lactococcus lactis [8], and Listeria monocytogenes [9]. The accumulation of aberrantly folded or aggregated proteins, or the enhanced sensitivity to thermal, oxidative and osmotic stresses, may account for the reduction in virulence observed in HtrA-deficient mutants [1].

S. pyogenes (group A Streptococcus; GAS) is a bacterial pathogen responsible for a wide variety of human diseases, ranging from mild suppurative infections of the skin (impetigo) and throat (pharyngitis), to life-threatening invasive infections such as necrotizing fasciitis and streptococcal toxic shock syndrome [10]. Serious immune sequelae, including acute rheumatic fever and glomerulonephritis, may also develop upon repeated GAS infection [10]. The high-temperature requirement A (HtrA) family of serine proteases typically contain two C-terminal PDZ (postsynaptic density, disc-large, ZO-1) domains, which are implicated in HtrA oligomerization, substrate recognition, and modulation of chaperone and protease activity [11]. However, the HtrA of S. pyogenes possesses a single C-terminal PDZ domain. Preliminary studies with a polar insertionally inactivated htrA mutant suggested that GAS HtrA is essential for survival at high temperatures, tolerance to reactive oxygen intermediates,
and full virulence [3]. In a more recent study, a polar insertion into GAS htrA also resulted in a temperature-sensitive phenotype [12]. However, this phenotype was also observed following the introduction of a polar insertion immediately downstream from htrA, suggesting that a polar effect on the expression of an adjacent gene, rather than loss of HtrA, was responsible for the growth defect. Consistent with this hypothesis, an in-frame htrA deletion mutant was neither thermally-sensitive nor attenuated in a mouse model of subcutaneous infection [12]. The non-polar htrA mutation, however, did prevent processing of the 40 kDa streptococcal pyrogenic exotoxin B (SpeB) zymogen to the biologically active protease, and elevated the expression of the hemolysin streptolysin S (SLS) [12]. These findings suggest that GAS HtrA is not required for survival at elevated temperatures or virulence, but does play a role in the processing and maturation of secreted virulence factors. The localisation of GAS HtrA to the ExPortal secretory microdomain on the streptococcal surface supports this hypothesis [13].

In the present study, we use a non-polar in-frame HSC5ΔhtrA mutant to investigate the influence of GAS HtrA on cell wall-associated and secreted virulence factors. We demonstrate that HtrA is not essential for SpeB maturation as previously described [12]; rather the absence of HtrA merely impedes the maturation process. HtrA protease is unable to directly process SpeB zymogen in vitro and therefore plays an indirect role in SpeB maturation kinetics.
2 Materials and methods

2.1 Bacterial strains, media and culture conditions

*S. pyogenes* wild-type (WT) strain HSC5 (M5 serotype) and the isogenic in-frame *htrA* deletion mutant HTR10, henceforth designated HSC5Δ*htrA* in this study, are described elsewhere [12]. In-frame allelic exchange *speB* knockout mutants HSC5Δ*speB* and HSC5Δ*htrAΔspeB* were constructed using the temperature-sensitive vector pSpeBΔ*cat-KO* as described previously [14]. All GAS strains were routinely propagated at 37°C on horse blood agar (BioMérieux) or in static liquid cultures of Todd-Hewitt broth (Difco), supplemented with 1% (w/v) yeast extract (THBY). When necessary, SpeB was inactivated by growth in the presence of cysteine protease inhibitor E-64 (N-[N-(L-3-transcarboxyirane-2-carbonyl)-L-Leucyl]-agmatine) (Sigma) at a final concentration of 28 μM. *Escherichia coli* strains were cultured at 37°C on LB agar or in LB broth with agitation at 200 rpm. Where appropriate, *E. coli* strains were grown in the presence of kanamycin (50 μg/ml) and ampicillin (100 μg/ml).

2.2 DNA techniques

*S. pyogenes* chromosomal DNA was extracted using the DNeasy® tissue kit (Qiagen). Plasmid DNA was purified with the Wizard® Plus SV system (Promega) and transformed into *E. coli* using standard techniques [15]. DNA polymerases, ligases, and restriction endonucleases were used in accordance with the manufacturers’ recommendations. PCR was performed under standard conditions and the resultant products purified with the Wizard® SV clean-up kit (Promega). Automatic fluorescent DNA sequencing analysis was undertaken using the ABI BigDye® terminator v3.1 cycle sequencing kit (Applied Biosystems) and an
ABI 377 DNA sequencer (Applied Biosystems). DNA sequence data was analyzed using the ABI Prism® DNA sequencing analysis software and assembled with AutoAssembler™ DNA sequence assembly software (Applied Biosystems).

2.3 Expression plasmid construction and protein purification

The HtrA protein of *S. pyogenes* contains a putative N-terminal membrane anchor domain (isoleucine 13 to isoleucine 26), a trypsin-like serine protease catalytic triad (histidine 129, aspartic acid 158 and serine 240), and a single C-terminal PDZ domain (glycine 296 to arginine 385) [3]. The *htrA* gene of GAS strain NS931 (M69 serotype) [16] was PCR amplified with *Taq* DNA polymerase (Qiagen) using the following temperature cycling parameters: 94°C for 2 min; 35 cycles of 94°C for 40 sec, 55°C for 40 sec, 72°C for 2 min; 72°C for 4 min; and a holding temperature of 25°C. The forward primer 5’-GGGGATCCACATTCAATAATCTCTACCCA-3’ (*Bam*HI restriction site underlined) and reverse primer 5’-GGAAGCTT TTACTGCGTTTTAGTCAAATC-3’ (*Hind*III restriction site underlined) were designed from the SF370 (M1 serotype) *htrA* sequence [17] located in the NCBI database (GenBank accession number NC_002737.1; http://www.ncbi.nlm.nih.gov). The first 78 nucleotides of GAS *htrA*, which encode the putative transmembrane domain [3], were not amplified. The purified PCR product was digested with the appropriate restriction enzymes, ligated into 6×His-tag expression vector pQE-9 (Qiagen) with T4 DNA ligase (Fermentas), and transformed into *E. coli* M15 harbouring the pREP4 repressor plasmid (Qiagen). The insert DNA was sequenced (GenBank accession number DQ230906) and identified by a BLAST-N search at NCBI (http://www.ncbi.nlm.nih.gov/BLAST). The translated amino acid sequence shares 99% identity with all putative HtrA proteins published to date for *S. pyogenes* (data not shown), suggesting that this protein is highly conserved
amongst GAS isolates. Recombinant 6×His-tagged HtrA protein was expressed and purified essentially as previously described [18].

The ropA gene of *S. pyogenes* encodes for trigger factor (also known as RopA), a ribosome-associated chaperone and peptidyl-prolyl cis-trans isomerase (PPIase) implicated in SpeB protease maturation [19]. The ropA gene of GAS strain 5448 (M1T1 serotype) [20] was PCR amplified with PfuUltra™ High-Fidelity DNA Polymerase (Stratagene) using the following temperature cycling regime: 95°C for 2 min; 30 cycles of 95°C for 30 sec, 55°C for 30 sec, 72°C for 2 min 30 sec; 72°C for 10 min; and a holding temperature of 25°C. The forward primer 5’-CACCATGTCTACATCATTGAA-3’ (TOPO® cloning overhang underlined) and reverse primer 5’-TTACTTAACGCTTGCTGTGCT-3’ were designed from the ropA sequence of *S. pyogenes* strain MGAS315 (M3 serotype; GenBank accession number AE014074.1) [21] located in the NCBI database (http://www.ncbi.nlm.nih.gov). The blunt-end PCR product was cloned into pET160/GW/D-TOPO® in accordance with the Champion™ pET160 Directional TOPO® Expression Kit (Invitrogen). The insert DNA was sequenced and identified by a BLAST-N search at NCBI (http://www.ncbi.nlm.nih.gov/BLAST). Recombinant 6×His-tagged trigger factor was expressed and purified essentially as described before [18].

2.4 Immunological reagents

The production of polyclonal mouse antiserum specific for *S. pyogenes* M1 protein is described elsewhere [22]. Affinity-purified rabbit anti-SpeB IgG was purchased from Toxin Technology Inc., Sarasota, FL, USA.
2.5 Western blot analysis

SDS-PAGE and western blotting was performed as described before [23]. The nitrocellulose membranes were incubated for 1 h with SpeB antibodies diluted 1:1,000 in PBS (pH 7.4). Following a 10 min wash with PBS, the membranes were incubated for 1 h with goat anti-rabbit IgG HRP conjugate (Bio-Rad) diluted 1:1,000 in PBS. Excess secondary antibody was removed by three 10 min washes in PBS prior to development in a solution of 100 mM Tris-HCl (pH 7.6) containing 1.4 mM diaminobenzidine and 0.06% (v/v) hydrogen peroxide. 2-D western blotting was undertaken using the semi-dry Hoefer SemiPhor™ transfer unit (GE Healthcare) in accordance with the manufacturer’s directions.

2.6 Preparation of cell wall extracts and culture supernatant proteins

Mutanolysin cell wall extracts were prepared in duplicate from stationary-phase cultures of *S. pyogenes* as described previously [24]. Briefly, 100 ml cultures were grown for 16 h at 37°C without shaking. Bacterial cells were pelleted by centrifugation at 7,560 × g for 20 min at 4°C, washed twice with 5 ml of chilled TE buffer (50 mM Tris-HCl, 1 mM EDTA, 1 mM PMSF; pH 8.0), and resuspended in 1 ml cold TE-sucrose (50 mM Tris-HCl, 1 mM EDTA, 20% (w/v) sucrose; pH 8.0) supplemented with 100 μl lysozyme (100 mg/ml in TE-sucrose) and 50 μl mutanolysin (5,000 U/ml in 0.1 M K₂HPO₄; pH 6.2). The sample was incubated for 2 h at 37°C with shaking (200 rpm) and centrifuged at 16,000 × g for 5 min at room temperature. The supernatant, enriched with the cell wall-associated proteins, was harvested by aspiration and the protein concentration determined using the Bradford assay (Sigma). Samples for 2-DE were precipitated with an equal volume of 10% (v/v) TCA [25], and resuspended in standard sample solubilisation (SSS) buffer containing 8 M urea, 100 mM
DTT, 4% (w/v) CHAPS (GE Healthcare), 0.8% (v/v) carrier ampholytes (Bio-Rad), and 40 mM Tris-HCl. Identical amounts of total protein from HSC5 and HSC5ΔhtrA cell wall extracts were loaded onto 2-D gels.

For the preparation of culture supernatant proteins, GAS strains were cultured in duplicate to stationary-phase in protein-reduced THBY, which consisted of THBY filtered through an Amicon® Ultra-15 centrifugation unit (NMWL 10 kDa; Millipore) to remove proteins with a molecular mass greater than 10 kDa. Identical volumes of culture supernatant were harvested by centrifugation, filter-sterilised through a 0.22 µm filter (Millipore), precipitated with an equal volume of 10% (v/v) TCA, and resuspended in 100 mM Tris-HCl (pH 7.6) prior to SDS-PAGE analysis and determination of protein concentration with the Bradford assay (Sigma). Supernatant samples for 2-DE were resuspended in SSS buffer as described above. Identical amounts of total protein from HSC5 and HSC5ΔhtrA culture supernatants were loaded onto 2-D gels.

2.7 2-DE and protein identification

TCA precipitated cell wall extract or culture supernatant (180 µg) was added to an Immobiline™ DryStrip Reswelling Tray (GE Healthcare) and overlaid with an 11 cm linear pH 4-7 IPG ReadyStrip™ (Bio-Rad). After overlaying with mineral oil (Bio-Rad), the strips were rehydrated overnight at room temperature. First dimension IEF was performed with the Protean® IEF Cell (Bio-Rad) as described by Cole et al. [24]. The second dimension (SDS-PAGE) was conducted using the Ettan™ DALTsix electrophoresis unit (GE Healthcare) as described previously [24]. Duplicate 2-D gels were generated for each cell wall and culture supernatant sample to verify reproducibility. Differentially expressed proteins were excised
from 2-D Coomassie stained gels, digested with trypsin, and analyzed by MALDI-TOF MS as described elsewhere [24]. Peak lists were manually generated from spectra internally calibrated with peptides derived from trypsin autodigestion. Peptide masses were matched by searching the databases at PeptIdent (http://us.expasy.org/tools/peptident.html) or MASCOT Server 2.0 software (http://www.matrixscience.com), using the search parameters described by Cordwell et al. [26].

2.8 Measurement of protease activity

SpeB protease activity in GAS culture supernatants was determined essentially as described before [23, 27]. For in vitro protease assays, 5 μg of HtrA or SpeB protease was mixed with 5 μg of purified substrate protein (proSpeB), adjusted to a final volume of 25 μl with PBS (pH 7.4), and incubated at 37°C for 3 h or overnight. Cleavage of substrate protein was determined by SDS-PAGE. Positive controls containing 5 μg protease (HtrA or SpeB) and 25 μg β-casein (Sigma) substrate were used in all assays. Negative controls containing only protease or substrate were also included. Purified SpeB protease was purchased from Toxin Technology Inc., Sarasota, FL, USA.

2.9 Statistical analysis

The SpeB protease activity of WT and HSC5ΔhtrA was compared using the two-tailed unpaired t test. Differences were considered statistically significant at \( P < 0.05 \). All statistical tests were performed using GraphPad Prism version 4.02 software (GraphPad Software Inc., San Diego, CA, USA).
3 Results

3.1 2-DE analysis of cell wall and culture supernatant proteins

Mutanolysin cell wall extracts harvested from stationary-phase cultures of WT and HSC5ΔhtrA were separated by 2-DE (Fig. 1A). Twelve differences were identified by either MALDI-TOF PMF or 2-D western blotting (Table 1). M protein, a major surface-associated and secreted GAS virulence factor [10], was only detected in the HSC5ΔhtrA cell wall (spot 6). Seven differences in the stationary-phase secreted proteomes (Fig. 1B) were identified by PMF (Table 2). Fragments of M protein (spots 21-24; Fig. 1B) were only detected in the HSC5ΔhtrA culture supernatant. Compared to WT, the HSC5ΔhtrA supernatant contained a high concentration of SpeB zymogen (proSpeB; spot 19) and a reduced amount of mature SpeB protease (spot 16; Fig. 1B), a secreted virulence factor with a major role in GAS pathogenesis [23, 28]. In contrast with previous work [12], this finding suggests that HSC5ΔhtrA can produce active SpeB, although less efficiently than the WT. Given that SpeB is responsible for the degradation of many proteins in the secreted GAS proteome [20], the reduced concentration of active SpeB in HSC5ΔhtrA may account for the incomplete degradation of surface-displayed and secreted virulence factors. Western blot analyses of cell wall and culture supernatant proteins revealed a reduction in the degradation rate of M protein for HSC5ΔhtrA (Fig. 1C). Equivalent quantities of M protein were detected in the cell wall and supernatant of HSC5ΔspeB and HSC5ΔhtrAΔspeB, suggesting that the reduced rate of M protein degradation in HSC5ΔhtrA is due to reduced or delayed SpeB activity.
3.2 Role of HtrA in SpeB maturation kinetics

To establish whether the absence of *S. pyogenes* HtrA kinetically delays the conversion of SpeB zymogen (proSpeB) to active SpeB protease, western blot analysis of WT and HSC5ΔhtrA culture supernatant harvested at 7, 10, 16 and 26 h post-inoculation (Fig. 2A) was undertaken with SpeB-specific antisera (Fig. 2B). At 7 h post-inoculation, 40 kDa proSpeB is detected in WT and HSC5ΔhtrA supernatant, with levels elevated in HSC5ΔhtrA (Fig. 2B). After 10 h, the concentration of proSpeB is greater for HSC5ΔhtrA and 28 kDa SpeB is only present in the WT supernatant (Fig. 2B). The majority of WT proSpeB has been converted to SpeB at 16 h in contrast to HSC5ΔhtrA, where only a relatively small amount of mature SpeB is observed. However, at 26 h post-inoculation, similar levels of mature SpeB protease are present in both strains, although the concentration of proSpeB remains higher for HSC5ΔhtrA (Fig. 2B). Culture supernatants from parallel 16 h cultures of HSC5ΔspeB and HSC5ΔhtrAΔspeB (Fig. 2A) were negative for SpeB expression (Fig. 2B). With the addition of SpeB inhibitor E-64 to the growth medium, WT and HSC5ΔhtrA secrete equivalent quantities of proSpeB zymogen into the extracellular milieu (data not shown). These data suggest that loss of HtrA does not affect proSpeB secretion; rather the lack of HtrA may delay the conversion of proSpeB to active SpeB in the supernatant. The delayed SpeB activity of HSC5ΔhtrA may reduce the SpeB-mediated degradation rate of cell wall-associated and secreted proteins, which may account for the increased number of protein spots detected in the proteomic analyses of HSC5ΔhtrA, in comparison to WT (Fig. 1).
3.3 Quantitative time-course analysis of SpeB activity

*In vitro* SpeB assays confirm that neither WT nor HSC5ΔhtrA secrete active SpeB protease into the supernatant 7 h post-inoculation (Fig. 3). At 10 h after inoculation, the WT exhibits 20-fold more SpeB protease activity compared to HSC5ΔhtrA (Fig. 3). Equivalent SpeB activity is observed for both strains at 16 h post-inoculation, while at 26 h significantly more activity is detected in the HSC5ΔhtrA supernatant (*P* < 0.05; Fig. 3). Supernatants harvested from HSC5ΔspeB and HSC5ΔhtrAΔspeB were included as negative controls for SpeB activity (Fig. 3). Assays performed in parallel with SpeB inhibitor E-64 also exhibited no SpeB activity (data not shown), confirming that all protease activity in the culture supernatants can be attributed to SpeB. These results demonstrate that a lack of *S. pyogenes* HtrA delays the maturation of proSpeB to active SpeB.

3.4 Role of HtrA in proSpeB activation

To ascertain whether HtrA protease acts directly on proSpeB in the GAS supernatant *in vitro*, protease assays were performed using recombinant 6×His-tagged GAS HtrA and proSpeB isolated from GAS culture supernatants. The degradation of β-casein substrate confirms that recombinant HtrA is proteolytically active (Fig. 4A). In many organisms, HtrA plays a role in the degradation of unfolded or misfolded proteins destined for secretion across the cytoplasmic membrane [1]. However, GAS HtrA was unable to degrade proSpeB in the presence or absence of denaturants such as 6 M and 8 M urea (Fig. 4A). In addition, E-64 and urea did not inhibit the proteolytic activity of HtrA, as demonstrated by the complete degradation of β-casein *in vitro* (data not shown). Western blot analysis confirms that HtrA did not directly process the SpeB zymogen (Fig. 4B). These data suggest that *S. pyogenes*...
HtrA is not directly involved in SpeB maturation \textit{in vitro}. Consistent with prior studies [29], active SpeB protease processed proSpeB (Fig. 4C). In the presence of E-64, however, SpeB did not fully degrade \(\beta\)-casein or activate proSpeB, indicating that E-64 is an effective inhibitor of SpeB activity. Trigger factor (RopA), a PPIase implicated in SpeB maturation [19, 30], was unable to directly process proSpeB to mature SpeB \textit{in vitro} in the absence (Fig. 4C) or the presence of HtrA (data not shown).
4 Discussion

A growing body of data indicates that HtrA influences the processing of surface-associated proteins in Gram-positive bacteria. The HtrA homolog of *L. lactis*, termed HtrALl, is a unique surface housekeeping protease responsible for the pro-peptide processing and maturation of secreted zymogens, including nuclease NucA and autolysin AcmA [31]. In *S. mutans*, the causative agent of dental caries, HtrA plays a role in the regulation of genetic competence, biofilm formation, and the biogenesis of cell wall-associated and secreted proteins [4, 32]. *B. subtilis* expresses three HtrA-like proteases including HtrA/YkdA, HtrB/YvtA and YyxA [33, 34] which are predicted to be membrane-bound. Under conditions of heat shock or secretion stress, the HtrA and HtrB proteases of *B. subtilis* are essential for the degradation of misfolded proteins and the secretion of correctly folded proteins [35]. The human pathogen *S. aureus* expresses two surface-exposed HtrA homologues designated HtrA1 and HtrA2. These proteins are involved in the secretion of virulence factors essential for bacterial dissemination and may play a role in the maturation of the *agr* surface components [7].

In *S. pyogenes*, proteins are exported via the general secretory (Sec) pathway from multiple different subcellular regions [36, 37]. SpeB is secreted from the ExPortal, a distinct cellular membrane microdomain [37] enriched with anionic phospholipids [38] to facilitate protein translocation. GAS HtrA is localised to the ExPortal, which suggests a role for HtrA in the elaboration of secretory proteins [13]. In this study, we have demonstrated that GAS HtrA is not required for SpeB maturation as previously suggested [12]. Furthermore, HtrA does not play a direct role in SpeB processing *in vitro*. However, the absence of HtrA does dramatically slow the maturation kinetics of SpeB, which in turn reduces the rate at which SpeB protease cleaves surface-associated and secreted GAS virulence factors.
SpeB is a highly conserved extracellular and cell surface-associated protease expressed by most GAS isolates [39]. The cysteine protease cleaves many biologically important molecules and plays a significant role in GAS pathogenesis [23, 28]. The expression of SpeB is growth-phase dependent, with the maximal rate of expression occurring from late logarithmic- to stationary-phase in response to nutrient and carbon source limitation, acidic pH, and NaCl concentration [40]. SpeB is initially synthesised as a 43 kDa pre-pro-protein with a N-terminal signal sequence, followed by a pro-sequence region, and a mature cysteine protease sequence. Following removal of the signal peptide, the 40 kDa pro-protein is secreted via the ExPortal [37]. Maturation of the zymogen to mature 28 kDa cysteine protease can be accomplished by autocatalytic processing, trypsin, subtilisin, or the mature SpeB protease, and involves several intermediate forms [41]. Autocatalytic activation of SpeB zymogen occurs under reducing conditions by intra- and inter-molecular mechanisms and involves a series of sequential cleavages within the 12 kDa N-terminal pro-sequence domain [29]. The pro-sequence domain also acts as an intramolecular chaperone and directs the folding of the mature protease [42]. In the present study, the secretion of SpeB zymogen was not affected by the lack of HtrA. However, the conversion of the zymogen to the active form was significantly impaired in HSC5ΔhtrA. We hypothesise that disruption of the htrA gene in S. pyogenes may delay or interrupt the accessory factor-mediated activation of SpeB. Several accessory proteins, including the peptidyl-prolyl isomerase RopA (also known as trigger factor) [19, 30] and LuxS [43], have been implicated in the secretion and maturation of SpeB zymogen to the enzymatically active form. Recently, Ma et al. [44] demonstrated that prsA, a gene located immediately downstream of speB, is co-transcribed with speB and encodes for a peptidyl-prolyl isomerase, PrsA, which is required for full conversion of SpeB zymogen to active SpeB protease. The peptidyl-prolyl cis-trans isomerase (PPIase) protein family, of which PrsA and trigger factor (RopA) are members, assist the folding of nascent polypeptides
in vivo by catalysing the cis/trans isomerization of peptidyl-prolyl bonds, which is often a rate-limiting step in protein folding [45]. In this investigation, trigger factor was unable to convert proSpeB to mature SpeB in vitro in the presence or absence of HtrA. To account for this observation, we suggest that the accessory proteins necessary for proSpeB maturation may act synergistically. Furthermore, these proteins may require the correct physiochemical environment of the cell wall in which to function.

The study by Lyon and Caparon [12] suggested that HtrA is essential for the maturation of SpeB zymogen to the active protease. In the present report, we demonstrate that loss of HtrA does not impede the secretion of proSpeB and that SpeB maturation does occur without HtrA, albeit at a reduced rate. Differences in the culture conditions and the sampling of supernatant at different growth phases may account for this disparity. Furthermore, we show that HtrA does not directly convert proSpeB zymogen to active SpeB in vitro. Purified recombinant HtrA cleaved the model substrate β-casein, which is largely unstructured in solution [46], but was unable to directly process proSpeB.

In summary, we demonstrate that the HtrA of S. pyogenes does not directly process SpeB zymogen in vitro. The absence of HtrA delays the conversion of SpeB zymogen to the active form, which influences the proteolytic degradation of surface-displayed and secreted GAS virulence factors. The localisation of HtrA to the GAS ExPortal [13], and the data described in this work, suggests that HtrA may influence the secretion of accessory factors required for SpeB maturation. Elucidation of the function of intrinsic ExPortal proteins, such as HtrA, may further our understanding of protein transport pathways in Gram-positive bacteria.
Acknowledgments

This work was supported by the National Health and Medical Research Council of Australia.
5 References


Figure legends

**Figure 1.** Comparison of cell wall and secreted proteomes of HSC5 (WT) and HSC5ΔhtrA. Differences (boxed) were identified by MALDI-TOF PMF or western blot analyses. (A) 2-DE of WT and HSC5ΔhtrA cell wall extracts harvested after growth to stationary-phase (16 h at 37°C) in THBY medium without agitation. Identified protein spots are denoted by numbered arrows, which correspond to the proteins in Table 1. (B) 2-DE of WT and HSC5ΔhtrA culture supernatants harvested after growth to stationary-phase (16 h at 37°C) in protein-reduced THBY medium without agitation. Identified protein spots are denoted by numbered arrows, which correspond to the proteins in Table 2. (C) Detection of M protein in stationary-phase (16 h) cell wall and culture supernatant proteins of WT, HSC5ΔhtrA, HSC5ΔspeB and HSC5ΔhtrAΔspeB by western blot analyses with M protein-specific antiserum. Molecular mass markers are given in kilo-Daltons (kDa).

**Figure 2.** *S. pyogenes* HtrA is indispensable for the efficient conversion of SpeB zymogen (proSpeB) to the active form. (A) Coomassie stained 12% SDS-PAGE reducing gel and (B) corresponding SpeB western blot of HSC5 (WT) and HSC5ΔhtrA culture supernatants collected after growth at 37°C for 7, 10, 16 and 26 h in protein-reduced THBY medium without aeration. Samples were concentrated by TCA precipitation prior to transfer to nitrocellulose membrane and incubation with antiserum specific for SpeB. The 40 kDa SpeB zymogen (proSpeB) and the 28 kDa mature SpeB protease are indicated by labelled arrow heads. Supernatants harvested from 16 h cultures of HSC5ΔspeB and HSC5ΔhtrAΔspeB were included as negative controls for SDS-PAGE and western blot analyses. Molecular mass markers are given in kilo-Daltons (kDa).
**Figure 3.** The absence of HtrA slows the conversion of SpeB zymogen to the mature protease. *In vitro* SpeB activity of culture supernatant harvested from HSC5 (WT) and HSC5ΔhtrA at 7, 10, 16 and 26 h post-inoculation. HSC5ΔspeB and HSC5ΔhtrAΔspeB supernatants were included as SpeB negative controls. All strains were grown at 37°C in protein-reduced THBY medium without shaking. The values represent the mean and SEM of 4 independent experiments. Asterisks indicate a statistically significant difference between WT and HSC5ΔhtrA (*P* < 0.05).

**Figure 4.** HtrA protease does not directly process SpeB zymogen (proSpeB). (A) Coomassie stained 12% SDS-PAGE reducing gel showing *in vitro* protease assays of recombinant 6×His-tagged HtrA with β-casein (positive control), proSpeB, and proSpeB denatured in 6 M or 8 M urea. HtrA protease retains proteolytic activity in the presence of urea (data not shown). (B) Corresponding western blot of HtrA and proSpeB protease assays probed with anti-SpeB antisera. (C) Coomassie stained 12% SDS-PAGE reducing gel showing *in vitro* protease assays of SpeB with β-casein (± E-64), SpeB with proSpeB (± E-64), and trigger factor (RopA) with proSpeB. Molecular mass markers are given in kilo-Daltons (kDa).
<table>
<thead>
<tr>
<th>Spot</th>
<th>Protein</th>
<th>Function or pathway</th>
<th>Accession no.a)</th>
<th>Molecular mass (kDa)b)</th>
<th>pIb)</th>
<th>Peptide matchc)</th>
<th>Coverage (%)d)</th>
<th>GAS strain5i)</th>
<th>WT</th>
<th>HSC5ΔhtrA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chaperone protein</td>
<td>Chaperone</td>
<td>AAM80138</td>
<td>64.8</td>
<td>4.61</td>
<td>15</td>
<td>30.5</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Enolase (SEN)</td>
<td>Virulence factor</td>
<td>AAM79086</td>
<td>47.2</td>
<td>4.74</td>
<td>23</td>
<td>67.3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Chaperone protein</td>
<td>Chaperone</td>
<td>AAM80138</td>
<td>35.5</td>
<td>4.81</td>
<td>17</td>
<td>24.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GAPDH</td>
<td>Virulence factor</td>
<td>AAT86400</td>
<td>35.8</td>
<td>5.34</td>
<td>19</td>
<td>54.9</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GAPDH</td>
<td>Virulence factor</td>
<td>AAT86400</td>
<td>35.8</td>
<td>5.34</td>
<td>20</td>
<td>60.6</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M proteinf)</td>
<td>Virulence factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Elongation factor Tu</td>
<td>Protein biosynthesis</td>
<td>AAM79039</td>
<td>43.8</td>
<td>4.91</td>
<td>18</td>
<td>56.5</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Putative glutathione reductase</td>
<td>Glutathione metabolism</td>
<td>AAK33749</td>
<td>48.9</td>
<td>5.75</td>
<td>10</td>
<td>26.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Putative maltose/maltodextrin-binding protein</td>
<td>Sugar transporter activity</td>
<td>AAK34142</td>
<td>44.6</td>
<td>7.57</td>
<td>13</td>
<td>36.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SpeB precursor</td>
<td>Virulence factor</td>
<td>AAK34706</td>
<td>43.2</td>
<td>8.76</td>
<td>6</td>
<td>18.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Glycerol-3-phosphate dehydrogenase [NAD(P)+]</td>
<td>Phospholipid biosynthesis</td>
<td>AAM78768</td>
<td>36.7</td>
<td>5.65</td>
<td>16</td>
<td>55.9</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Two-component response regulator YesN</td>
<td>Signal transduction</td>
<td>AAT87437</td>
<td>28.1</td>
<td>5.05</td>
<td>5</td>
<td>30.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Malonyl-CoA-{acyl-carrier-protein} transacylase</td>
<td>Fatty acid biosynthesis</td>
<td>AAT87620</td>
<td>34.5</td>
<td>6.25</td>
<td>11</td>
<td>39.8</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Putative lipoprotein</td>
<td>Lipid binding</td>
<td>BAC64163</td>
<td>36.4</td>
<td>7.60</td>
<td>5</td>
<td>14.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Putative L-ribulose 5-phosphate 4-epimerase</td>
<td>Metabolism</td>
<td>AAM78747</td>
<td>26.1</td>
<td>5.85</td>
<td>7</td>
<td>31.0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) GenBank accession number.
b) Theoretical values.
c) Number of tryptic peptides matched to the protein.
d) Percentage of protein sequence covered by the matched peptides.
e) Proteins identified in WT and/or HSC5ΔhtrA are denoted by a plus sign.
f) Identified by 2-D western blot analysis.
<table>
<thead>
<tr>
<th>Spot</th>
<th>Protein</th>
<th>Function or pathway</th>
<th>Accession no.</th>
<th>Molecular mass (kDa)</th>
<th>pI</th>
<th>Peptide match</th>
<th>Coverage (%)</th>
<th>GAS strain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>WT</td>
</tr>
<tr>
<td>16</td>
<td>SpeB</td>
<td>Virulence factor</td>
<td>BPSOP</td>
<td>36.7</td>
<td>5.84</td>
<td>10</td>
<td>42.0</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>Streptodornase 1 (Sda1)</td>
<td>Virulence factor; DNase activity</td>
<td>AAZ51787</td>
<td>30.1</td>
<td>5.01</td>
<td>3</td>
<td>16.0</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>Streptodornase B (SdaB) (fragment)</td>
<td>Virulence factor; DNase activity</td>
<td>BAD74233</td>
<td>25.7</td>
<td>8.61</td>
<td>4</td>
<td>25.0</td>
<td>+</td>
</tr>
<tr>
<td>19</td>
<td>SpeB precursor (fragment)</td>
<td>Virulence factor</td>
<td>1DK1A</td>
<td>33.4</td>
<td>7.22</td>
<td>10</td>
<td>42.0</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>Hypothetical membrane spanning protein</td>
<td>Unknown</td>
<td>ABF33010</td>
<td>34.8</td>
<td>9.85</td>
<td>3</td>
<td>9.0</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>M protein (fragment)</td>
<td>Virulence factor</td>
<td>AAQ73237</td>
<td>27.3</td>
<td>6.04</td>
<td>11</td>
<td>37.0</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>M protein precursor (fragment)</td>
<td>Virulence factor</td>
<td>AAN46651</td>
<td>23.2</td>
<td>5.57</td>
<td>9</td>
<td>35.0</td>
<td>+</td>
</tr>
<tr>
<td>23</td>
<td>M protein precursor (fragment)</td>
<td>Virulence factor</td>
<td>AAN46651</td>
<td>23.2</td>
<td>5.57</td>
<td>9</td>
<td>36.0</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>M protein precursor (fragment)</td>
<td>Virulence factor</td>
<td>AAN46651</td>
<td>23.2</td>
<td>5.57</td>
<td>6</td>
<td>23.0</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>CoA-binding protein</td>
<td>Acyl-coenzyme A binding</td>
<td>ABF33227</td>
<td>16.8</td>
<td>6.59</td>
<td>2</td>
<td>21.0</td>
<td>+</td>
</tr>
</tbody>
</table>

a) GenBank accession number.
b) Theoretical values.
c) Number of tryptic peptides matched to the protein.
d) Percentage of protein sequence covered by the matched peptides.
e) Proteins identified in WT and/or HSC5∆htrA are denoted by a plus sign.
FIG. 2

(A) and (B) show the expression of proSpeB and SpeB over time in the presence of WT and ΔhtrA, and ΔspeB ΔspeB strains.
FIG. 3
FIG. 4