2005

Structures, spin glass and spin states in perovskite GdMn/sub x/Co/sub 1-x/O/sub 3/ (x \leq 0.5)

M Mehdi Farhoudi
University of Wollongong, mmf02@uow.edu.au

Xiaolin Wang
University of Wollongong, xiaolin@uow.edu.au

Publication Details
This paper originally appeared as: Farhoudi, MM and Wang, XL, Structures, spin glass and spin states in perovskite GdMn/sub x/Co/sub 1-x/O/sub 3/ (x \leq 0.5), INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 4-8 April 2005, 1679-1680. Copyright IEEE 2005.
Structures, spin glass and spin states in perovskite
GdMn$_x$Co$_{3-x}$O$_3$ (x=0.5)
M. Mehdi Farhoudi, X.L. Wang
Spintronic and Electronic Materials Group, Institute for Superconducting Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia

Introduction
In magnetic systems frozen spins in random alignment causes the spin glass state. The spin glass state has been observed in spinel, amorphous materials, and mostly in diluted magnetic alloys. Spin glass could arise from paramagnetic state in disordered system or from paramagnetic to ferromagnetic state. In latter case, the spin glass co-exists with ferromagnetism. Recently, spin glass states have also been widely observed in a number of RE$_x$MO$_{3-x}$ perovskite (RE=rare-earth, M=3d transition metal) compounds. In particular, REMn$_x$Co$_{3-x}$O$_3$ perovskites exhibited very interesting paramagnetic, meta-magnetism and ferromagnetism depending on the size of RE. The determination of valences of Co and Mn and their spin states are important issues in clarifying the magnetism in the REMn$_x$Co$_{3-x}$O$_3$ system. Very recently, a typical spin glass behavior has been observed in perovskite GdCo$_{1-x}$Mn$_x$O$_3$ with very sharp transition width of 1K at 115 K and also observed in YbMn$_x$Co$_{3-x}$O$_3$ and LaMn$_x$Co$_{3-x}$O$_3$ compounds. In this paper, we presented our studies on the structures, ferromagnetism, spin glass and spin states of Co and Mn in GdCo$_{1-x}$Mn$_x$O$_3$ (x=0.2, 0.3, 0.4, 0.5). We observed spin glass state and two peak features in dc and ac susceptibility. The valences of Co or Mn changed from 2+ or 4+ to 3+ when Co amount increases and possible spin state transformation of Co and Mn was also suggested.

Experimental
Polycrystalline ceramic samples of GdCo$_{1-x}$Mn$_x$O$_3$ (x=0.2, 0.3, 0.4, 0.5) were prepared by solid state reaction method. The samples structures were characterized through X-ray diffraction and the structures are refined using Rietveld refinement program. Results showed that all the samples are single phase and crystallized as orthorhombic structures and the lattice parameters gradually increase with x.

Zero-field cooled (ZFC) and field cooled (FC) magnetization and ac susceptibility were measured using commercial PPMS in different magnetic fields and frequencies over a wide temperature range.

All samples show ferromagnetic transition at temperature around 122K. For samples with x<0.5, we found that there is a secondary transition which decrease with x in addition to the first transition at 122K. The secondary transition is also present in ac susceptibility measurement. The first peak shifts to high temperature with frequency indicating a spin glass state, but the second one is independent of frequency.

By fitting to Curie-Wise Law from $\frac{1}{T}$ vs. temperature, we found that μ_{eff} obtained gradually decreased from 10 to 8 μ_B/mol as Co increasing from 0.2 to 0.8. By assuming appropriate combination of different valences and spin states of Co and Mn, we found that the valences of Co and Mn take 2+ and 4+ with low spin for Co$^{2+}$ and intermediate spin for Mn$^{4+}$ when x=0.5. As x increase, they changed from 2+ and 4+ to 3+ and possible spin state transformation was also suggested.