Double trigonal warping and the anomalous quantum Hall step in bilayer graphene with Rashba spin-orbit coupling

Bo Wang
Peking University

Chao Zhang
University of Wollongong, c.zhang@uow.edu.au

Zhongshui Ma
Peking University, zma@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Recommended Citation
Wang, Bo; Zhang, Chao; and Ma, Zhongshui, "Double trigonal warping and the anomalous quantum Hall step in bilayer graphene with Rashba spin-orbit coupling" (2012). *Faculty of Engineering and Information Sciences - Papers: Part A*. 9.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Double trigonal warping and the anomalous quantum Hall step in bilayer graphene with Rashba spin-orbit coupling

Abstract
We demonstrate that the trigonal warping observed in bilayer graphene is doubled in the presence of Rashba spin-orbit (RSO) coupling, i.e. the Dirac points along the three-fold symmetry axis are doubled. There are now seven Dirac points. Furthermore, the RSO interaction breaks the electron-hole symmetry of the magnetic band structure. The most intriguing feature is that the step of the quantum Hall plateau at zero energy is four times that at finite energy. The number of Dirac points and the zero energy Hall step are only determined by the existence of RSO coupling, but are independent of the strength of the coupling. The robustness of these phenomena suggests equivalence between the RSO coupling and the topological effect in bilayer coupling. © 2012 IOP Publishing Ltd.

Keywords
orbit, quantum, hall, step, coupling, bilayer, graphene, rashba, spin, trigonal, warping, double, anomalous

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/9
Double trigonal warping and the anomalous quantum Hall step in bilayer graphene with Rashba spin–orbit coupling

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 J. Phys.: Condens. Matter 24 485303
(http://iopscience.iop.org/0953-8984/24/48/485303)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 130.130.37.84
The article was downloaded on 03/12/2012 at 04:35

Please note that terms and conditions apply.
Double trigonal warping and the anomalous quantum Hall step in bilayer graphene with Rashba spin–orbit coupling

Bo Wang1, C Zhang2 and Zhongshui Ma1

1 School of Physics, Peking University, Beijing 100871, People’s Republic of China
2 School of Physics, University of Wollongong, New South Wales 2522, Australia

Received 6 September 2012, in final form 19 October 2012
Published 7 November 2012
Online at stacks.iop.org/JPhysCM/24/485303

Abstract

We demonstrate that the trigonal warping observed in bilayer graphene is doubled in the presence of Rashba spin–orbit (RSO) coupling, i.e. the Dirac points along the three-fold symmetry axis are doubled. There are now seven Dirac points. Furthermore, the RSO interaction breaks the electron–hole symmetry of the magnetic band structure. The most intriguing feature is that the step of the quantum Hall plateau at zero energy is four times that at finite energy. The number of Dirac points and the zero energy Hall step are only determined by the existence of RSO coupling, but are independent of the strength of the coupling. The robustness of these phenomena suggests equivalence between the RSO coupling and the topological effect in bilayer coupling.

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the isolation of single layers of graphite in 2004 [1], a lot of exciting work on single layer graphene (SLG) has been carried out [2], for example the prediction and observation of electron–hole symmetry and a half-integer quantum Hall effect [3–5], finite conductivity at zero charge-carrier concentration [3], the strong suppression of weak localization [6–8], universal conductance [9–11], magnetic enhancement of the optical conductance in graphene nanoribbons [12] and a strong nonlinear response in the terahertz frequency regime [13, 14].

More recently, attention has also been paid to SLG’s cousin, bilayer graphene (BLG). Electrons in bilayers can exhibit qualitatively new properties not seen in single layers, such as interlayer drags [15] and correlations [16]. The electronic and transport properties of BLG differ significantly from SLG in many respects, particularly at low energies in the ‘Dirac’ regime. The electronic band structure of bilayer graphene has an asymmetry gap [17]. In bilayer graphene the semiconductor gap can be controlled experimentally [18]. The optical and magneto-optical far infrared properties of bilayer graphene have been studied [19]. The role of the impurities in biased bilayer graphene has been clarified [20]. One feature unique to BLG is the trigonal warping in the low-energy dispersion. The minimum conductivity in BLG is six times as large as that for single layer graphene [21].

This six times enhancement is independent of the strength of the trigonal warping, indicating the topological nature of the bilayer coupling.

In this paper, we present theoretical results on the role of Rashba spin–orbit (RSO) coupling on the electronic and transport properties of BLG. It is shown that the interplay of the RSO interaction (which lifts the spin degeneracy) and the interlayer couplings (which result in trigonal warping) can lead to an energy state whose dispersion exhibits double trigonal warping. Our main results are the following. (i) While the bilayer coupling changes the magnetic period from 1 to 6, RSO coupling lifts the degeneracy and induces breakdown of the electron–hole symmetry near zero energy. (ii) The number of edge states increases to six. (iii) There is an anomalous Hall step at zero energy. We shall show the possible signature of trigonal warping imprinted on the edge state structure of zigzag graphene nanoribbons (ZGNRs).
The paper is organized as follows. In section 2 we present the formalism and result for the electronic properties of BLG with RSO coupling. Section 3 concerns the properties of BLG under a perpendicular magnetic field. Section 4 contains analysis and discussion on the transport properties. Concluding remarks are given in section 5.

2. Electronic properties

A typical BLG sheet consists of two SLG layers stacked in the orientation shown in figure 1. The hollow and solid spheres represent atoms in the A- and B-sublattices. Several forms of the Hamiltonian for BLG are used in the literature depending on the approximations used and the relative orientations of the two layers. The original treatment was given by Slonczewski–Weiss–McClure, where all three interlayer coupling terms were included [21–23]. We consider that the two layers are arranged in the Bernal stacking (A2–B1). The most prominent interlayer coupling terms are the A2–B1 and B2–A1 coupling between sites which are directly above (or below) each other [21, 24, 25]. Here we denote these terms as \(t_1 = 0.36 \text{ eV} \) for the A2–B1 coupling and \(t_2 = 0.315 \text{ eV} \) for the B2–A1 coupling. The other two interlayer coupling terms are the A1–A2 and B1–B2 coupling between inequivalent sites which are not directly above or below each other, but offset by an amount \(b = 1.42 \text{ Å} \). These two coupling terms have the same strength and are defined here as \(t_3 = t_4 = 0.12 \text{ eV} \). Finally, as usual, the nearest neighbor A–B and B–A coupling in the same layer is included, which is given here by \(t = 3.16 \text{ eV} \). All energies will be normalized relative to the nearest neighbor hopping bandwidth \(t \).

The Hamiltonian of BLG in the presence of RSO couplings can be written as

\[
H = t \sum_{i,j} c_i^\dagger c_j + \sum_i t_i \sum_{\alpha, \beta} c_i^\dagger \sigma_{\alpha \beta} c_i \left(\mathbf{d}_{ij} \times \mathbf{e}_\beta \right)_x c_j,
\]

where \(\mathbf{d}_{ij} \) is the displacement vector between the lattice sites \(i \) and \(j \) in a single graphene layer, \(\mathbf{e}_\beta \) are the Pauli matrices, \(\gamma_i \) (defined above as \(\gamma_1 \) to \(\gamma_4 \)) are the hopping energies between lattice sites \(\alpha \) and \(\beta \) in different graphene layers. The last term is the RSO coupling. It couples only nearest neighbors with opposite spin. In general, one also has intrinsic SO coupling [26]. The intrinsic SO interaction is generally much weaker (only a few \(\mu \text{ eV} \) [27]) than the RSO coupling. Therefore we only include the RSO coupling in the Hamiltonian. The presence of the RSO coupling is due to the breaking of the inversion symmetry of the graphene lattice. The coefficient \(\lambda_R \) depends on the strength of the perpendicular electric field or the interaction with a substrate [28, 29]. Some papers have reported that the RSO can be tuned to 1 meV for typical values of an external electric field (50 V/300 nm). Breaking of the up–down symmetry by a substrate can result in an RSO coupling on the scale of 10 meV [30]. The effect of impurities can increase the RSO coupling to 7 meV [31]. Therefore, the strength of the RSO coupling is stronger than that of the intrinsic SO coupling by three orders of magnitude. For this reason, we shall focus our studies only on the effect of extrinsic SO coupling (which is also referred to as RSO coupling) [32]. In the rest of this paper, we shall use a dimensionless RSO coupling coefficient \(\lambda = \lambda_R a/t \).

We consider a four-band model (two in the conduction band and two in the valence band) and take into account the indices for pseudo-spin and real-spin. The eight-component wavefunction can be written as

\[
\psi = \begin{pmatrix}
\psi_{A1, \uparrow} & \psi_{B1, \uparrow} & \psi_{A2, \uparrow} & \psi_{B2, \uparrow} \\
\psi_{A1, \downarrow} & \psi_{B1, \downarrow} & \psi_{A2, \downarrow} & \psi_{B2, \downarrow}
\end{pmatrix}^T,
\]

where \(T \) represents transpose, \(\psi_A \) and \(\psi_B \) are the wavefunctions of sublattices A and B, and the index 1 (2) refers to the top (bottom) layer.

In the absence of RSO coupling, the translation invariance holds in both the \(x \) and \(y \) directions for infinite bilayer graphene. The wavefunction can be expressed in terms of Bloch wavefunctions. The Hamiltonian with RSO coupling in the basis of Bloch functions can be written as

\[
\tilde{H} = \begin{pmatrix}
0 & t\chi + \lambda \eta & \gamma_2 \chi & \gamma_4 \chi^* \\
t\chi^* + \lambda \eta^* & 0 & \gamma_1 & \gamma_4 \chi \\
\gamma_2 \chi^* & \gamma_1 & 0 & t\chi + \lambda \eta \\
\gamma_4 \chi^* & \gamma_4 \chi & t\chi^* + \lambda \eta^* & 0
\end{pmatrix},
\]

where

\[
\chi = e^{ik_x a} + 2e^{-ik_x a} \cos \left(\frac{\sqrt{3}a}{2} k_y \right)
\]

and

\[
\eta = -\sigma_x \sqrt{3} \sin \left(k_y \frac{\sqrt{3}a}{2} \right) e^{-ik_y a} - i\sigma_y \left[e^{ik_x a} - e^{-ik_x a} \cos \left(k_y \frac{\sqrt{3}a}{2} \right) \right].
\]
Figure 2. Top: the double trigonal warping at fixed energy. Bottom: a three dimensional view of the energy contour. The central point is $(0, \frac{2\pi}{3})$, which is a Dirac point in SLG. Every Dirac point in SLG expands to a double trigonal warping in BLG.

where a is the C–C bond length. By diagonalizing the Hamiltonian we can determine the eigenvalues. The energy contours are shown in figure 2. The interlayer coupling splits the original Dirac point, which gives rise to the well known trigonal warping. On the k_x-k_y plane, there are four Dirac points, one at the K-point, and the other three at positions δk_i from the K-point with a c_3v symmetry, i.e., $|k_i|$ is constant for $i = 1–3$. The effect of the RSO interaction is to further split the three Dirac points at δk. In total there are now seven identical points (split K-points), as shown in figure 2(a). One of them remains at the K-point which is unaffected by the RSO interaction. The ones at δk_i split into two Dirac points, located at k_{ia} and k_{ib}. Figure 3(a) shows the cut of the energy contour at fixed k_x. The two new Dirac points are located on the two sides of the original Dirac point at $k_{ia} < k_i < k_{ib}$. The six other Dirac points form two triangles around the K-point. We refer to this energy contour as double trigonal warping (shown in figure 2(a)). Our results show quantitatively the equivalent roles played by RSO and interlayer coupling in trigonal warping. In the limit of the RSO coupling being much stronger than the interlayer coupling, the two Dirac points become very close. In this case there are three equivalent Dirac points at finite δk. This is the case of single trigonal warping solely due to a large RSO interaction in single layer graphene. The distance between the two new Dirac points, $\Delta k_2 = k_{ia} - k_{ib}$, is proportional to the strength of the RSO interaction. The distance between the K-point and the next Dirac point is δk_1, which decreases as the RSO coupling increases and approaches zero in the limit of large RSO coupling. Figure 3 depicts the dependence of the distance between various Dirac point on the strength of the RSO coupling λ. The distance $\delta k_1 + \delta k_2$, which defines the region of double trigonal warping, increases almost linearly with the strength of RSO coupling. We note that the double trigonal warping induced by the RSO coupling occurs at very low energy and therefore cannot be calculated perturbatively.

3. The effect of RSO interaction on the magnetic subbands

The energy spectra of bilayer graphene in a magnetic field and with finite RSO coupling have been calculated recently [34, 35]. In the representation of equation (1), since the coupling only connects the nearest neighbors with opposite spins, the RSO interaction term under a finite magnetic field can be
written in the form (see appendix)

\[
H_{\text{soc}}\psi_{A_m} = -\sqrt{3}\lambda \sigma_\gamma \sin \left[\pi f \left(m - \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right] \psi_{B_m}
- i\lambda \sigma_\gamma \cos \left[\pi f \left(m - \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right] \psi_{B_m}
- i\lambda \sigma_\gamma \psi_{A_{m+1}},
\]

and

\[
H_{\text{soc}}\psi_{B_m} = -\sqrt{3}\lambda \sigma_\gamma \sin \left[\pi f \left(m + \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right] \psi_{A_m}
+ i\lambda \sigma_\gamma \cos \left[\pi f \left(m + \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right] \psi_{A_m}
+ i\lambda \sigma_\gamma \psi_{A_{m+1}},
\]

where \(f = \phi/\phi_0, \phi = 3\sqrt{3} Ba^2/2 \) is the magnetic flux through the hexagon in the unit cell and \(\phi_0 = hc/e \) is the flux quantum. Due to the presence of a nonzero magnetic field, the Schrödinger equation becomes a Harper equation. It can be written as

\[
H\psi_m = \tilde{A}_m \psi_{m-1} + \tilde{C}_m \psi_m + \tilde{A}_m^\dagger \psi_{m+1},
\]

where

\[
\tilde{A}_m = \begin{pmatrix}
0 & 0 & 0 & 0 \\
\gamma_2 I_2 & \gamma_1 I_2 & 0 & 0 \\
2\gamma_1 \chi_{2} I_2 & \gamma_1 I_2 & \gamma_1 I_2 & 0 \\
2\gamma_1 \chi_{2} I_2 & \gamma_1 I_2 & 0 & 2\gamma_1 \chi_{2} I_2 \\
\end{pmatrix}
\]

and

\[
\tilde{C}_m = \begin{pmatrix}
0 & 2\gamma_1 \chi_{2} I_2 - \lambda Y_{1}^1 & 2\gamma_2 \chi_{1} I_2 & \gamma_1 I_2 \\
2\gamma_1 \chi_{2} I_2 - \lambda Y_{1}^1 & 0 & \gamma_1 I_2 & 2\gamma_1 \chi_{2} I_2 \\
2\gamma_2 \chi_{1} I_2 & \gamma_1 I_2 & 0 & 2\gamma_1 \chi_{2} I_2 - \lambda Y_{1}^1 \\
\gamma_1 I_2 & 2\gamma_1 \chi_{2} I_2 & \gamma_1 I_2 & 0 \\
\end{pmatrix},
\]

where \(\chi_1 = \cos[\pi f (m + \frac{1}{6}) + \kappa], \chi_2 = \sin[\pi f (m + \frac{1}{6}) + \kappa], Y_{1}^1 = \sqrt{3}\sigma_1 \chi_1 \pm i\sigma_2 \chi_1 \) and \(\kappa = \frac{\sqrt{2}\sqrt{3}}{2} k_y. \)

In figure 4 we present the electronic energy versus the magnetic field over a full magnetic period. Compared to the spectrum of a single layer graphene sheet [33], the magnetic Brillouin zone has a six-fold increase. The reflection symmetry about \(f = 1/2 \) is broken and the spectra are symmetric about \(f = 3. \) The magnetic period of the spectra in \(f = 6 \), i.e., \(E(6 + f) = E(f) \). The reason is that in bilayer graphene this is the extra magnetic phase shift of \(\pi/6 \) (shown in equations (2) and (3)). We have previously shown that in single layer graphene when the next nearest neighbor hopping is included the magnetic period increases from 1 to 6 [36]. Including next nearest neighbor hopping in single layer graphene means that an electron couples to six additional electrons. In bilayer graphene, interlayer coupling also results in an electron coupling to six additional electrons in the other layer. Therefore the change of the magnetic period from 1 to 6 in bilayer graphene has the same origin as that in single layer graphene with next nearest neighbor hopping. The interlayer coupling does not break the electron–hole symmetry near zero energy. With the RSO coupling, the spectrum loses the zero energy electron–hole symmetry. The spectrum consists of 8q subbands for a given \(f = p/q \). For \(f = 0, 6 \), the RSO interaction induced level splitting at \(E = 0 \) is clearly resolved. One of the interesting features in the magnetic subband arising from the RSO interaction is the level realigning at \(f = 1, 2, 4, 5 \). Without the RSO interaction, the \(E = 0 \) level continues across these \(f \) boundaries. With finite RSO interaction, the level shift at these \(f \) values is discrete. For example, the \(E = 0 \) level on the left (or right) jumps to align with the first conduction (or valence) level on the right (or left). This jump in level alignment may provide a mechanism for quantum switching.

The constant magnetic field induces an electronic orbital magnetic moment. The magnetization per electron is defined as \(M = -(1/N)(dF/dB) \). In infinite BLG, the energy band structure shown in figure 4 leads to quantum magnetic oscillation in \(M \). BLG ribbons are formed under an additional one-dimensional confinement. The quantization of the transverse momentum in the ribbon gives rise to additional quantum oscillations. In figure 5 we plot the magnetization curve as well as the susceptibility, \(\chi = -(1/N)(d^2F/dB^2) \), for two ribbons of different widths, as a function of the magnetic field. The \(M–B \) curves for BLG with RSO coupling are shown in figure 5. The magnetization oscillates with the \(B \)-field.
The magnetization and susceptibility for zigzag bilayer ribbons of \(N = 50 \) and \(N = 100 \), chemical potential \(\mu = 0.0 \). The RSO couplings are \(\lambda = 0 \) and 0.1.

Figure 5. The magnetization and susceptibility for zigzag bilayer ribbons of \(N = 50 \) and \(N = 100 \), chemical potential \(\mu = 0.0 \). The RSO couplings are \(\lambda = 0 \) and 0.1.

4. The role of the RSO interaction on the quantum Hall effect

The quantum Hall effect in both single layer and bilayer graphene has been well documented and fully analyzed \([37–39]\). In single layer graphene, the Hall conductance jumps as chemical sweeps through the Landau level. The step (or the size of the jump) is \(\sigma_0 = e^2/h \), the same for each jump. As discussed earlier, both the interlayer coupling and the RSO coupling result in level splitting. Under a strong magnetic field, Landau levels are formed in the energy spectrum which lead to discrete peaks in the density of states (DOS). Whenever the Fermi level sweeps over these discrete peaks, the electron concentration jumps and the Hall conductance exhibits a plateau. It is interesting to note that the level at \(E = 0 \) is not affected by either the interlayer coupling or the RSO coupling. In BLG without RSO coupling, the size of the conductance jump at \(E = 0 \) is twice that for subsequent jumps at finite energy. Here we shall show the combined effect of the interlayer coupling and RSO coupling on the quantum Hall effect.

By employing the Green’s function method, the Hall conductance is the sum of a bulk term and a surface term, \(\sigma^H = \sigma^{I \, xy} + \sigma^{II \, xy} \), where \(\sigma^{I \, xy} \) is the bulk term,

\[
\sigma^{I \, xy} = \frac{e^2}{2} \int \delta(E) \left\langle \left[v_y G - (E_F - H) \right] v_x \right\rangle,
\]

and \(\sigma^{II \, xy} \) is the surface term,

\[
\sigma^{II \, xy} = \frac{e^2}{2} \left\langle \left[v_x v_y \right] \right\rangle = -e^2 \left\langle \left[v_x v_y \right] \right\rangle.
\]

The Hall conductance is written as

\[
\sigma^H = -e^2 \sum_{n, k} \left\langle \delta(E_F - E_n(k)) \langle n, k | v_y | n, k \rangle \right\rangle \times \langle n, k | v_x | n, k \rangle.
\]
Figure 6. A comparison of the Hall conductances for single layer and bilayer graphene sheets without and with the RSO coupling. (a) single layer graphene, (b) single layer graphene with RSO coupling, (c) bilayer graphene, (d) bilayer graphene with RSO coupling.

show that the roles played by these two couplings are totally inequivalent in the Hall conductance. The total DOS is conserved when RSO coupling is included. On the other hand, changing from single layer to bilayer doubles the total DOS. There is a simple correlation between the spikes in difference sub-figures in figure 6. The inclusion of RSO coupling will double the number of spikes (except for the one at $E = 0$) and the height of the spikes will decrease by a half. On increasing the number of layers from one to two, the spikes at nonzero energy double while their height is unchanged and the spike height at zero energy doubles. Comparing figure 6(a) with figure 6(b), it is found that RSO coupling does not affect the height of the plateau at $E = 0$ state due to the RSO interaction in high Landau levels, clearly. Besides breaking the symmetry about $E = 0$, the spectra reveal a new magnetic period of $f = 3$. The QHE Hall plateaus at the high Landau level $n > 0$ have half-integer steps and there is an integer jump at the Landau level $n = 0$. We have investigated the splitting that occurs in the DOS of bilayer graphene in the presence of RSO coupling and analyzed the relation to the Hall plateaus.

5. Concluding remarks

We have studied bilayer graphene in the presence of RSO coupling using a tight-binding model. The properties of its low energy electronic band structure have been investigated. It has been found that the trigonal warping for the graphite bilayer around the Dirac point are deformed by the presence of RSO coupling. There exist two trigonal warplings with the same central touching point. In the presence of a magnetic field perpendicular to the layers, we have calculated the butterfly spectrum. The changes in the energy spectrum of graphene have been shown as a function of the dimensionless magnetic flux $f = p/q$. The effects of both intra-layer and RSO coupling cause significant distortion to the magnetic subbands. The Landau level is resolved by the RSO interaction in high Landau levels, clearly. Besides breaking the symmetry about $E = 0$, the spectra reveal a new magnetic period of $f = 3$. The QHE Hall plateaus at the high Landau level $n > 0$ have half-integer steps and there is an integer jump at the Landau level $n = 0$. We have investigated the splitting that occurs in the DOS of bilayer graphene in the presence of RSO coupling and analyzed the relation to the Hall plateaus.

Acknowledgments

BW and ZSM acknowledge the financial support from NBRP of China (2012CB921300) and NNSFC Grant (91021017, 11274013). CZ acknowledges support from the Australian Research Council (DP0879115).

Appendix

Here we show the steps leading to equations (2) and (3) from equation (1). The line index m is defined in figure A.1. The Rashba part of the BLG Hamiltonian is

$$H_{soc} = i\lambda_R \sum_{\langle ij \rangle} c_i^\dagger (\sigma \times d_j)_z c_j.$$ (9)

For the wavefunctions of sublattices A and B, ψ_A and ψ_B, we found

$$H_{soc} \psi_A(x) = i\lambda_R e_c \cdot \sigma \times \begin{bmatrix} d(a, 0) \psi_B(x - a) \\ d(-a/2 - x) e^{i\phi_B/2} e^{-i\theta} \psi_B(x + a) \\ d(-a/2 - x) e^{i\phi_A/2} e^{-i\theta} \psi_A(x + a/2) \\ d(-a/2 - x) e^{i\phi_A/2} e^{-i\theta} \psi_A(x + a/2) \end{bmatrix}$$

$$= i\lambda_R e_c \cdot \sigma \times \begin{bmatrix} d(1, 0) \psi_B(x - a) \\ d(-1/2 - x) e^{i\phi_B/2} e^{-i\theta} \psi_B(x + a/2) \\ d(-1/2 - x) e^{i\phi_A/2} e^{-i\theta} \psi_A(x + a/2) \\ d(-1/2 - x) e^{i\phi_A/2} e^{-i\theta} \psi_A(x + a/2) \end{bmatrix}$$
Taking the notations
\[
\begin{align*}
\psi_{soc} &= \psi_B (x + \frac{a}{2}) + d \left(-\frac{1}{2}, -\sqrt{\frac{3}{2}} \right) e^{-i \frac{\sqrt{3} m}{2} f (\frac{3}{2})} \\
&\times e^{-i k_j \frac{\sqrt{3} m}{2} \psi_B (x + \frac{a}{2})} \\
&\times e^{-i k_j \frac{\sqrt{3} m}{2} \psi_B (x + \frac{a}{2})}
\end{align*}
\]

Taking the notations
\[
\psi_{A_n} = \psi_A \left(x = \frac{3a}{2} m \right) \quad \text{and} \quad \psi_{B_m} = \psi_B \left(x = \frac{3a}{2} m + \frac{a}{2} \right),
\]
we have
\[
H_{soc} \psi_{A_n} = -\lambda \left[\sigma_x \sqrt{3} \sin \left(\pi f \left(m + \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right) \\
+ i \sigma_y \cos \left(\pi f \left(m + \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right) \right] \psi_{B_m} \\
- i \lambda \sigma_y \psi_{B_{m+1}},
\]
i.e., equation (2). In a similar way, equation (3) can be obtained as follows. We have
\[
H_{soc} \psi_B (x) = i \lambda_R e_c \cdot \left(\sigma \times \left[d (-1,0) \psi_A (x + a) \\
+ d \left(\frac{a}{2}, -\sqrt{\frac{3a}{2}} \right) e^{i \frac{\sqrt{3} m}{2} f A d} e^{i k_j \frac{\sqrt{3} m}{2}} \psi_A (x - \frac{a}{2}) \\
+ d \left(\frac{a}{2}, -\sqrt{\frac{3a}{2}} \right) e^{i \frac{\sqrt{3} m}{2} f A d} e^{i k_j \frac{\sqrt{3} m}{2} \psi_A (x - \frac{a}{2})} \right] \right)
\]

With the notations \(\psi_{A_n} = \psi_A \left(x = \frac{3a}{2} m \right) \) and \(\psi_{B_m} = \psi_B \left(x = \frac{3a}{2} m + \frac{a}{2} \right) \), we obtain
\[
H_{soc} \psi_{B_m} = -\lambda \left[\sigma_x \sqrt{3} \sin \left(\pi f \left(m + \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right) \\
+ i \sigma_y \cos \left(\pi f \left(m + \frac{1}{6} \right) + \frac{\sqrt{3}}{2} k_y a \right) \right] \psi_{A_n} \\
+ i \lambda \sigma_y \psi_{B_{m+1}},
\]
References
[38] Zhang Y et al 2005 Nature 438 201