Formal concept analysis for e-learning

Ghassan Beydoun
University of Wollongong, beydoun@uow.edu.au

Publication Details
Formal concept analysis for e-learning

Abstract
We capture student interactions in an e-learning community to construct a semantic web (SW) to create a collective meta-knowledge structure guiding students as they search the existing knowledge corpus. We use formal concept analysis (FCA) as a knowledge acquisition tool to process the students virtual surfing trails to express and exploit the dependencies between web-pages to yield subsequent and more effective focused search results. We mirror social navigation and bypass the cumbersome manual annotation of webpages and at the same time paralleling social navigation for knowledge. We present our system KAPUST2 (Keeper and Processor of User Surfing Trails) which constructs from captured students trails a conceptual lattice guiding student queries. We use KAPUST as an e-learning software for an undergraduate class over two semesters. We show how the lattice evolved over the two semesters, improving its performance by exploring the relationship between ‘kinds’ of research assignments and the e-learning semantic web development. Course instructors monitored the evolution of the lattice with interesting positive pedagogical consequences. These are reported as well in this paper.

Keywords
era2015

Disciplines
Physical Sciences and Mathematics

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/2677
Formal Concept Analysis for E-learning

Ghassan Beydoun

School of Information Systems and Technology, University of Wollongong, Australia
beydoun@uow.edu.au

Abstract. Student interactions in an e-learning community are captured to construct a Semantic Web (SW) to create a collective meta-knowledge structure guiding students as they search the existing knowledge corpus. Formal Concept Analysis (FCA) is used as a knowledge acquisition tool to process the students virtual surfing trails to express and exploit the dependencies between web-pages to yield subsequent and more effective focused search results. The system KAPUST2 (Keeper And Processor of User Surfing Trails) which constructs from captured students trails a conceptual lattice guiding student queries is presented. Using KAPUST as an e-learning software for an undergraduate class over two semesters shows how the lattice evolved over the two semesters, improving its performance by exploring the relationship between ‘kinds’ of research assignments and the e-learning semantic web development. Course instructors monitored the evolution of the lattice with interesting positive pedagogical consequences.

1 Introduction

It was proposed in [1] to use indirect social navigation [2], to exploit web-pages dependencies using surfing trails left behind. These are not beneficial if individuals surfing the net have different interests, but in a given interest group individuals produce trails that are of interest to the whole group. Early experiments in e-learning in [1] indicated processing surfing trails left by students using Formal Concept Analysis (FCA) is possible. But lack of crossings between surfing trails lowered the usability of the resultant lattice. Our hypothesis in this paper is that the effectiveness of the resultant conceptual lattice depends on a sufficient complexity of the conceptual lattice itself on one hand and the following factors on the other: the way assignments are set to ensure trails crossings, a reflective learning setting, and a sufficient number of trails.

In this paper, the FCA based system is employed for two consecutive semesters in an American University and using comparative assignments to ensure higher number of trail crossings. The conceptual lattice resultant from the first semester is used as a starting point for further collective development by students in the second semester. The number of crossings is much higher and the experiments confirm that indeed social navigation can be simulated in e-learning settings, and moreover that FCA is suitable.
to process the trails into a usable semantic web which supports the learning process of students.

To effectively use web-surfing experience of people, a user friendly exposure of the experience that all people can understand is required. In capturing and organizing user trails according to the browsing topic, and later allowing intelligent search of the web, users provide their topic of interest, within their interest group, and begin browsing web pages. Submitted topics of interest and trails left behind by users form the raw information to constitute the SW structure, and determine how it evolves. Formal Concept Analysis (FCA) [3] is applied to reason about the traces instead of only displaying and browsing trails as in [4]. The reasoning component has a retrieval knowledge base (the actual SW) which integrates users knowledge scattered in their left-behind surfing traces. The FCA-based approach imposes very little effort on users and bypasses manual marking up of current tools to build the SW. Our system, KAPUST, captures users behaviors and stores them for analysis and reasoning. In capturing user traces, it is similar to [5] and to [4, 6] which store interactions history on a user basis.

Formal concept analysis has been used in various classification tasks e.g. to classify software engineering activities [7] and to impose structure on semi-structured texts e.g. [8, 9]. It has been found efficient when applied to document retrieval systems for domain specific browsing [9]. Our use of FCA is unique in that the lattice is built in collaborative manner reflecting the collective meaning of user trails, and modelling unintended and indirect social navigation over the web: users are not intentionally helping each other (e.g. following footsteps in a forest) and they do not directly communicate. We build a complex information space (the SW), where we analyze traces left by users. Our approach is similar to Footprints [4, 6], where a theory of interaction history was developed and a series of tools were built to allow navigation of history rich pages and to contextualize web pages during browsing. However, unlike our approach, it does not use history to make recommendations and nor does it have a reasoning technique embedded in it.

Creating an on-line collaborative learning environment is a necessary aspect for e-learning which is the systematic use of networked information and communications technology in teaching and learning [10]. E-Learning is flexible, relatively cheap and supplies “just in time” learning opportunities. E-learning is directly underpinned by the development of and access to information and communications technology infrastructure. Creating a sense of community and understanding the on-line behaviors of the participants are also crucial [11]. Distant academic learning is one important application. E-learning techniques in the corporate world are also often used for residential workshops and staff training programs. Several efforts have been made to create e-learning environments. Notably, in George Mason University under the Program on Social and Organizational Learning (PSOL), research is being done to create and maintain a Virtual Learning Community for the participants in the program. The purpose of that research is studying the learning of the community within the
developed environment and a better understanding of the dynamics of collaborative dialogue to enable more informed and sound decision making [11].

2 Using User Trails and Formal Concept Analysis to build a Semantic Web
A group of students sharing an assignment problem usually discuss the assignment topic meeting face to face every day at university. An interactive environment is created to simulate those discussions and turn the collective knowledge generated from such discussions into a comprehensible semantic web that can be accessed not only by the students of the current class, but also students who will take the same class in following semesters are able to access it and develop it further. Individual traces are the data points that the FCA algorithm uses for learning. Traces are stored as a sequence of URL of pages that users visit in a browsing session when a user from particular interest group is searching for a specialized topic. For example, in e-learning, users are students who provide one or more keywords to identify their search domain at the beginning of each session (Figure 1). Their trails consist of sequence of URL annotated by the session title word(s) entered at the beginning of each web session. Web page addresses and session title keywords are the building blocks for our SW. Initially entered words are checked against dictionary of existing set of keywords in the database. This minimizes the redundancy of keywords (e.g. synonyms) and corrects any syntactical errors by users. The evolved SW structure gives authenticated users recommendations in the form of categorized web page links, based on session keywords. In addition, they can browse any notes added previously by authorized users. As user trails are accumulated, browsing sessions begin to intersect one another to create new knowledge. For example, while a student A searches web course notes for pages about the “Public Sector”, she comes across a webpage p1, which has been visited by student X but it was related to “IT, E-Learning” in his session. This creates new knowledge relating “IT, E-Learning” and “Public Sector” due to intersection in the corresponding trails.

FCA [3] reasoning turns user traces into structured knowledge, the conceptual lattice. This involves two steps: a matrix table is constructed showing keywords that each page satisfies, a conceptual lattice is then assembled from the matrix table. FCA starts with a context \(K = (G; M; I) \), where \(G \) is a set whose elements are called objects, \(M \) is a set whose elements are called attributes, and \(I \) is a binary relation between \(G \) and \(M \) \((g; a) \in I \) is read “object \(g \) has attribute \(a \)”. Formalized concepts reflect a relation between objects and attributes. A formal concept, \(C \), of a formal context \((G; M; I) \) is a pair \((A, B)\) where \(A \subseteq G \) is the set of objects (extent of \(C \)) and \(B \subseteq M \) is the set of attributes (intent of \(C \)). The set of all formal concepts of a context \(K \) together with the order relation \(\leq \) is a complete lattice, \(F (G, M, I) \): For each subset of concepts there is always a unique greatest common subconcept and a unique least common superconcept. In our approach, web page URLs form \(G \), the set of objects. Keywords of session names form \(M \), the set of attributes. A
concept in the resulting conceptual lattice is formed of a set of page URLs as the extents and a set of keywords as the intents. Concepts can be a result of either a single user session or multiple sessions that intersect each other. Figure 2 displays an example of 3 different user-sessions that share some common web pages in their trails. For example, "WebPage1" is visited by users A and C having different keywords identifying their session. This indicates the creation of a new concept in the lattice as a result of the intersection between their sessions. The new concept will have "WebPage1" as its page set and "IT, Political Science, Technology" as its keyword set. The concept having "WebPage 1", "WebPage 2", "WebPage 3" as its page set and "IT" as its keyword set, is an example of a concept resulting from a single user, A, session.

Sets of names and web page URLs are extracted from user traces and input to the FCA engine as XML documents. Traces are stored in a database together with the
relations that exist between each web page URL and its session name. At this stage the input to the FCA engine contains all user traces collected so far. As more traces are collected, they are incrementally fed to the FCA engine to update the existing matrix table with any new web page URLs and keywords (Figure 3).

With every new matrix table and a set of new traces, the FCA engine reconstructs the conceptual lattice. For our learning application, the lattice is updated on weekly basis following each class. The lattice generation can be scheduled to run daily instead of weekly in case of higher usage of KAPUST. KAPUST subsequent use of the generated lattice for query management, and intelligent interface are described in the next section. Our querying algorithm takes a user’s query (set of keywords) and the conceptual lattice as input. It returns as output, the web page links that best match the search query (Figures 3 and 4).

A lattice, \(L \), is a tuple of two sets, \((P_n, K_n)\), where \(P_n\) and \(K_n\) as sets of page links and keywords respectively (Figure 3). To illustrate query processing by KAPUST, we denote the set of potential concepts that match the user request, together with their priorities as \(\text{PotentialConcepts} = \{(P_n, K_n), \text{Priority}\}\), where \text{Priority} determines how relevant the concept is to the user’s query. We take it as the depth level of a concept \((P_n, K_n)\) in the conceptual lattice in case a matching concept is found. Otherwise, we take it as a measure of how many keywords from the set of keywords entered by the user at login, \(UK\), exists in a concept \((P_n, K_n)\). Referring to Figures 3 and 4, the querying algorithm has the following steps:

1. **Step 2** in the process prunes the set of keywords entered by the user by removing new keywords that do not exist in the concept lattice.

2. **Step 3** checks for a concept that has the exact set of pruned keywords.

3. **Step 4** handles the case where no matching concept is found. In this case, all concepts that have one or more keyword in their set of keywords that matches any keyword in \(UK\) are added as potential concepts. The priority is taken as \((\text{CountUK} - \text{CountK})\) to give highest priority to the concepts that have more matching keywords. If a concept has 2 matching keywords and the set \(UK\) has 3 keywords in its list, the priority will be 1, which is higher than a concept that has 1 matching keyword where the priority will be 2.

4. **Steps 5 and 6** consider the case where a matching concept is found. They add super concepts and/or sub concepts of the matching concept. Sub concepts will have a higher priority than the super concepts because they’re more specialized. The most general and most specific concepts are not considered as super or sub concepts. If no super or sub concepts are found, the matching concept itself is added to the potential list of concepts.

5. **Step 7** orders the potential concepts for display.

6. **Step 8** divides the category and the page links under each category then retrieved the average rating for each page link to be displayed for the user.
The strategy of choosing super and sub concepts gives the user a better perception and a wider amount of relevant information. Sub concepts contain all extents of the concept itself. This allows us to categorize the page-sets one level deeper. Back to our example in Figure 4, suppose the student logs in and enters keywords "Hypertext, IT projects", there is a matching concept containing exactly those keywords. Instead of getting the following results:

'Hypertext, IT projects → WebPage 1, WebPage 2, WebPage 5, WebPage 8'

KAPUST gives the student a better insight about those webpages with the following recommendations:

Hypertext, IT Projects, E-government: WebPage1
Hypertext, IT Projects, Virtual Classroom: WebPage2
Hypertext, IT Projects, Virtual Agency: WebPage5
Hypertext: WebPage 6, WebPage 7, WebPage 8
IT Projects: WebPage 3, WebPage 4, WebPage 8

Degree of generality of a concept on a page and its priority are inversely related. Recommended pages are shown to the user in order of decreasing priority. A page is displayed once unless, it belongs to n concepts on the same level of generality in the lattice, it will be displayed n times.
(1) user inputs "UK"

(2) Select set UK*: set of keywords from UK that exists in L:
 \[UK^* = UK * \times M \]

(3) Check for a matching concept:
 If \(\exists (P_x, K_x) \in L: UK^* \subset K_x \)

(4) Add concepts having any keyword:
 \(\text{CountUK} = \text{Count} (UK^*) \)
 For Each \((P_y, K_y) \in L \)
 \(\text{CountK} = \text{Count} (K_y \cup UK^*) \)
 If \(\text{CountK} > 1 \) Then
 \(\text{PotentialConcepts} = \text{PotentialConcepts} \cap \{ (P_y, K_y, \text{CountUK} \cdot \text{CountK}) \} \)
 End If

(5) Add concepts of lower level:
 If \(\exists (P_y, K_y): (P_x, K_y) \leq (P_x, K_x) \) Then
 \(\text{PotentialConcepts} = \{ (P_x, K_x), 1 \} \)
 Else
 \(\text{PotentialConcepts} = \{ (P_x, K_x), 1 \} \)
 End If

(6) Add concepts of upper level:
 If \(\exists (P_y, K_y): (P_y, K_y) \leq (P_x, K_x) \) Then
 \(\text{PotentialConcepts} = \text{PotentialConcepts} \cap \{ (P_x, K_x), 2 \} \)
 Else
 \(\text{PotentialConcepts} = \text{PotentialConcepts} \cap \{ (P_x, K_x), 2 \} \)
 End If

(7) Order PotentialConcepts by priority.

(8) Return results for display:
 For each \((P_x, K_x) \in \text{PotentialConcepts} \)
 Category = \(K_x \)
 Page Links = \(P_x \)
 Retrieve average rating for each \(P_x \)
3. Architecture of Keeper and Processor of Users Surfing Trails (KAPUST)

KAPUST architecture (Figure 5) has two components: an extensive interactive user interface and a reasoning/knowledge creating part (invisible to the user). The reasoning components implements the conceptual framework discussed in the previous section. KAPUST is a distributed intelligent system. Its deployment requires individual deployment packages on nodes of the network. This is later described after we describe the user interface.

The interactive component organizes the user input to the machine learner, and interfaces the user with existing knowledge. KAPUST search results are lists of rated and categorized links, to visit any page, users may click on their links benefiting from traces of others their community. For e-learning, students get to exploit views of each other. They might find their quests in those links, or they can go ahead and continue searching through other pages and contribute to the traces database for the benefits of future users. Lastly, the user interface checks the session naming, minimizing syntactic mistakes in session keywords and detecting synonyms and homonyms. Similar sounding characters (e.g. 'C' and 'S') have same code. Another function compares the difference of the SOUNDEX pattern results and returns a number representing difference between the 2 strings. We use this function to determine if a similar string exists. For example, applying SOUNDEX on McDonell gives the code M-235. Suppose a keyword 'IT projects' exists in the database in the list of keywords and the user starts a new search session and enters any of 'IT', 'IT-projects' or even 'IT-projets'. He would get a suggestion telling him that a similar keyword 'IT projects' already exists. He can then either use the suggested keyword or ignore it.

A web server is needed to set up and store the semantic web component of KAPUST. A database server (SQL) is also required to store traces and execute the associated FCA engine. A client machine is designated as administrator and accesses the FCA engine from any machine. Traces between clients and KAPUST server are transferred in XML. In our e-learning environment, students can do their assignments from home. They are given an installation package for the client side of KAPUST. To deploy the application, an IIS Web Server is needed to set up the website that the annotation tool, the export utility and reporting services will be using. An SQL Server is also required to install the database of the annotation tool and the FCA engine. These are needed on the server side. We had two scenarios to set up the client machine that will access the annotation tool. The need and detail of each scenario will be explained next. The administrator's client machine, however, can access the export and reporting utilities as well as call the procedures of the FCA engine from any machine having Internet Explorer and an internet connection.
In our e-learning environment, we needed students to be able to do their assignments either from home, by installing the annotation tool using or from within the university by accessing the tool using scenario 2. Due to university policies, students are not allowed to install applications on university computers. For that purpose, a citrix server was set up at the university where the annotation tool was installed. Taking into consideration that most computers at the university have citrix client installed, the users were able to connect through citrix to the server were the annotation tool was installed and use the Internet Explorer browser from that server.
Another reason for using citrix server scenario is because the university computers are accessible to all students on its campus. Since we are taking a specific domain for research we don’t want to mess up the data with irrelevant information that might result from the improper usage of the tool by other student who are not taking the PSPA course. Students who want to use the tool from home can also use scenario 2 if they install citrix client at their PCs; but that means a slower connection and a longer waiting time compared to scenario 1 were they directly install the annotation tool at their PC. For scenario 1, a package was created that contains the annotation tool installation files. Students only have to run the package to be able to view that annotation tool as an add-on in their Internet Explorer browser and start doing their assignments.

4. E-learning Experimental Results
For each of the first 12 weeks each semester, the professor gives a research assignment on a new topic. Browsing traces are collected on a weekly basis (as XML exported files (Delta and Full)). KAPUST also allowed the professor to track the students work and keep the collected information for another class to consume. Students are graded for their interaction with the software. They are motivated to use KAPUST as they knew that their colleagues are reading their comments and annotations. Before a student searches for articles to answer the question under study, they need to log in. For each assigned question, students choose one or more keywords from the domain of the assignment question and enter them as session keywords before browsing any web pages. All visited webpages in this session are later annotated with these keywords each assignment question is handled as a distinct browsing session by the annotation tool. At a subsequent session login the student chooses a new set of keywords representing a new question.

Semester 1 had 12 students. It was seen as an experimental setting and the presence of the professor is maintained throughout each lab. Semester 1 results provided an initial conceptual structure for semester 2 when only a lab assistant was present. Students used the conceptual lattice produced by students from Semester 1 as a starting point for their learning experience and continuously added to it. Week 1 represents the testing phase where students were getting familiar with the tool. In Semester 1, weeks 2 to 7 were used to collect traces to build the semantic web structure which was built for the first time in week 8 indicating the start of knowledge sharing between students. Week 8 of semester 1 represents the maturity of the semantic web structure and the construction of the first conceptual lattice. During week 9 to 12 of semester 1, the functionality of the system as a whole is observed. In this period, the semantic web structure is continually updated online, the matrix table and the lattice structure are incrementally updated and constructed on a weekly basis, students continue to share their experiences, and most importantly students are given recommendations for each new browsing session they initiate.
The annotation tool successfully collected user traces over the 12 weeks of experimentation. A large number of traces were collected. The rate of collecting traces increased over the last few weeks. We attribute this increase to the deployment and use of the lattice structure. Using the conceptual lattice gave the students a kind of motivation to work harder and helped in their learning process. It is encouraging to get relevant links directly to the point one is searching for. Moreover, students started to cross one another’s trails after week 7. The first FCA conceptual lattices were generated in week8. The inference engine started taking action during this period to query the conceptual lattice and present recommendations to the students according to their search criteria. The first full exported file is fed to the inference engine in week 8 to generate the first version of the conceptual lattice. 60 user sessions are collected, 112 notes and 156 ratings are made. Concepts are scattered across 8 levels (including most specific and general concepts). The conceptual lattice is finally formed of 255 pages, 98 keywords and 109 concepts. Table 1 displays characteristics of concepts at each of level of the final lattice. Recall that a concept is formed of a set of pages and a set of keywords (characterizing the session), level 1 contains the most general concept (see table 1). This concept is formed of all the pages in its page set and contains the empty set in its keyword set. At level 8 we have the most specialized concept. This concept contains the empty set in its page set and all the keywords in its keyword set.

<table>
<thead>
<tr>
<th>Level</th>
<th># of Concepts</th>
<th>Keywords per concept</th>
<th># of pages per concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 (General)</td>
<td>Semester 1</td>
<td>1</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Level 2</td>
<td>Semester 1</td>
<td>59</td>
<td>1 to 2</td>
</tr>
<tr>
<td>Level 3</td>
<td>Semester 1</td>
<td>34</td>
<td>2 to 3</td>
</tr>
<tr>
<td>Level 4</td>
<td>Semester 1</td>
<td>16</td>
<td>3 to 5</td>
</tr>
<tr>
<td>Level 5</td>
<td>Semester 1</td>
<td>6</td>
<td>5 to 8</td>
</tr>
<tr>
<td>Level 6</td>
<td>Semester 1</td>
<td>4</td>
<td>8 to 9</td>
</tr>
<tr>
<td>Level 7</td>
<td>Semester 1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Level 8</td>
<td>Semester 1</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td>Level 9</td>
<td>Semester 1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Level 10</td>
<td>Semester 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Level 11 specific</td>
<td>Semester 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1 Analysis of Conceptual Lattice by Level: the number of keywords per concept increases in reverse to number of pages, as we move towards the more specialized concepts.

The fact that the lattice has several levels indicates knowledge sharing by the students. It also means that the tool has been successful in mapping concepts with the
corresponding pages from different user trails to generate new concepts on various levels of the lattice structure. At level 7, the second most specialized concept, we have 1 concept which refers to the Google search engine in its page set and which has 12 satisfied keywords. This concept is not too relevant, because the Google search engine is not a valid web page. It's rather a general site. This concept resulted from improper usage of the tool and from testing or noise data during week 1.

<table>
<thead>
<tr>
<th></th>
<th>Week 1,2</th>
<th>Week 3,4</th>
<th>Week 5,6</th>
<th>Week 7,8</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Pages Visited</td>
<td>23</td>
<td>6</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td># of Crossing Pages</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Pages Visited</td>
<td>35</td>
<td>32</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td># of Crossing Pages</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Traces and crossings during semester 2

Semester 2 had 14 students. Observations made in semester 1 led to modifying the style of questions set for semester 2 to ensure more crossings between surfing trails in the second semester. Because the already mature semantic web, it was regenerated using traces collected on a bi-weekly basis (rather than weekly). Table 2 shows the number of pages visited by users per week, as well as the number of crossing pages per week (pages that have been visited by 2 different users). Crossing pages give us a measure of how much sharing of knowledge is occurring. The number crossing pages indicates that the tool has helped students to find their target by using the stored set of previously visited pages. Compared to the results of the earlier semester, once notices that the crossing pages occurred more often and this is due to having an initial lattice structure at the beginning of the semester that further matured during the semester. Recall that last semester, the first 7 weeks were only to build the lattice and it was not until the final weeks that crossing pages started to appear.

Table 1 shows the most general which is formed of all the pages in its page set and contains the empty set in its keyword set. At level 11 we have the most specialized concept. This concept contains the empty set in its page set and all the keywords in its keyword set. This means that there is no page that satisfies all keywords and there is no keyword that satisfies all pages visited. As in the earlier analysis, notice how the number of keywords per concept increases as we move towards the more specialized concepts, and how the number of pages decreases in that order. This shows that our lattice is appropriately constructed according to the sub-concept and super-concept definition in Formal Concept Analysis. More importantly, the lattice formed in semester 2 was clearly deeper. Semester 1 final lattice had 109 concepts scattered over 8 levels. Semester 2 lattice continued to grow as seen in the above figures and had
increased by 3 levels with 93 additional concepts.

In our e-learning domain, traces were collected on weekly basis and the regeneration process was ran every week or bi-weekly basis and as a batch process offline. However, if the system is to be deployed in another domain where lattices are developed many times per hour, then our FCA algorithm may need to be reconsidered.

5 Discussion and Conclusion
Collected results are evidence for suitability of reasoning over user traces using KAPUST. Our FCA algorithm used to construct the matrix table and lattice performed well in our domain. The method we use to query the lattice provides recommendations for the students in a categorized way and that gave the students a way to share their knowledge with their fellow students. Querying for a set of naming keywords where none of the concepts in the lattice structure contains an exact match, we take each keyword individually and leave it to the user to judge, this is like an ordinary keyword search thus not fully benefiting from the conceptual lattice.

After semester 1, most concepts in the lattice were at level 2 which is too general. Several. Similarity in keywords and the fact that a new topic, and that a research topic was introduced each week. Deploying KAPUST another semester a more complex lattice was constructed and comparative research assignments produced a deeper lattice. Students in the following semester had more benefit from the tool, as they searched an existing lattice structure. This illustrated benefits of this approach in an E-Learning environment through knowledge sharing among students across sessions. Pathways in the lattice are automatically captured. When a sufficient number of these is captured, the generated knowledge base is the more and more informative to the students. However, in its early development the knowledge base may not be as informative. The interface allows the students the ability to comment on any webpage they visit and these comments are made available to the whole student body. These comments may offer insight and save students time, of course these comments may also mislead; in the early stages of the evolution knowledge base, these comments may supersede the utility of the knowledge base to the students. As the knowledge base evolves, it better reflects the holistic view the group and it becomes more accurate, the comments become less important. The knowledge base evolves as the same related set of webpages is traced (websurfed) more than once by more than one student and the same webpages within the same set are visited by multiple students as well. The evolution and the completion of the knowledge base is topic related, that is it may become mature for one topic but highly inaccurate for another.

Formal Concept Analysis generated conceptual structures provide to the students a user friendly natural presentation of the semantic web evolved. The conceptual lattice structures the data from the most general to the most specific concept. It relates concepts to each other based on their intents and extents, thus providing a means for creating new data that was not directly perceived from the user trails. Moreover, querying the lattice is an easy task and it can vary between approaches to make the
most out of the structure. For instance, in our method, if a user is searching for a certain concept, we provide him with a categorized result formed of the upper and lower levels of the concept itself in order to gain more insights about the extents constituting the concept.

From KAPUST perspective, a student creates a knowledge in reaction to the search context the student is in. This context is firstly defined by at least the state of the knowledge base, the assignment and the student him/herself and secondly by the webpage visited. A knowledge base developed by the body of students will be conceptual description of the hypertext body. In other words, the students are guided to impose structure on the hypertext body. This is suggested as suitable web based activity by [12]. This also suggests that KAPUST is a tool which is not suitable for problem based subjects rather more to subjects requiring synthesis of large body of information where the lecturer is able to design assignments and unleash students as a group on the text body using KAPUST. This is a common distinction for university courses used by [12, 13] amongst others.

The non-intrusive nature of our approach solves the problem of getting feedback from customers who may not have any true interest or inclination to give it. This may be added to KAPUST by using incremental techniques described in [14][15]. We are in the process of integrating both of those mechanisms from [16] to identify more prominent evolutionary factors, and devising a measure of trust from [17] to evaluate the reliability of the outcome knowledge.

Acknowledgement
I thank Roman Kultchitsky who was excited to follow through with using KAPUST for a second semester and Grace Manasseh for providing technical support for the students.

References

