Real-time motion classification from every day activity using a single wearable IMU

Oliver Kerr
University of Wollongong
Real-Time Motion Classification from Every Day Activity using a Single Wearable IMU

A thesis submitted in partial fulfilment of the requirements for the award of the degree

Bachelor of Engineering (Electrical)

From

University of Wollongong

By

Oliver Kerr

School of Electrical, Computer and Telecommunications Engineering

October, 2010

Supervisor: Dr David Stirling
Abstract

Motion capture is currently a lively area of research in many disciplines, from sports science to medicine to entertainment. Though there are many different approaches that attempt to model and animate a human in a human environment there have been few attempts to classify the activities of a person through the use of motion capture, and fewer still using a single kinetic motion sensor. The goal of this thesis was to use a single motion sensor, able to detect three dimensional translation and three dimensional orientation, in order to classify the activities of a wearer. The crux of this thesis, however, is using the limited information gathered from the single strategically placed motion sensor and indentifying the unique characteristics of each type of activity across a range of different motions.

The algorithm developed by this thesis computes the Time Series Bitmaps (TSBs) from the Symbolic Aggregate approXimation (SAX) of the motion capture data. To classify the motion data the TSBs were compared, using a Euclidean Distance algorithm, to the template TSBs created for each individual activity and the closest match found.

The classification engine, conformed to the goals and limits expressed in the project scope. Thirteen different activities were classified, including a special ‘transitional’ activity. The engine was able to classify data in a pseudo real-time manner as well as using pseudo streaming data. The accuracy ranged from 70% to 95% depending on whether the templates were generated from default or individual data. This outcome is competitive with previous forms of motion classification in terms of accuracy, however, it supersedes most of its predecessors in the fact that the algorithm developed can perform in real-time and handle streaming wireless data.

This thesis is an important step in the development of a personal activity classification system. The end product would include the kinematic sensor worn on pelvis which streams data to software which, using the algorithm developed in this thesis, classifies the activities performed in real-time.
Acknowledgements

I would like to thank my supervisor Senior Lecturer Dr David Stirling for continued support and much helpful advice, and Matthew Field who helped me greatly in performing my thesis experiments despite my complete lack of organisation and timing.

I would like to acknowledge Carnegie Mellon University for providing a huge online database of motion capture data without which I would have had no way of validating my work.

Thanks also to Rowan de Haas with whom many hours were spent in deep conversation over the philosophical and technical aspects of thesis, and who pointed out numerous typos in this document. No doubt considering the magnitude of the typos there were many left unfixed.

Thanks to my Joseph Thomas-Kerr who helped me with technical advice in programming as well as give the document a look over, who also helped ignite my interest in programming.

To all my friends within and outside of SECTE, I appreciate your support for me and my educational endeavours especially when all I seemed to do was bitch about how much work I had to do.

With profound gratitude I would like to thank my parents and family for providing me with essential support throughout my thesis and education.
Statement of Originality

I, Oliver Kerr, declare that this thesis, submitted as part of the requirements for the award of Bachelor of Engineering, in the School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications or assessment at any other academic institution.

Signature:

Print Name: Oliver Kerr

Student ID Number: 3280330

Date:
Table of Contents

Abstract .. i
Statement of Originality .. ii
Table of Contents ... iv
List of Figures .. vii
List of Tables ... ix
List of Abbreviations and Symbols .. x

1 Introduction ... 1
1.1 Project Aim ... 1
1.1.1 Project Goal - ‘Real-Time’ ... 2
1.1.2 Project Goal – ‘Single Sensor’ .. 3
1.2 Method .. 3
1.3 Outcome of the Thesis ... 3

2 Literature Review ... 4
2.1 Health Related Need ... 4
2.2 Real-time Motion Capture ... 4
2.3 Symbolic Aggregate approXimation - SAX ... 5
2.4 Classification of Data ... 7
2.4.1 Classify Streaming Data – Using SAX ... 7
2.4.2 Classification of Motion Data .. 7
2.5 Time Series Bitmaps ... 8

3 Experimental Setup .. 10
3.1 Xsens Hardware ... 10
3.2 Moven Studio ... 11
3.3 Matlab Extension ... 15
3.4 Experimental Design Limitations of the MVN Package 15
3.5 Inadvertent Effects of SAX and Sliding Windows ... 16

4 Experimental Design .. 18
4.1 Activities .. 18
4.2 Matlab Algorithms ... 19
4.2.1 Localization of the Pelvis Axes .. 19
4.2.2 Accuracy Calculation .. 22
4.3 Matlab Visualisation ... 23
Appendix E Layout of Accompanying CD .. 58
E.1 Final Report .. 58
E.2 Matlab Scripts ... 58
E.3 Saved Examples .. 58
E.4 Templates .. 58
E.5 Activity Examples ... 58
List of Figures

Figure 2.1 – A 128 Frame Data Sequence is Mapped to both PAA Coefficients and SAX Symbols. With an alphabet size of three the resulting SAX word is baabccbc \cite{11}. ... 6

Figure 2.2 - Left: Matrix of all possible subwords, alphabet length is four and sliding window length is two. Middle: Frequency of each subword. Right: Corresponding bitmap \cite{13}. ... 9

Figure 3.1 - MTx Sensor with local XYZ axes marked \cite{25}. ... 10
Figure 3.2 – Xsens MVN Biomech \cite{3}. ... 11
Figure 3.3 - MVN Studio Interface .. 12
Figure 3.4 - MVN Fusion Engine ... 13
Figure 3.5 - Segment Axes and Origin of the Pelvis Relative to the Global Frame...... 13
Figure 3.6 – The SAX representation of the sliding window buffer from the first position of the sliding window is: aaaddcdcd. The SAX representation of the sliding window buffer from the second position is dbabaaccddd. 17

Figure 4.1 - Velocity Vectors in Global Axes ... 20
Figure 4.2 - Geometric Representation of Point P in both Global and Local Axes of the XY Plane. .. 20
Figure 4.3 - Representation of the Global Position (top), Incorrect (Dynamic) Local Position (Middle) and the Correct (Static) Local Position (Bottom). 21
Figure 4.4 - Accuracy Calculation Function Pseudo Code .. 22
Figure 4.5 - Orientation Animation .. 23

Figure 5.1 - Flow Diagram of classification engine and Development Functions 25
Figure 5.2 – Flow Diagram showing the behaviour of the classification engine 28
Figure 5.3 Example of the TSBs produced by the sliding window in the classification program and the master template TSBs that they are compared too. Table 5.1 shows the Euclidean Distance measurements. It should be noted that in this example only the acceleration TSBs are shown, the classification program also compares the X and Y orientation TSBs ... 29
Figure 5.4 - Results of Activity Classification sans Filtering ... 30
Figure 5.5 - Transitional Activity Filtered Output .. 31
Figure 6.1 – Photos from the data collection session. Clockwise from top left photo:
Walking up the stairs, rowing, cycling sitting down, punching bag, lying down on the left side, walking. .. 33

Figure 6.2 - Correct Classifications of Data .. 34
Figure 6.3 - Modified Correct Classifications of Data .. 34

Figure 6.4 – Effect of the sliding window length and the frame to symbol rate on the accuracy of filtered classifications from default templates.36
Figure 6.5 – Effect of the sliding window length and the frame to symbol rate on the accuracy of filtered classifications from individual templates.36

Figure 6.6 - Effect of History Length on Accuracy ..37
Figure 6.7 – Impact of the threshold on the accuracy of classification when individually generated templates were used. ...38

Figure 6.8 - Subject 1 filtered classification from individual templates.................41
Figure 6.9 – Subject 2 filtered classification from individual templates...............42
Figure 6.10 – Subject 3 filtered classification from individual templates...............42
Figure 6.11 – Classification of walking data. ...43
List of Tables

Table 3.1 - MTx Sensor Performance [24]. ... 10
Table 3.2 - Orientation Data Performance [24]. .. 15
Table 4.1 Activities and their definitions .. 18
Table 5.1 – Euclidean distance measurements between the sliding window TSBs and template TSBs from Figure 5.3 ... 30
Table 6.1 – Accuracy of classification engine for each subject for both default and individual templates .. 39
Table 6.2 - Confusion matrix from all three test subjects using default templates. Note all values are a percentage of the total value (%). .. 40
Table 6.3 – Confusion matrix from all three test subjects using individual templates. Note all values are a percentage of the total value (%). 41
Table 6.4 – Types of Walking .. 43
Table 7.1 – Comparison of classification accuracy between different methods. *Not motion capture data. **Average ... 45
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDA</td>
<td>Every Day Activity</td>
</tr>
<tr>
<td>HRQL</td>
<td>Health Related Quality of Life</td>
</tr>
<tr>
<td>IMU</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>MTX</td>
<td>Motion Tracker X (IMU made by Xsens Technologies)</td>
</tr>
<tr>
<td>PAA</td>
<td>Piecewise Aggregate Approximation</td>
</tr>
<tr>
<td>SAX</td>
<td>Symbolic Aggregate Approximation</td>
</tr>
<tr>
<td>TSB</td>
<td>Time Series Bitmaps</td>
</tr>
<tr>
<td>HPF</td>
<td>High Pass Filter</td>
</tr>
<tr>
<td>Frame</td>
<td>A complete packet of data from a single time instant</td>
</tr>
<tr>
<td>ϕ</td>
<td>Euler angle corresponding to roll (rad)</td>
</tr>
<tr>
<td>θ</td>
<td>Euler angle corresponding to pitch (rad)</td>
</tr>
<tr>
<td>ψ</td>
<td>Euler angle corresponding to heading/yaw (rad)</td>
</tr>
<tr>
<td>N</td>
<td>Length of sliding window (frames)</td>
</tr>
<tr>
<td>n</td>
<td>Length of sliding window (symbols)</td>
</tr>
<tr>
<td>R</td>
<td>Frame to symbol rate (frame/symbol)</td>
</tr>
<tr>
<td>f_S</td>
<td>Symbol Frequency (symbol/second)</td>
</tr>
<tr>
<td>f_F</td>
<td>Frame Frequency (Hz) – equal to 120 Hz for all MVN data</td>
</tr>
<tr>
<td>a</td>
<td>SAX alphabet length – equal to four</td>
</tr>
</tbody>
</table>
1 Introduction

“Man is still the most extraordinary computer of all” (John F. Kennedy) [1], however it is becoming clear that technology is catching up. It is increasingly becoming integrated into modern life, especially in the form of motion tracking devices. GPS car navigation systems track and direct motion; phone and music players often have motion tracking accelerometers incorporated into them; surveillance systems at high security installations such as airports involve the tracking of people. More specialized human behavioral analysis has been undertaken in research areas including but not limited to rehabilitation, sports science, animation, virtual reality and teleoperational control of robots.

There are two main of types of motion sensors and systems with the ability to remodel human motion; optical and kinetic. Optical systems use a network of cameras to capture multi-angle video of a subject with brightly coloured dots placed on specific points on the body. These systems are particularly expensive to run and have considerable restrictions on the type of environment that they can be used in. Kinetic systems use an array of motion sensors, each using some combination of accelerometers, gyroscopes and magnetometers. They are increasingly small, accurate and free of environmental restrictions.

1.1 Project Aim

The project goal is to produce a data classification tool which uses the real-time data streaming from a single IMU to classify the daily activities of the wearer.

The device being used to capture kinetic motion is an MVN Biomech made by Xsens. The device senses kinematic motion using a tri-axis accelerometer, a tri-axis gyroscope and a tri-axis magnetometer. It has a wireless communication interface with a range of up to 150 metres of open space and 50 metres of ‘office space’.

A crucial step in the project is to collect data by wearing the IMU device and performing certain activities. It is important to then find correlations between certain activities and the corresponding characteristics and patterns in the data.

The main problem of this project is accurately classifying daily activities from data produced by the single IMU to be worn at the back of the pelvis. There are a
number of techniques already used to perform this task the aim of this project is to identify novel solutions that overcome the limitations of existing approaches. Symbolic Aggregate approXimation (SAX) is a powerful tool that has not yet been applied to this problem and as such is the focus of this thesis.

1.1.1 Project Goal - ‘Real-Time’

The definition of a real-time system, according to Hermann Kopetsz, is one in which the “correctness of the system behaviour depends not only on the logical results of the computations, but also on the physical instant at which these results are produced” [2]. In the context of this thesis the classification engine must process the data at a rate at least as fast as the data is being produced. It must also be able to handle streaming data as, ultimately, this is the manner in which data will be processed by an end product.

This project uses the MVN Biomech suit and the accompanying software provided by Xsens. The data is streamed wirelessly from the suit to a laptop is processed by MVN Studio; documentation on the format of the streaming data is not provided [3]. The software only exports complete data sets which directly conflicts with the real-time aspect of the project scope, however, it is only used in the development of the underlying algorithm. A future product will only rely on the engine developed by this thesis.

Streaming data was simulated, from block data sets, through the use of a sliding window. Steps were also taken to ensure that the time taken for processing of data sets, from feeding the ‘streaming’ data into the classification engine to obtaining the result, was faster than the time it took to produce the data.

It should be noted that the Matlab program is a very high level programming language and as a result is not computationally efficient[4]. The overarching goal of this thesis is to develop an algorithm which can be used in a future product. This would be implemented in a lower level language and therefore would be significantly faster than the Matlab implementation. Although the classification engine processing time is significantly less than required, it only performs some of the functions in real-time required by the final product. It is anticipated that any future implementation of this
engine that performs the extra functions required when directly receiving the streaming data from an IMU will have ample time to perform them.

1.1.2 Project Goal – ‘Single Sensor’

The project scope identifies the need to use a single sensor from which to draw data. The MVN Studio package does not provide the functionality to export data from only a single sensor; as a result the MVNX files which are exported have significantly more information than is relevant to this project. It is assumed that a future product based upon this classification engine will not draw data from the MVN Biomech suit through MVN Studio, but directly from a single sensor. For the purposes of this thesis, however, only data from a single sensor is extracted from the MVNX files, all other data is ignored.

1.2 Method

The method used for the classification engine developed uses multiple stages of data summarisation and then compares the results to a list of similarly generated results corresponding to specific activities. Each time series of data, from the acceleration and orientation, is separately summarised into SAX words, these words are further summarised into subword frequency matrices, known as Time Series Bitmaps (TSBs). These TSBs are then compared to template TSBs which are produced using data from particular activities. The resultant classification is activity which has the closest matching TSBs.

1.3 Outcome of the Thesis

A classification engine, conforming to the goals and limits expressed in the project scope, was successfully produced. In addition to the twelve distinct activities that were classified using the Euclidean Distance algorithm a thirteenth transitional activity was classified using a post classification filter. The engine was able to classify data in a pseudo real-time manner as well as using pseudo streaming data. When default templates were used the accuracy of the classifications ranged from 70% to 85%. Using individually tailored templates substantially increased the accuracy to approximately 95% for all data sets. Overall the project compares well with other classification algorithms and provides a suitable algorithm for the use in a future classification product.
2 Literature Review

The following literature review details research findings and technical descriptions of motion capture, its application in aged care, SAX and other motion classification techniques.

2.1 Health Related Need

An important indicating factor of the quality of life of persons with limited mobility is the identification of physical activity. Health Related Quality of Life (HRQL), as measured, in part, by the Activities of Daily Living Score is a reflection of the “personal sense of physical and mental health and the capacity to react to diverse factors in the environment[5].” This is an imprecise measurement based upon a subjective question and answer type survey. The classification of daily activities by a quantitative means would give a more precise figure for the activities of daily living score which would in turn mean a more precise HRQL score.

2.2 Real-time Motion Capture

Real-time motion capture research, as pertaining to this thesis, can be divided into two main broad topics; optical sensor based research and inertial sensor based research. This thesis is based on using inertial sensors and so this will be the focus of this section of the literature review. Inertial sensors, when coupled with wireless data transmission, have an advantage over other forms of motion sensing they are not overly physically restrictive. Conversely, optical motion sensing systems have to have highly structured environments to ensure that optical markers are not occluded[6].

Vlasic et al.[7] attempted to create a motion tracking system that is completely free of the physical and environmental constraints that are common to other sorts of motion tracking. By using a combination of inertial and ultrasonic sensors a system was created that could be used in any desired environment so that more natural motions and activities could be captured. This article points to the fact that all other previous systems are environmentally restrictive and many activities that cannot take place in a confined and controlled environment could not be analysed with motion capture. Although this article is only three years old it is still somewhat outdated as the Xsens motion tracking system is able to be used in a wide range of environments. Problems with close proximity to magnetic devices and other distorting magnetic fields detailed
in the paper have been overcome by the Xsens system. The main limitation to the system is the wireless range of the transmitters, which is on the order of 150 metres[3].

Miller et al.[6] used a full body suit of motion sensors in order to have teleoperational control of a humanoid robot. The environmental position and orientation of each sensor was calculated using the data from a three dimensional accelerometer, magnetometer and gyroscope. This experimental set up is very similar to the setup for this thesis as the Xsens IMU’s also uses three dimensional accelerometer, magnetometer and gyroscope in order to compute orientation and position, however it has two major differences. This system uses 17 inertial sensors to capture full body motion for the purpose of controlling a humanoid robot. This thesis concentrates on extracting as much relevant information as possible from a single IMU in order to analyse daily activities of a person.

2.3 Symbolic Aggregate approXimation - SAX

SAX is a new and innovative technique in data mining, only developed as recently as 2002[8]. Although, in the intervening time, it has been applied to a wide range of tasks it has not yet been applied to motion classification. SAX is an extremely powerful data mining tool that has some useful properties such as a guaranteed lower bounding. It is useful in many data mining tasks such as indexing, motif discovery, clustering, classification and novelty detection.

SAX transforms time series data into using the standard Piecewise Aggregate Approximation form[9] and then further discretises it into symbols, Figure 2.1. PAA is a method which reduces the dimensionality of the data set. It divides a data set into a number of equally sized frames. A vector is then produced to represent the average of each frame[10].

PAA time series data is further approximated by discretising the magnitude of each frame. This symbolic approximation coupled with the PAA approximation greatly reduces the size of data sets on a hard drive. This is an extremely desirable property as it allows entire data sets to be stored in the limited space on a computer’s RAM memory significantly reducing computational times[11]. For data sets that cannot be stored in the main memory input and output operations from the hard disk are the main factor in slow computational times[12].
The alphabet size of the SAX analysis is the number of different symbols in the representation. An alphabet size of three corresponds to three different discrete levels to which PAA coefficients will be mapped. The symbol boundaries are chosen such that each symbol will have an equal frequency in the data. This is surprisingly easy to do as it is a property of practically all time series data that the data obeys the normal distribution[11]. The boundaries of each symbol are formed by the boundaries of equal areas of the normal curve. Figure 2.1 shows a time series that has been symbolised using the SAX method. The result of a SAX transformation of a data series is a SAX ‘word’ or SAX string. This is the form on which all subsequent data mining tasks are performed.

![Figure 2.1 – A 128 Frame Data Sequence is Mapped to both PAA Coefficients and SAX Symbols. With an alphabet size of three the resulting SAX word is baabcabc[11].](image)

An extremely important feature of any data representation is to have a lower bounding guarantee. That is “it is possible to measure the similarity of two time series in that representation space, such that the distance is guaranteed to lower bound the true distance between the time series in the original space[9].” The lower bound is the distance between two data series of equal length. In the case of SAX representation the distance between two symbols is the number of other symbols in between plus one. This means the distance between symbol ‘a’ and ‘a’ is zero but the distance between ‘a’ and ‘c’ is two. This feature means that data mining tasks can be quickly and efficiently implemented on SAX representations producing identical results as the same data mining task run inefficiently on the original data set. SAX is the only symbolic representation of data that features this guarantee[13]. This is an important feature
because it is a quantitative similarity measure that will allow the comparison of different time series data sets and subsequences produced by the pelvis motion sensor.

SAX provides a powerful tool that is “competitive with, or superior to, other representations”[9]. It will be central to perform all data mining tasks undertaken within the scope of this project.

2.4 Classification of Data

2.4.1 Classify Streaming Data – Using SAX

There has been an effort to use SAX as part of a classification system; S Kasetty et al.[14] uses SAX to classify the feeding behaviours of Beet Leafhopper. The classification engine developed receives single dimensional time series data streaming from a sensor glued to the insects back. The algorithm continually updates a SAX summarisation of the recent streaming data, continually comparing the summarisation of each classifiable activity. The result is the nearest activity match to the current data set. The four feeding activities being classified have been a historical entomological problem as other algorithms only have a classification rate of 40%. The SAX method is a much more successful with an overall classification rate of almost 70%. This algorithm will be extended and developed for the purposes of this thesis.

2.4.2 Classification of Motion Data

All examples of projects relating to activity classification, found by for this thesis, rely on an intelligent classification algorithm which requires training on specific data[15][16][17][18][19]. These classification engines needed to be trained on each specific activity is able to be classified. This severely limits the ability of an end user of the application to add new activities.

There has been some work on using a single sensor in order to analyse motion and classify into daily activities. Najafi et al. [17] has successfully created a primitive daily activities classification system using only a single kinematic sensor. It can detect a variety of body postures and also periods of walking with an accuracy of above 90%. This was an extremely limited study, however, as only a two dimensional accelerometer and a one dimensional gyroscope was used. This thesis hopes to be able to classify a
much larger range of activities and also information about how those activities are conducted.

Chao Sun [19] manages to use a single IMU device to classify a limited set of human behavioural tasks. The sensor used is the MT IMU made by Xsens Technologies which is the sensor used in this thesis. The project focuses on distinguishing between subtle variates in the movement of a human arm to translate an object along a flat surface. Sun’s focus is significantly different to the focus of this thesis as he attempts to classify a small range of movements with the IMU placed on the wrist of the subject. This thesis will attempt to classify a much broader range of movements with the IMU placed upon the pelvis but also concentrating on data related to physiological problems.

A more recent attempt at using IMU data to classify motion is from T Scott Saponas et al. [18]. The unique part of this project is the use of an iPhone with a Nike+Ipod extension. Even though the classification rate is above 95% the activities being classified are already known to be of a small set of exercise related activities. It is also apparent that the iLearn application is used only when subjects are undertaking an activity that the iLearn will recognise. The aim of this thesis is to build a classifier able to classify any daily activity a user might reasonably perform.

S H Lee et al. [16] also classifies exercise related data with an overall classification rate of 95%. The accuracy calculation method, however, is flawed. Accuracy is calculated using a timing mechanism, comparing the amount of time an activity is actually performed to the amount of time an activity is classified to have performed. This may lead to false results as the classifier might be completely wrong in its classifications but might happen to classify each activity for the right amount of time. This is likely to occur if each activity is equally likely to be classified by the classifier and the each activity is performed for an equal amount of time.

2.5 Time Series Bitmaps

Data mining is not, however, the only means of finding patterns and relationships in time series data sets. According to Fayyad et al. “visualization, well done, harnessed the perceptual capabilities of humans to provide visual insight into data”[20]. The basic goal of high dimensionality data visualisation is to summarise the data into a
comprehensible form yet still showing important features and characteristics. It capitalises on the power of the human eye and brain to detect patterns and structures\[21].

Time Series Bitmaps are a bitmap produced from the frequency of small substrings within a larger SAX string. Each pixel of the bitmap corresponds to the frequency of a particular substring. It is a useful way of visually comparing data “offering a similarity based visualisation\[22\]”. Although it does not give the viewer any understanding of the real characteristics of the data set it does highlight the similarities and subtle differences between sets of time series.

Time Series Bitmaps by produced by sliding a window over an entire SAX string. Each time the window is slid across one the substring which it shows is counted, the resulting frequency of each substring is used to produce a matrix. Each cell in the matrix corresponds to one pixel of the bitmap image. The darkness or colour of each pixel is a direct relation to the frequency it corresponds to. Figure 2.2 shows a gray scale Time Series Bitmap with a sliding window length of two.

![Figure 2.2 - Left: Matrix of all possible subwords, alphabet length is four and sliding window length is two. Middle: Frequency of each subword. Right: Corresponding bitmap\[13\].](image)

The Euclidean Distance can be calculated between two matrices of the same size \[23\]. The distance between two square matrices A and B of level \(l\), where the \(i\)th element in the \(j\)th row of matrix A is denoted as \(A_{i,j}\) is shown in Equation 2.1.

\[
d(A, B) = \sqrt{\sum_{j=1}^{l} \sum_{i=1}^{l} (A_{i,j} - B_{i,j})^2}
\]

(2.1)
3 Experimental Setup

The system used to capture the data for this thesis is the Xsens MVN Biomech real-time motion capture system. It is important to note that this system uses a total of 17 IMU units which is not fully aligned with the goals of this thesis. However, the data pertaining to the pelvis can be almost completely isolated using this package. The positional drift suppression algorithm employed by Xsens uses data from the entire suit meaning that the positional data of the pelvis produced by this system will not be completely reproducible using a single IMU system. However, for simplicity, it is assumed that the data pertaining to the pelvis is approximately representative of the data that would be produced by a single IMU system.

3.1 Xsens Hardware

The IMU used for this thesis is the MTx, shown in Figure 3.1, manufactured by Xsens Technologies B.V. The sensor (28 x 53 x 21 mm) contains a 3D gyroscope, a 3D accelerometer and a 3D magnetometer; measuring angular rotation, accelerations (including gravity) and the earth’s magnetic field. Table 3.1 shows the performance of the sensors within the MTx unit. The system can measure motion at 60, 100 or 120 hertz but all data for this thesis is measured at 120Hz.

<table>
<thead>
<tr>
<th>Sensor Performance</th>
<th>Gyroscope</th>
<th>Accelerometer</th>
<th>Magnetometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>3 axis</td>
<td>3 axis</td>
<td>3 axis</td>
</tr>
<tr>
<td>Range</td>
<td>±1200 deg/s</td>
<td>±50 m/s²</td>
<td>±750 mGauss</td>
</tr>
<tr>
<td>Linearity</td>
<td>0.1% of FS</td>
<td>0.2% of FS</td>
<td>0.2% of FS</td>
</tr>
<tr>
<td>Bias Stability</td>
<td>1 deg/s</td>
<td>0.02 m/s²</td>
<td>0.1 mGauss</td>
</tr>
<tr>
<td>Scale Factor Stability</td>
<td>-</td>
<td>0.03%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Noise</td>
<td>0.05 deg/s/Hz0.5</td>
<td>0.002 m/s²/Hz0.5</td>
<td>0.5 mGauss</td>
</tr>
<tr>
<td>Alignment Error</td>
<td>0.1 deg</td>
<td>0.1 deg</td>
<td>0.1 deg</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>40Hz</td>
<td>30Hz</td>
<td>10Hz</td>
</tr>
</tbody>
</table>

Figure 3.1 - MTx Sensor with local XYZ axes marked[25].
The unit is an integrated part of the Xsens MVN Biomech suit containing a total of 17 sensors as well as two XBus Masters units. These units provide power to and receive samples from all the motion sensors, as well as wirelessly communicating the data to a laptop via the Moven Wireless Receivers. It is important to note that the location of the pelvis sensor is sacrum with the Z axis in the sagittal plane, see Figure 3.2.

![Pelvis IMU](image)

Figure 3.2 – Xsens MVN Biomech [3].

3.2 Moven Studio

Xsens provides MVN Studio, as part of the MVN Biomech package, in order to manage the data streaming from the system, Figure 3.3. It handles the data in real-time, showing a practically zero lag model on the screen of the user of the suit. It can also recall previously saved data sessions and display models and a range of graphical representations of the data. It exports data using either a MVN or MVNX format. The MVN format is the native binary format optimised for use with MVN Studio. No documentation is provided on this format as it is the MVNX format which is intended for export. Documentation is provided on the MVNX format and it is in the form of a readable XML, it contains only basic data elements and optional extra elements chosen by the user.

Elements of data saved for each body segment in the MVNX formats:

- Position (default)
- Orientation (default)
- Velocity
- Acceleration
- Angular velocity
- Angular acceleration
- Centre of mass
- Joint angle
- Sensor Acceleration
- Sensor Angular Velocity
- Sensor Magnetic Field
- Sensor Orientation

Figure 3.3 - MVN Studio interface.

The MVN Fusion Engine, Figure 3.4, uses this data to produce the global position and quaternion orientation of the body segment to which the sensor is attached. Xsens has designed a filter called the Xsens Kalman Filter for 3 Degrees-of-Freedom. This filter uses the data from the magnetometer to stabilise heading (yaw) and uses the acceleration due to gravity to stabilise inclination (roll/pitch)[26]. Position drift is suppressed by using knowledge of the human body and assumptions about the bodies contact with the external environment. It should be noted that the position drift suppression algorithm used with this system is incompatible with the goals of this project as it uses data derived from the other sensors. However, because this thesis
does not rely on absolute position of the pelvis sensor it is assumed this will have little or no impact on the final results.

Figure 3.4 - MVN Fusion Engine.

The position and orientation produced by the fusion engine are the primary data sets which are then used to calculate other useful kinematic data such as velocity, acceleration, angular velocity and angular acceleration. All translational data is identified relative to an earth-fixed reference co-ordinate system. The original acceleration data produced from the IMU unit is by definition relative to the position of the IMU. The MVN Fusion Engine uses all the available data to produce position in the global co-ordinate system. The velocity and acceleration data, produced by the fusion engine are also set in the global co-ordinate system, Figure 3.5.

Figure 3.5 - Segment axes and origin of the pelvis relative to the global frame.

The orientation data from produced by MVN Studio is in the quaternion form as it’s a computationally efficient representation of rotation. Euler-angles are used in this
thesis to describe the orientation of the pelvis as they are the simplest. It is important, therefore, to transform from the quaternion form, given by MVN Studio, to the Euler form.

The unit quaternion can be described as a rotation about a unit vector n through angle α, shown in Equation 3.1.

$$q_{GS} = \left(\cos \left(\frac{\alpha}{2} \right), n \sin \left(\frac{\alpha}{2} \right) \right)$$ \hspace{1cm} (3.1)

The general form for a quaternion is shown in Equation 3.2.

$$q_{GS} = (q_1, q_2, q_3, q_4)$$ \hspace{1cm} (3.2)

Equation 3.3 shows the unit quaternion.

$$\|q\| = 1$$ \hspace{1cm} (3.3)

Euler-angles provide a much more intuitive form of orientation. Each of the three Euler-angles ϕ, θ and ψ correspond to roll, pitch and yaw/heading. They are of the XYZ Earth fixed type, also known as the aerospace sequence. Equation 3.4, Equation 3.5 and Equation 3.6 define the symbols and show the range of the roll, pitch and yaw respectively.

$$\Phi = \text{roll} = \text{rotation around } X_G, \quad [-180^\circ, 180^\circ]$$ \hspace{1cm} (3.4)

$$\theta = \text{pitch} = \text{rotation around } Y_G, \quad [-90^\circ, 90^\circ]$$ \hspace{1cm} (3.5)

$$\psi = \text{yaw} = \text{rotation around } Z_G, \quad [-180^\circ, 180^\circ]$$ \hspace{1cm} (3.6)

The Euler-angles are calculated from the unit quaternion using the relations of Equation 3.7, Equation 3.8 and Equation 3.9.

$$\Phi_{GS} = \tan^{-1} \left(\frac{2q_2q_3+2q_0q_1}{2q_0^2+2q_3^2-1} \right)$$ \hspace{1cm} (3.7)

$$\theta_{GS} = \sin^{-1}(2q_1q_3 - 2q_0q_2)$$ \hspace{1cm} (3.8)

$$\psi_{GS} = \tan^{-1} \left(\frac{2q_1q_2+2q_0q_3}{2q_0^2+2q_1^2-1} \right)$$ \hspace{1cm} (3.9)

Table 3.2 shows the typical performance of the orientation data from MVN Studio.
Table 3.2 - Orientation data performance [24].

<table>
<thead>
<tr>
<th>Dynamic Range</th>
<th>All angles in 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular Resolution</td>
<td>0.05 deg</td>
</tr>
<tr>
<td>Static Accuracy (Roll/Pitch)</td>
<td><0.5 deg</td>
</tr>
<tr>
<td>Static Accuracy (Heading)</td>
<td><1 deg</td>
</tr>
<tr>
<td>Dynamic Accuracy</td>
<td>2 deg RMS</td>
</tr>
</tbody>
</table>

The global reference frame is fixed during the calibration phase of each session:

- **Origin** – the base of the right heel
- **X axis** – points in the direction of magnetic north
- **Y axis** – points in the direction of magnetic west
- **Z axis** – points vertically upward

3.3 Matlab Extension

Matlab code to transform the data into SAX form is freely available from the internet. Lin et al. [27] have produced a Matlab code which provides scripts that convert time series data into symbols and compute the minimum distance between two symbol strings. For reference purposes it is included on the accompanying CD.

Matlab code was also written specifically for this thesis and is detailed in the Chapter 4.

3.4 Experimental Design Limitations of the MVN Package

One of the crucial features of the MVN Biomech system is that it is very versatile in the environments that it can be used. The main restriction on the system is that the wearer of the suit has to be within 150m of the wireless receivers, though not in line of sight. Strong magnetic fields also influence the suit, however, it is completely immune to interferences of less than 30 seconds and resistant to longer term disturbances.

The Biomech needs to be calibrated for every data collection session and for every new user. For the MVN Studio to have an accurate model of the user body dimensions must be supplied. This calibration increased the accuracy of the calculations of body segments’ translational position and orientation. The user is then has to perform a number of calibration poses in order for MVN Studio to calculate the original relative position of all sensors. These include the neutral pose, the T-Pose, the squat and hand touch poses. This information is then used in the sensor fusion algorithm.
After calibration MVN Studio can record continuously or at intervals controlled by the experimenter. Once the session has been completed MVN Studio can export the data to files readable by other programs.

3.5 Inadvertent Effects of SAX and Sliding Windows

A key component of SAX is the normalisation of the time series upon which it is performed [9]. By definition this removes the average value of the time series, thereby acting as a high pass filter with a cut of value approaching zero. The value of the individual symbols in a SAX representation of a time series is meaningless as they do not represent an absolute value, rather they summarise the shape of the time series data and have meaning only when compared against the other SAX symbols.

The simulation of streaming data using a sliding window compounds this effect. The classification algorithm performs a SAX transformation on the entire buffer of sliding window data on every iteration. This normalisation of only the data in the sliding window buffer has the effect of increasing the cut off frequency of the SAX HPF effect. The minimum frequency which the SAX summarised time series can represent has a period the same size as the sliding window length. This means that the inadvertent high pass filter has a cut-off frequency approximately equal to the inverse of the length of the sliding window. The HPF effect is shown in Figure 3.6 where the two sliding window positions produce the SAX words aaaddcddca and dbabaaccdd. Since the two words use the same alphabet of four letters all information regarding the actual magnitude of the original time series is lost.
Figure 3.6 – The SAX representation of the sliding window buffer from the first position of the sliding window is: aaaddcddca. The SAX representation of the sliding window buffer from the second position is dbabaacedd.

The impact of this filtering effect on this thesis is the inability to use the primary method to classify any static activities. Static activities, by definition, only contain a zero frequency component meaning the SAX representation will be meaningless. A secondary method of classification has been developed to compare the orientations of the static activities so that the classification of these activities can still take place.
4 Experimental Design

This chapter covers the design of the experiment to be carried out as well as some of the Matlab programming that was peripheral to the main classification engine, including some data processing algorithms as well as visualisation functions.

4.1 Activities

The activities classified in this thesis can be divided into three main categories: static activities, dynamic activities and transitional activities. Static activities, such as standing, sitting or lying down, are static in nature and are therefore hard to classify using a SAX based classification system. SAX is much more useful in classifying dynamic activities such as walking or running. The transitional activity is the classification given to time when the subject is transitioning between two known activities. Table 4.1 shows the complete list of activities classified for this thesis and a short description explaining what they are.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Transitional</td>
<td>Transitioning between two different activities</td>
</tr>
<tr>
<td>1</td>
<td>Walking</td>
<td>Walking normally</td>
</tr>
<tr>
<td>2</td>
<td>Running</td>
<td>Running normally</td>
</tr>
<tr>
<td>3</td>
<td>Riding - Standing Up</td>
<td>Riding on an exercise bike with a standing posture – the pedals support the majority of the riders weight</td>
</tr>
<tr>
<td>4</td>
<td>Riding - Sitting Down</td>
<td>Riding on an exercise bike with a standing posture – the seat supports the majority of the riders weight</td>
</tr>
<tr>
<td>5</td>
<td>Stairs – Up</td>
<td>Walking up stairs</td>
</tr>
<tr>
<td>6</td>
<td>Stairs – Down</td>
<td>Walking down stairs</td>
</tr>
<tr>
<td>7</td>
<td>Rowing</td>
<td>Using a rowing machine</td>
</tr>
<tr>
<td>8</td>
<td>Punching</td>
<td>Punching a punching bag</td>
</tr>
<tr>
<td>9</td>
<td>Standing</td>
<td>Standing up</td>
</tr>
<tr>
<td>10</td>
<td>Sitting</td>
<td>Sitting on a chair</td>
</tr>
<tr>
<td>11</td>
<td>Lying – On Left Side</td>
<td>Lying down with the left side of your body touching the floor</td>
</tr>
<tr>
<td>12</td>
<td>Lying – On Right Side</td>
<td>Lying down with the right side of your body touching the floor</td>
</tr>
</tbody>
</table>

It is important to recognise that using this type of classification method somewhat limits the type of activities that can be recognised. The history length parameter, on the order of a few seconds, limits how long each frame of data is remembered by the classification engine. The activities must have a simple repetitive cycle with a period shorter than the history length. This method aims at classifying simple low level activities such as walking or running. Complex activities, such as cooking dinner or
participating in a game of soccer, would require a higher level classification engine which is able to group sequences of simple activities into higher level activities.

4.2 Matlab Algorithms

Matlab based programs form the basis of the entire classification engine. MVN Studio collects the data streaming from the suit in real-time, however, it does not have the functionality to stream the export data. Data sets are only exported in their entirety once all the recording has finished. Matlab programs are used to import the MVNX data into the Matlab workspace, preprocess the data, classify the data, filter the classifications and compute the accuracy of the system. Matlab is also used to perform peripheral functions such as data visualization using a number of different methods.

4.2.1 Localization of the Pelvis Axes

A major problem with the data in the MAT files is that all position, velocity and acceleration vectors are relative to the global coordinates. That is, that the data for walking forward in one direction is the negative of data walking forward in the opposite direction. This is a major problem for identifying motion as it is irrelevant which direction the motion is taking place. This only, however, applies to the heading as it is important to have the pitch and roll relative to the global axis.

The pelvis velocity data shown in Figure 4.1 shows this problem. The data set describes a person walking for 10 seconds in one direction turning around and walking for 10 seconds in the opposite direction. It is clear from the figure that the characteristics of the data are significantly influenced by the direction of the motion. It should be noted that similar effects are seen in position and acceleration data.

The problem was solved using basic geometric mathematics. The Matlab script ‘RotateAngle.m’, refer to accompanying CD, was written to transform all the data in the global x and y coordinates into local x and y coordinates.
Vector P, in Figure 4.2, can be described in terms of the global XY axis as well as the local XY axis. By definition the angle formed by the global X axis, X_G, and the local X axis, X_L, is equal to the angle of yaw, ψ. Similarly the angle formed by the global Y axis, Y_G, and the local Y axis, Y_L, is equal to the angle of yaw, ψ. Equation 4.1 and 4.2 show the mathematical relationship between the global and local coordinate systems. Refer to Appendix C for a full proof of this relation.

$$Y_L = X_G \cos \psi + Y_G \sin \psi \quad (4.1)$$

$$X_L = X_G \sin \psi - Y_G \cos \psi \quad (4.2)$$

The position vector, however, was not fully rectified by this mathematical solution. Performing this simple transformation on the position vector resulted in dynamically changing the direction of the axis. As a result the position vector changes from positive to negative from a change in yaw of 180 degrees. Figure 4.3 shows the position vector from the same data set shown in Figure 4.2. The top graph shows the...
global position vector of the person walking forwards in the positive Y direction and then turning and walking back to starting point. The middle graph shows the dynamic position vector; as the person spins around the local axis spins as well. This means that the (X, Y) description of the location of the spin changes even though the location in the global axes remains static. The bottom graph shows the static local position vector once the solution detailed below has been implemented. It shows that as the wearer of suit only walks in the forward direction with respect to the local axis.

![Figure 4.3 - Representation of the global position (top), incorrect (dynamic) local position (middle) and the correct (static) local position (bottom).](image)

The solution to this problem was found by differentiating the position vector then transforming from the global axis to the local axis before integrating back to the original form. This essentially calculates the velocity from the position vector, transforms it to the local axes and then calculates the local position from the local corrected velocity.

It should be noted that the position, velocity and acceleration vectors calculated by the MVN Fusion Engine did not completely conform to the definitional relation between position, velocity and acceleration. That is the vector produced by differentiating the position vector in Matlab was not identical to the velocity vector produced by the engine, similarly the vector produced by differentiating the velocity vector was not identical to the acceleration vector produced by the engine. It is assumed that the vectors from the MVN Fusion Engine are accurate and that all calculations involving position, velocity and acceleration shall use these original vectors.
4.2.2 Accuracy Calculation

The accuracy of the classifier is an essential measure of success; it must be calculated in a way that is robust. Since S H Lee et al. [16] fails to meet this criterion for accuracy calculation and no other literature documents an algorithm a new algorithm had to be developed. It was also essential to be able to calculate the accuracy before and after the post-classification filter, so it is important to be able to easily compute the accuracy ignoring transitional activities and taking into account transitional activities.

The classification engine uses a history of the data to classify a single time instant. This means that assuming the classifier has an accuracy of 100% the output will still only be a subset of the correct classifications. The offset was found to relate to the sliding window length in frames (N) and the history length (h) by Equation 4.1.

\[
\text{Offset} = N + h - 1
\]

(4.1)

The accuracy algorithm used is best illustrated in pseudo code in Figure 4.4. The basic algorithm counts each time the results match the correct classification and then finds the proportion to the total valid results. It should be noted that valid results are those which do not correspond to a transitional activity unless the post-classification filter has been implemented.

```
accuracy = ActivityClassificationAlgorithm (CR, CC, N, h, preFilter)
// CC = Correct Classification
// ER = Classification Engine Results
// N = Sliding Window Length
// h = History Length
// preFilter = Boolean value controlling whether the transitional activities are ignored
offset = N+historyLength-1;
sum = 0;
count = 0;
for i = 1 to length of CE
    if preFilter
        if CC(offset-1+i) != 0
            sum = sum + (CC(offset-1+i) == CE(i));
count = count + 1;
    end
else
    sum = sum + (CC(offset-1+i) == CE(i));
count = count + 1;
end
accuracy = sum/count;
```

Figure 4.4 - Accuracy calculation function pseudo code.
4.3 Matlab Visualisation

Apart from regular graphs and charts it is important to visualise data in novel but informative ways. To this end two scripts have been developed, one to animate the orientation data of the pelvis and another to draw Time Series Bitmaps from SAX strings.

4.3.1 Animation of the Pelvis Orientation using Matlab

An important part of the thesis was clear visualization of the pelvis data. Matlab provides a mechanism to animate data and a series of scripts, ‘AnimateOrientation’, ‘Ellipse’ and ‘Draw’, refer to accompanying CD, to animate the orientation of the pelvis for an entire data set. The set of scripts generated an elliptical prism and then rotated it about the origin using the Euler-angles of the pelvis. The script draws the ellipse at the correct orientation about the origin for every data frame an input data set. The localized pelvis X, Y and Z axes are also shown on animation. Figure 4.5 is an illustrative example of the orientation animation.

![Pelvis Orientation Animation](image)

Figure 4.5 - Orientation animation illustration.
4.3.2 SAX Bitmap

The Matlab script ‘bitmap’, refer to accompanying CD, transforms a SAX string into a Time Series Bitmap. It can handle any string length but only has a sliding window length of two.
5 Classification Engine Design

The classification engine performs a number of distinct operations to transform the raw incoming data into the end classified activities. The first task the engine performs is the extraction of relevant data from the MVNX file and transforms it into a Matlab friendly MAT format. A number of pre-processing operations take place at this stage. The engine then further extracts examples of activities with which activity templates are produced. These templates are then used by the core activity classifier to classify full data sets. The raw results are then filtered to produce the requisite output. The different stages of the classification engine are shown as the orange blocks of Figure 5.1.

Figure 5.1 - Flow Diagram of classification engine and development functions.
The blue blocks of Figure 5.1 show some of the various functions and outputs used in the development of the engine. The accuracy computation function was a simple comparison between the results generated by the engine and a perfect set of results generated by human judgement. The parameter generation function was a simple function which generated a range of different parameters, these were then tested and the impact on the final outcome was determined. There were also a number of functions which visualised various variables and data which were essential in analysing the engine.

It is also important to note the correct classification of activities with which the templates are generated and the accuracy of the results determined was produced by human judgement of the data set. MVN Studio provides a lifelike animation of the data from which human classifications can be made. In a future implementation a calibration step can be substituted in order to produce the templates removing the need for any human interaction.

5.1 Data Extraction

The data extraction process extracts the verbose MVNX data and transforms it into a more useful form. Unwanted data that does not relate directly to the pelvis is discarded. Pre-processing of the data also takes place. The Euler Angles are calculated from the quaternion vectors. The data translational data is also transformed from the global co-ordinate system to a local-coordinate system based upon the pelvis using the orientation data as detailed in section 4.2.1. The data is then saved in a new MAT file ready for future use.

5.2 Template Creation

An activity template is created for each activity which consists of five Time Series Bitmaps, one for each acceleration dimension and one for two of the orientation dimensions. It is important to note that the heading is not included in the templates because it is heavily influenced by the direction in which the person is facing whilst wearing the IMU. The templates are created from five second long data sequences of each activity. These data sequences were manually extracted from each of the data sets to represent all of the dynamic activities from each test subject.
One of the experiments performed on the data compared the accuracy of the classifier with different sliding window lengths (n) and frame to symbol rates (R). The templates were influenced by these n and R values and so it was important to generate these on every new set of values.

Another experiment was carried out to compare the different accuracy rates between personal and default template generation. Personal templates, drawn from a test subject's own data were then used to classify that person's data. Default templates were drawn from general examples of each activity. It was important to differentiate between personal and default templates. It should be noted that although some of the templates were computed from sequences within the data sets that were being classified, each subject performed an activity for approximately 30 seconds. With only five second sequences used for template generation, the overwhelming majority of data is not used to generate the templates.

5.3 Classifier

The classifier treats the block of pelvis input data as a streaming data source by processing the data using a sliding window. On each iteration of the algorithm the next data frame is appended onto a history of recent data frames; the length of the history is kept constant by concurrently removing the oldest data frame. This effectively represents streaming data which is incremented by one data frame per iteration of the program.

It is important to note that the algorithm used for this classifier was an adaptation and extension of a short pseudo code developed by Kasetty et al.[14].
The history of recent data is then classified by the function using either the static or dynamic classification algorithm. This is dependent on the average of each of the three acceleration dimension’s standard deviation. Before the actual classification of the dynamic activities can take place two extra transformations are performed on the data, each dimension of the time series is summarised using SAX and then used to create a Time Series Bitmap. Figure 5.2 shows the flow of the classifier. See Figure 5.3 for examples of the TSBs produced from the sliding window of data and the template TSBs. It is visually clear from the figure that the example TSBs most closely resemble the walking activity template.
The static and dynamic classification algorithms use very similar methods to classify the data. The static algorithm finds the Euclidean Distances between the orientation of the current data set and the orientations of each of the activity templates. The dynamic algorithm finds the Euclidean Distances between the TSBs of the sliding window of data and the template TSBs. The activity templates are then ranked on the average Euclidean Distance to the current sliding window of data. The resultant classified activity is chosen to be the closest match. Table 4.1 shows the calculated Euclidean Distance measurements between the sets of TSBs shown in Figure 5.3. In this case the classification result is walking because it is much closer to the walking template than the running template. It should be noted, however, that the classification function takes into account the roll and pitch as well as the accelerations.
Table 5.1 – Euclidean distance measurements between the sliding window TSBs and template TSBs from Figure 5.3

<table>
<thead>
<tr>
<th>Activity</th>
<th>X - Axis</th>
<th>Y - Axis</th>
<th>Z - Axis</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking</td>
<td>0.6137</td>
<td>0.5152</td>
<td>0.0587</td>
<td>0.3959</td>
</tr>
<tr>
<td>Running</td>
<td>0.7600</td>
<td>1.7085</td>
<td>1.7333</td>
<td>1.4006</td>
</tr>
</tbody>
</table>

5.4 Post Classification Filter

The post classification filter removes from the classification stream any activities that are not performed for longer than seven seconds. Experimentally it was found that the activity classification was not consistent when there was a transition from one activity to another, this meant that in a short space of time multiple different activities were deemed to take place. This simple filter replaced any activity that had a period less than the threshold with the ‘transitional’ activity.

Figure 5.4 illustrates an example of unfiltered output highlighting the correctly and incorrectly classified activities as well as the transitional activities which are deemed to be neither correct nor incorrect. Whilst the subject is performing an activity transition, it was observed that the results of the activity classification were short bursts of a random activity.

Figure 5.4 - Results of activity classification sans filtering.

Figure 5.5 shows results once they have been filtered. It is clear that the transitions between activities are classified with a fair success rate. It is important to note that the correct classifications that the results are compared against were human generated from observing the animation of the data. The exact moment of one activity
ending and another beginning is at best only an estimation of a human. This is especially true for the transitional activity.

![Figure 5.5 – Filtered output of classification engine.](chart.png)
6 Experimental Work and Results

In this chapter the work undertaken in collecting and managing the data is detailed as well as the experiments and results. A large data library, collected from previous and current theses, was made available; a specific data collection experiment was also carried out for the purposes of this thesis in which three subjects performed various activities. Experiments were then carried out on these results which compared the impact of using individual or default templates, various sliding window buffer lengths, SAX subword sizes and frame to symbol rates. A validation experiment was also undertaken using motion capture data obtained from an online database provided by Carnegie Mellon University.

6.1 Data Collection

6.1.1 Previously Collected Data

An extensive array of data has been collected prior to this thesis which has been used for the purposes of this thesis. Over 10 gigabytes of data with 30 minutes of motion capture covering a wide range of motions and behaviors. They include:

- Walking – variations on walking are also included such as walking backwards, walking with gait problems and walking with weights
- Running – jogging included
- Balancing – balancing on one foot and balancing on a ball
- Stepping – climbing up and down steps with and without weights
- Waitering – picking objects up using a tray
- Sporting skills – including golf swings, tennis swings, and hockey skills
- Static Manipulation of Objects – sitting down and manipulating objects on a desk

This data was used in the development of the many of the visualization functions, and much of the classification engine. This data was, however, limited in that the majority of sequences were short, on the order of five to ten seconds in length and included only one activity. As a result this data was not used to test and improve the final classification engine.
6.1.2 Activity Classification Data

On the 17th of September an experiment was carried out with three different test subjects performing the full range of classifiable activities. Each activity was performed only once for a period of approximately 30 seconds. The order of the activities was randomized for each test subject. Figure 6.1 shows some of the activities undertaken during the data collection session.

6.1.3 Correct Activity Classification

In order to analyse the accuracy of results they must be compared to a correct classification of the activities. This correct classification of the activities was performed using full body animation of MVN Studio. The data was divided up into 100 frame sequences which were then classified into the thirteen different activities. The
results were then saved into a MAT file, ready for use in the analysis of results. Figure 6.2 shows the correctly classified data of each of the three subjects.

![Humanly Classified Activity Vectors](image1)

Figure 6.2 - Correct classifications of each subject.

It is important to note that the walking up stairs activity is intermingled with the walking down stairs activity. This is a result of only a very short flight of stairs, only eight steps in length, being available. The activities were performed together in one 60 second long sequence of walking up and down the stairs. As detailed in section 6.2.3 this caused a problem for the classification engine because each particular sequence of moving up and down stairs was shorter than the threshold of the post classification filter. The solution was to concatenate together the walking up stairs and walking down stairs into one long sequence of each activity. The modified correct classifications are shown in Figure 6.3. It should be noted that the data for each subject was modified in accordance with modification of the correctly classified vectors; that is all the walking up stairs data was grouped and all the walking down stairs data was grouped.

![Humanly Classified Activity Vectors](image2)

Figure 6.3 - Modified correct classifications of each subject.
6.2 Optimisation of the Classification Engine

The classification engine had a number of parameters which directly affected its performance which were optimised through experimentation. These included the history buffer length, the post-classification filter threshold, length of the sliding window, frame to symbol rate, and the symbol frequency rate. Equation 5.1 shows the relationship between the sliding window length in frames (N), sliding window length in symbols (n), the frame frequency rate (f_F = 120 Hz), the symbol frequency rate (f_S) and the frame to symbol rate (R).

\[
\frac{N}{n} = \frac{f_F}{f_S} = R
\]

(5.1)

6.2.1 Impact of the Sliding Window Length and Frame to Symbol Rate

The sliding window length and the symbol to frame rate have a significant impact on the SAX representation of the data. It was observed experimentally that these parameters also had a significant impact on the accuracy of the final outcome. It is important to note that these two parameters are tested together as the impact of each is affected by the other; it is therefore invalid to test each independently.

The sliding window was tested in the range from four to 40 symbols and the frame per symbol rate was tested in the range of two to 28. For this experiment the history length was set at 300 frames, the filter threshold, when used, was set at seven. These parameters were perhaps the most influential of all to be optimised; the impact was tested on both default and individually generated templates.

Figure 6.5 and Figure 6.6 show the effects of the sliding window length and the frame to symbol rate on default and individually generated templates respectively. It is exceedingly clear that the impact is greatly reduced when it is tested on classifications made from individually generated templates. The average accuracy from default templates ranges from 40% to 85%, peaking with a sliding window length of approximately 10 to 12 symbols and a frame to symbol rate of 20. The average accuracy from the individually generated templates is much more resilient to these parameters; it ranges from 80% to 90%.
Figure 6.4 – Effect of the sliding window length and the frame to symbol rate on the accuracy of filtered classifications from default templates.

Figure 6.5 – Effect of the sliding window length and the frame to symbol rate on the accuracy of filtered classifications from individual templates.
The heavy impact of these parameters on the default template classification method results from the differences in the data produced by each subject performing the same activity. The values of these parameters which correspond to the highest accuracy best retain the data features common to all subjects while minimising the differences between them. This also explains why the impact is so small on the classifications from individually generated templates; all the data features, irrespective of their commonality between subjects, correspond to a certain activity. The best values for n and R were found to be 12 and 20 respectively.

6.2.2 Impact of the History Buffer Length

The history length controls the number of frames that the classification engine stores in memory in order to classify the data. A longer history length means the impact of each particular data frame is reduced because it is a smaller part of the data. This means that the engine is more robust to small inconsistencies in the data. A shorter history length means less data is used to make each classification, meaning an activity performed for a shorter period of time can be classified.

![Effect of History Length on Accuracy](image)

Figure 6.6 - Effect of history length on accuracy.

Figure 6.6 shows effect of the history length on the filtered classifications generated from default templates. It is clear from the graph at there is a substantial amount on ‘noise’ in this effect as the accuracy of each subject both increases and decreases, seemingly at random, across the range of history lengths. Within this range, however, the effect is limited to less than a 10% difference for all of the subjects. The
average shows a peak accuracy at a 250 to 300 frame history length. From this experiment the history length of all other experiments was chosen to be 300 frames.

The reason that the accuracy increases with history length, up to a point, is that the impact of small errors and inconsistencies in the data is lessened. The history length also effects how many frames of activity are needed to classify it as that activity and so it takes longer for an activity to be classified. This effect becomes dominant and the accuracy decreases once the length reaches 300.

It is also important to note that the history length also has a significant impact on the amount of memory used and the speed of the classification engine. It is therefore better to have a history length as small as possible to make sure the engine is efficient in terms of speed and resources usage.

6.2.3 Impact of the Post-Classification Filter

The post-classification filter replaces the activities which are classified to have a duration of less than the threshold with the transition activity. The threshold value was tested in the range of 1 to 20 and its effect on the accuracy calculated. Figure 6.7 shows the effect of the threshold on the accuracy of the classifications for each of the subjects. There was a clear common peak at a threshold of seven seconds.

![Figure 6.7 – Impact of the threshold on the accuracy of classification when individually generated templates were used.](image)

It is important to note that of the original data sequences the period of sequence of walking up and walking down stairs did not last five seconds. Any correct
classification of walking up and down stairs would therefore be filtered out because the threshold of seven seconds is not reached. This was anticipated and so all of the data sequences pertaining to each of the walking up and down stairs activities has been concatenated together to form two long sequences of walking up and down stairs. The accuracy both the stairs classification, whilst still in individual sequences, ranged from 20% to 70% when using default templates, and 85% to 100% when using individual templates. All other experiments are performed on the concatenated stairs data to ensure comparability between filtered and unfiltered accuracy.

6.2.4 Final Classification Engine

All experiments have been designed and undertaken with the view to optimise the parameters of the classification engine; the optimised engine has been tested and analysed. Table 6.1 shows the overall accuracy results of the classification engine. It is obvious that the individual templates provide a much more robust method of classification with all results having an accuracy of approximately 95%. The default template generation method provides results of a much wider range, on the order of 25%. The optimal method of classification, for a product using this engine, would be individual templates, produced by a simple calibration process. Default templates, although, clearly not as accurate would provide the capability to skip a calibration stage for simple, quick or en masse implementation.

<table>
<thead>
<tr>
<th>Test Subject</th>
<th>Default Template</th>
<th>Individual Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71%</td>
<td>96%</td>
</tr>
<tr>
<td>2</td>
<td>94%</td>
<td>94%</td>
</tr>
<tr>
<td>3</td>
<td>84%</td>
<td>94%</td>
</tr>
<tr>
<td>Average</td>
<td>83%</td>
<td>95%</td>
</tr>
</tbody>
</table>

Table 6.2 is the confusion matrix generated from the results of all three test subjects data using the default template generation method. It is clear that the riding an exercise bike whilst sitting down was difficult to classify by the engine, misclassifying it as punching. A substantial amount of walking was also classified as punching, though it is not clear why this is so. The translational activity was misclassified more than 50% of the time, this is because the exact point in time which a person starts transitioning from an activity or stops transitioning to an activity is subjectively judged by a person.
Table 6.2 - Confusion matrix from all three test subjects using default templates. Note all values are a percentage of the total value (%).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td>42 6 2 2</td>
<td>27 6 0 1</td>
<td>6 8</td>
<td>4 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walking</td>
<td>3 67 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running</td>
<td>3 0 98 0</td>
<td>0 0 0 0</td>
<td>10 29</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riding - Standing Up</td>
<td>1 0 0 95</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riding - Sitting Down</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>31 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairs - Up</td>
<td>1 0 0 0 0</td>
<td>60 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stairs - Down</td>
<td>2 0 0 0 0</td>
<td>0 0 0 0</td>
<td>63 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowing</td>
<td>27 0 0 0 0</td>
<td>1 3 2</td>
<td>100 0 4</td>
<td>5 4 7</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punching</td>
<td>9 28 0 2</td>
<td>65 0 0 0</td>
<td>99 0</td>
<td>1 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standing</td>
<td>2 0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>91 1 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitting</td>
<td>6 0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>85 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying Down - On Left</td>
<td>2 0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>91 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying Down - On Right</td>
<td>2 0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td>91 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.3 shows the confusion matrix generated from all three test subjects using the individual templates method. The matrix shows that the classifier is perfect at differentiating between defined activities, there is not a single instance, for all three test subjects of misclassifying one activity as another. Where the classifier falls down, however, is when filtering the classified data and adding in the transitional data; only 66% of the transitional activity is correctly classified. This is not surprising however, as the judgement of the exact moment when an activity starts and ends and the transition begins and ends is quite subjective.
Table 6.3 – Confusion matrix from all three test subjects using individual templates. Note all values are a percentage of the total value (%).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td>66 0 0 1 8 2 26 0 13 5 6 0 0</td>
<td></td>
</tr>
<tr>
<td>Walking</td>
<td>4 100 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Running</td>
<td>1 0 100 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Riding – Standing Up</td>
<td>3 0 0 99 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Riding – Sitting Down</td>
<td>1 0 0 0 92 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Stairs – Up</td>
<td>5 0 0 0 0 0 98 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Stairs – Down</td>
<td>0 0 0 0 0 0 0 74 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Rowing</td>
<td>11 0 0 0 0 0 0 0 100 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Punching</td>
<td>3 0 0 0 0 0 0 0 0 87 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Standing</td>
<td>0 0 0 0 0 0 0 0 0 95 0 0 0</td>
<td></td>
</tr>
<tr>
<td>Sitting</td>
<td>3 0 0 0 0 0 0 0 0 0 94 0 0</td>
<td></td>
</tr>
<tr>
<td>Lying Down – On Left</td>
<td>1 0 0 0 0 0 0 0 0 0 0 100</td>
<td></td>
</tr>
<tr>
<td>Lying Down – On Right</td>
<td>2 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.8, Figure 6.9 and Figure 6.10 illustrate the classified output of the three subjects from individually generated templates. They show that although the engine is brilliant at classifying normal activities, it misclassifies the transition activity frequently.

Figure 6.8 - Subject 1 filtered classification from individual templates.
6.3 Validation of Engine

It is very important that the engine be validated using a data set that was not used in its development. A suitable data set was found on an online database of freely available motion capture data provided by Carnegie Mellon University[28]. The data set is composed of 15 different types of walking listed in Table 6.4. It should be noted that since all the activities are comprised solely of sub-types the essentially the same activity that the difficulty of classification is exceedingly high.

The engine was slightly modified to cope with this new data set as there were no static activities to classify. It should also be noted that the templates were generated by
selecting a small subset of each activity. It is also important to note that there was no transitional activity as activity led straight into the next.

Table 6.4 – Types of Walking

<table>
<thead>
<tr>
<th>Number</th>
<th>Type of Walking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Childish</td>
</tr>
<tr>
<td>2</td>
<td>Clumsy</td>
</tr>
<tr>
<td>3</td>
<td>Cool</td>
</tr>
<tr>
<td>4</td>
<td>Depressed</td>
</tr>
<tr>
<td>5</td>
<td>Elated</td>
</tr>
<tr>
<td>6</td>
<td>Elderly Man</td>
</tr>
<tr>
<td>7</td>
<td>Happy</td>
</tr>
<tr>
<td>8</td>
<td>Joy</td>
</tr>
<tr>
<td>9</td>
<td>Lavish</td>
</tr>
<tr>
<td>10</td>
<td>Marching</td>
</tr>
<tr>
<td>11</td>
<td>Painful Left Knee</td>
</tr>
<tr>
<td>12</td>
<td>Relaxed</td>
</tr>
<tr>
<td>13</td>
<td>Rushed</td>
</tr>
<tr>
<td>14</td>
<td>Sad</td>
</tr>
<tr>
<td>15</td>
<td>Sexy</td>
</tr>
</tbody>
</table>

6.3.1 Results

The total accuracy of the classification engine for this data set was 60%. This is substantially lower than the accuracy of engine when tested on the original data, however, the difficulty of this particular data set is very high. Figure 6.11 shows the results of the classification, it shows that a substantial amount of each activity is correctly classified.

Figure 6.11 – Classification of walking data.
7 Conclusions

In this chapter the outcomes of this project are discussed with particular focus on how they related to the goals set out in the project scope. A section on future work is also included.

7.1 Comments

7.1.1 Matlab and a Future Implementation

Matlab was chosen as the basis for engine because it is an extremely useful data analysis tool. It contains a multitude of useful functions for visualising and manipulating the data. It combines the functionality of Java with the accessibility of a deceptively simple interface. These features make it very useful as a development tool and this is why it was used to develop the engine.

The classification engine, although programmed in Matlab, does not use any Matlab specific tools and can easily be implemented in other languages. As Matlab uses a Java, which runs in a virtual machine on the computer, the functions run in Matlab are not nearly as computationally efficient as similar programs compiled from other languages [29]. It should also be noted that the peripheral functions extensively used in Matlab whilst the engine was in development, not easily available in other languages, will not be needed in the final product.

A future implementation of this classification tool should therefore be coded in computationally efficient language ensuring the real-time functionality of the engine is preserved.

7.2 Outcomes

The success of this classification engine is comparable other attempts at classification of motion capture data as shown in Table 7.1. The engine performs as well as the Kasetty et al.[14] which is the only other team to attempt to validate their engine by classifying other data. It is important to note that this engine had the added difficulty of performing the classifications in pseudo real-time and on pseudo streaming data.
Table 7.1 – Comparison of classification accuracy between different methods. *Not motion capture data. **Average.

<table>
<thead>
<tr>
<th>Team</th>
<th>Accuracy on Own Data</th>
<th>Validation Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification Engine</td>
<td>83/95%</td>
<td>60%</td>
</tr>
<tr>
<td>*Kasetty et al.[14]</td>
<td>95%</td>
<td>**66%</td>
</tr>
<tr>
<td>Parkka et al.[30]</td>
<td>82/86/82%</td>
<td></td>
</tr>
<tr>
<td>Najafi et al.[17]</td>
<td>**90%</td>
<td></td>
</tr>
<tr>
<td>Saponas et al. [18]</td>
<td>97/99%</td>
<td></td>
</tr>
</tbody>
</table>

7.2.1 Every Day Activities

The twelve activities classified, excluding the transitional activity, do not fully encompass the activities normally undertaken on a daily basis. The focus has been on simple activities that provide stable data, that is a few second sliding window of a particular activity will produce a constant Time Series Bitmap. As stated in 4.1 higher level activities that change from moment to moment will not be able to be processed by this algorithm; a higher level algorithm which draws together simple sub-activity classifications into an overarching activity would be needed.

The stated aim, therefore, to produce a data classification tool which would classify the streaming data from an IMU into the daily activities has not been met as the list of activities which can be classified does not encompass the entire list of plausible daily activities. A tool has been developed, however, which does classify simple activities and differentiate between activities and activity transitions. It can be used as a cornerstone in a higher level classifier which will be able to classify a realistic list of everyday activities.

7.2.2 Ease of Adding New Activities

Previous motion classification attempts have used methods which require training. This means that for every new activity that is added to the list of classification activities the classifier must be retrained. It would be exceptionally difficult or impossible to give end users of a product the ability to retrain the classifier to allow new activities to be classified.

A major advantage of this method is ease of adding new activities to the list of classifiable activities. The engine needs only a short sequence of the new activity from which to produce a template. A future product using this engine could easily incorporate a feature that allows the user to add a new activity simply by selecting an
option on interactive software and then performing the new activity for a short period of time. To the extent of the literature reviewed for this thesis, no other motion classification method allows this feature.

7.3 Future Work

7.3.1 Development of Current Engine

Although quite successful at classifying the activities within this thesis, a substantial amount of work needs to be done at finding new activities which can be classified as well as optimising the algorithms and processes.

7.3.2 Development of Higher Level Classifier

An important future direction for this work is to develop a classifier that is able to use the low level classifications of sub-activities to classify high level activities. An example of this would be using the sub-activity classifications of chopping, stirring, pouring and mixing to classify cooking. Further improvements could be made by using a memory of previously performed activities, for example showing would most likely be followed by getting dressed. Other ideas such as incorporating the time of day, from a timer, and the location, from a GPS, could be used, for example playing tennis could only occur on a tennis court.

7.3.3 Developing of Complete Package to Use

This thesis was completed with the use of the MVN Biomech and the MVN Studio software package. This somewhat limited the practical scope of this thesis in terms of the amount of sensors used and the ability to process streaming data. It is important for future development of a complete hardware and software package; the realisation of the original goal of performing real-time classification of everyday activities using a single IMU.
8 References

[12] Christos Faloutsos, M Ranganathan, and Yannis Manolopoulos, "Fast Subsequence

 http://cs.gmu.edu/~jessica/sax.htm

Appendix A – Original Project Plan

Project Proposal:

An important indicating factor of the quality of life of persons with limited mobility is the identification of physical activity. Health Related Quality of Life (HRQL), as measured, in part, by the Activities of Daily Living Score is a reflection of the “personal sense of physical and mental health and the capacity to react to diverse factors in the environment.”1

In 1960 the proportion of people over 65 to those of working age was 15%, by 2030 the proportion will increase to 35% in all OECD countries2. In Australia the cost of aged care will increase by 0.39 percentage points of GDP from 2006 to 20313.

It is important therefore to be looking at finding cheaper alternatives to any tasks currently undertaken in aged care. The use of a wearable IMU to measure the daily activities of limited mobility people may be cheaper or more accurate than the current solutions.

The project goal would be to produce a data analysis tool which would readily classify the data from an IMU into the daily activities of the wearer.

The device being used to capture kinetic motion would be MVN Biomech made by Xsens. The device senses kinematic motion using a tri-axis accelerometer, a tri-axis gyroscope and a tri-axis magnetometer. It has wireless communication interface with a range of up to 150 metres of open space and 50 metres of “office space”.

A crucial step in the project is to collect data by wearing the IMU device and perform certain tasks and activities. It is important to then find correlations between certain activities and the corresponding characteristics and patterns in the data.

The crux of this thesis project is accurately classifying daily activities from data produced by the IMU. There are a number of techniques already used to perform this

1 Adam Drewnowski and William J. Evans, Nutrition, Physical Activity, and Quality of Life in Older Adults: Summary, Journals of Gerontology: Oct 2001: 56A, Research Library, pg 89.
task but it is important to try novel solutions. Symbolic Aggregate approXimation (SAX) is a powerful tool that has not yet been applied to this problem.

The first task involved in this project will be to perform a literature review which would identify current research and future applications of the project. Data would also need to be collected, meaning the device would need to be worn and the user perform a certain range of activities. The data would then be divided up into sets corresponding to the activities performed so that the important characteristics can be identified. SAX would then be used to recognise the characteristics in the data and then translate that back to the activities performed by the user. Testing would need to be performed to ensure the daily activity recognition is accurate.

Thesis Objectives:

Data collection analysis: Use various filters, data transformation and data analysis tools to transform the data into a usable form.

Classification of Daily Activities: Once the data has been properly analysed it can then be ‘mined’ for the defining characteristics of each daily activity. It is the objective of the project to classify as many normal daily activities as possible, on the order of 10 to 20 activities.

Create an Automatic Analysis Software Tool: Using the defining characteristics of each activity, create a tool that receives new data from the IMU and outputs the specific daily activities performed.

![Figure A.1 Gantt Chart](image-url)
Appendix B Logbook Summary Sheet

---------- pages 52, 53 removed ----------
Appendix C Mathematical Proof

Figure 4.2 shows point P described by both X_G, Y_G and X_L, Y_L. Figure 4.2 is drawn such that equation C.1 is true:

$$\alpha + \beta = \psi$$ \hspace{1cm} (C.1)

Equation C.2 is an expression of Pythagoras theorem and can therefore be assumed to be true:

$$X_L^2 + Y_L^2 = X_G^2 + Y_G^2$$ \hspace{1cm} (C.2)

Equation C.3 is a rearrangement of equation C.2 in order to isolate the X_L variable:

$$X_L = \sqrt{X_G^2 + Y_G^2 - Y_L^2}$$ \hspace{1cm} (C.3)

Equation C.4 is the a trigonometric sum:

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$ \hspace{1cm} (C.4)

Equations C.5 and C.6 are trigonometric identities applied to Figure 4.2:

$$\tan \alpha = \frac{Y_L}{X_L}$$ \hspace{1cm} (C.5)

$$\tan \beta = \frac{Y_G}{X_G}$$ \hspace{1cm} (C.6)

Equations C.1, C.5 and C.6 are substituted into equation C.4 to yield equation C.7 which is simplified to reveal equation C.8:

$$\tan \psi = \frac{\left(\frac{Y_L}{X_L} + \frac{Y_G}{X_G}\right)}{1 - \left(\frac{Y_L}{X_L}\right)\left(\frac{Y_G}{X_G}\right)}$$ \hspace{1cm} (C.7)

$$\frac{X_L}{Y_L} = \frac{X_G \cos \psi + Y_G \sin \psi}{X_G \sin \psi - Y_G \cos \psi}$$ \hspace{1cm} (C.8)

Equation C.3 is substituted into equation C.8 to form equation C.9 which is then simplified to yield equation C.10. Equation C.11 is the simplified result of substituting equation C.10 back into equation C.2. Equations C.10 and C.11 are the final relations:
\[
\frac{\sqrt{X_G^2 + Y_G^2} - Y_L}{Y_L} = \frac{(X_G \cos \psi + Y_G \sin \psi)}{(X_G \sin \psi - Y_G \cos \psi)} \quad (C.9)
\]

\[Y_L = X_G \cos \psi + Y_G \sin \psi \quad (C.10)\]

\[X_L = X_G \sin \psi - Y_G \cos \psi \quad (C.11)\]

QED
Module Description

<table>
<thead>
<tr>
<th>Module</th>
<th>Input</th>
<th>Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Activity</td>
<td>Activity Identifier</td>
<td>Activitie</td>
<td>Returns the corresponding activity name or number to the input identifier. For example if 1 is inputted the return is "Walking".</td>
</tr>
<tr>
<td>Calculate Euclidean Distance</td>
<td>Matrix 1, matrix 2</td>
<td>Euclidean Distance</td>
<td>Calculates the Euclidean Distance between the two input matrices.</td>
</tr>
<tr>
<td>Decide</td>
<td>Data Name</td>
<td>Classifications</td>
<td>Depending on the input data name, the data is classified using either the individual templates or group templates.</td>
</tr>
<tr>
<td>Get Activity</td>
<td></td>
<td>Activity</td>
<td>Returns the corresponding activity name or number to the input identifier.</td>
</tr>
<tr>
<td>Euclidean Distance</td>
<td></td>
<td>Euclidean Distance</td>
<td>Calculates the Euclidean Distance between the two input matrices.</td>
</tr>
<tr>
<td>Decision Engine</td>
<td>Data Name</td>
<td>Classifications</td>
<td>Depending on the input data name, the data is classified using either the individual templates or group templates.</td>
</tr>
<tr>
<td>Create Individual Templates</td>
<td></td>
<td></td>
<td>Uses the individual activity examples saved in a special folder to compute the templates used for classification. They are saved in a special folder for later use.</td>
</tr>
<tr>
<td>Create Group Templates</td>
<td></td>
<td></td>
<td>Uses the group activity examples saved in a special folder to compute the templates used for classification. They are saved in a special folder for later use.</td>
</tr>
<tr>
<td>Confusion Matrix</td>
<td>Classifications, Correct Classifications</td>
<td>Confusion Matrix</td>
<td>COMPUTES THE CONFUSION MATRIX FROM THE CLASSIFICATIONS AND CORRECT CLASSIFICATIONS. This is so the same activity goes for longer than the threshold.</td>
</tr>
<tr>
<td>Compute Accuracy</td>
<td>Original Data, Correct Activity</td>
<td>Accuracy</td>
<td>COMPUTES THE ACCURACY OF THE CLASSIFICATIONS USING THE CORRECT ACTIVITY.</td>
</tr>
<tr>
<td>Clean Output</td>
<td></td>
<td></td>
<td>FILTRATES THE CLASSIFICATION OF THE DECISION TREE AND INTRODUCES TRANSITIONAL ACTIVITIES.</td>
</tr>
<tr>
<td>Bitmap</td>
<td>Matrix</td>
<td>Time Series Bitmap</td>
<td>PRODUCES A TIME SERIES BITMAP CORRESPONDING TO THE INPUT MATRIX.</td>
</tr>
</tbody>
</table>

Appendix D Software Documentation

ECTE457 Oliver Kerr
visualisation.m
transformToInputData.m
TransformData.m
rotateAngle.m
plotActivities.m
importFromFolder.m

Module: Orientation
Data: Position, velocity, acceleration, orientation

Classifications: Correct, name, zero

Input: Data
Output: Orientation, position, velocity, acceleration

Description:
- Animates the orientation of the pelvis in a real-time manner.
- Transforms from a structured data format to a matrix data format.
- Extracts data from all MVNX and BVH files in the current folder and saves them in MAT format.
- Returns the localized position, velocity, and acceleration vectors.
- Graphs the classified activities against the correct activities with the title 'name'.
- Zero is a Boolean value which determines whether transitional activities are used.
- ZeroClassifications, name, zero
- Provides all .mat files in a particular format and returns all in single structure

Module: Input
Data: Input
Appendix E Layout of Accompanying CD

E.1 /Final Report
The final report in PDF format is stored here.

E.2 /Matlab Scripts
All the relevant Matlab scripts and functions are stored here. It should be possible to test all Matlab scripts with the data on this CD.

E.3 /Saved Examples
Saved examples of various inputs and outputs are stored here. The original raw data of all three subjects is stored here.

E.4 /Templates
Both the default and individual templates are stored here.

E.5 /Activity Examples
The activity examples, to generate the templates, are saved here.