2011

Self-matching bands in the paperfolding sequence

Bruce Bates
University of Wollongong, bbates@uow.edu.au

Martin Bunder
University of Wollongong, mbunder@uow.edu.au

Keith Tognetti
University of Wollongong, tognetti@uow.edu.au

Publication Details

Self-matching bands in the paperfolding sequence

Abstract
We compare term by term the paperfolding sequence with a copy displaced by d terms to obtain the matching fraction M(d).

Keywords
matching, self, bands, sequence, paperfolding

Disciplines
Physical Sciences and Mathematics

Publication Details
SELF-MATCHING BANDS IN THE PAPERFOLDING SEQUENCE

BRUCE BATES, MARTIN BUNDER, AND KEITH TOGNETTI

Abstract. We compare term by term the paperfolding sequence with a copy displaced by \(d \) terms to obtain the matching fraction \(M(d) \). It is shown that \(M(d) \) has an interesting structure in that if \(d = 2^b (1 + 2 \alpha) \), then \(M(d) = \left| \frac{1 - \frac{3}{2^{b+1}}}{} \right| \) thereby generating horizontal bands for each value of \(b \). That is, \(M(d) \) depends only on \(b \).

1. Introduction

Consider two binary sequences: \(S = f_1 f_2 f_3 \ldots \) and \(S \) displaced by \(d \), that is, the sequence \(f_{d+1} f_{d+2} f_{d+3} \ldots \). As the terms can differ only by a unit, we look at the expression \(|f_{d+i} - f_i| \) for \(i \in \mathbb{N} \). If this is zero we have a match at the \(i \)-th term; otherwise it is unity and we have a mismatch.

Example 1. Let \(S = 1101100111 \ldots \) be displaced by 3 terms. Then \(|f_{3+i} - f_i| \) can be represented pictorially as follows.

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\(|f_{3+i} - f_i| : \) 0 0 0 1 0 1 1 0

This suggests the following definition.

Definition 1. (The self-matching function). Let \(S \) be an infinite binary sequence. The proportion of matches for \(S \), with \(S \) displaced by \(d \), is given by:

\[
M(d) = \lim_{m \to \infty} \left(m - \sum_{i=1}^{m} |f_{d+i} - f_i| \right) / m.
\]

Recently, Tognetti [4] described a surprisingly simple matching pattern for Bernoulli sequences for which \(f_i = \lfloor \frac{i}{\alpha} \rfloor - \lfloor \frac{i+1}{\alpha} \rfloor \). This represents the difference sequence for the integer parts sequence. It was shown that the graph of \(M(d) \) against \(d \) exhibited a Moiré pattern and that unexpectedly this pattern was obtained by simply folding the fractional parts graph about its middle.

This paper examines the self-similarity within the paperfolding sequence and reveals yet another interesting pattern within the graph of a paperfolding \(M(d) \) against \(d \). We show that the graph forms horizontal bands.

2. The Paperfolding Operation

There have been many studies on the paperfolding sequence, \(S = 11011001110 \ldots \), since the seminal paper by Davis and Knuth [2]. It is based on the following simple operation: repeatedly fold a piece of paper, right over left, \(i \) times. When unfolded,
the paper contains v-shaped and inverted v-shaped creases. If we represent a v-shape by a 1 and an inverted v-shape by a 0, we obtain the following paperfolding subsequence after i folds (containing $2^i - 1$ creases):

$$S_i = f_1 f_2 f_3 \ldots f_{2^i-1} = 110 \ldots 100.$$

For example,

$$S_1 = 1,$$
$$S_2 = 110,$$
$$S_3 = 1101100.$$

As i becomes unbounded we have the infinite sequence, S. A comprehensive treatment of various paperfolding properties as well as a survey of the development of the paperfolding sequence can be found in Bates et al [1]. There it was shown that S can be represented by the interleaving of two sequences, as follows.

Definition 2. (Interleave operator). The interleave operator $\#$ acting on the two sequences $U = u_1 u_2 \ldots u_k$ and $V = v_1 v_2 \ldots v_n$, where $k > n$, generates the following interleaved sequence:

$$U \# V = u_1 \ldots u_p v_1 u_{p+1} \ldots u_{2p} v_2 u_{2p+1} \ldots u_{np} v_n u_{np+1} \ldots u_k,$$

where $p = \left\lfloor \frac{k}{n+1} \right\rfloor$.

Definition 3. (Alternating sequence). The alternating sequence of length $2r$ is given by $A_{2r} = 1010 \ldots 10$.

Definition 4. (Interleaving expression for paperfolding). For $i \geq 2$, the paperfolding sequence of length $2^i - 1$, S_i, is defined as

$$S_i = A_{2^i-1} \# S_{i-1}$$

where $S_1 = 1$.

S can also be represented through mirroring.

Definition 5. (Mirror paperfolding sequence). The mirror paperfolding sequence of length $2^i - 1$, S^R_i, is defined as the reversal of S_i combined with each 1 being replaced by 0 and each 0 being replaced by 1.

The following results are found in Bates et al [1].

Theorem 1. $S_{i+1} = S_i \ 1 \ S^R_i$ and $S^R_{i+1} = S_i \ 0 \ S^R_i$ where $S_1 = 1$.

Corollary 1. $S_i = A_{2^i-1} \# A_{2^i-2} \# \ldots \# A_2 \# 1$ and $S^R_i = A_{2^i-1} \# A_{2^i-2} \# \ldots \# A_2 \# 0$.

Corollary 1 tells us that the paperfolding sequence is equivalent to a series of successive interleaves of alternating sequences applied to the term $S_1 = 1$; and the mirror paperfolding sequence is equivalent to a series of successive interleaves of alternating sequences applied to the term $S^R_1 = 0$.

Theorem 2. S_i contains $2^{i-1} - 1$ instances of 0 and 2^{i-1} instances of 1.

We now demonstrate a more general result: the paperfolding sequence is an interleave of smaller paperfolding sequences.
Definition 6. (Alternating paperfolding sequence). The alternating paperfolding sequence of length \(2^n - 2^m\), \(0 < n < i\), is given by
\[
A_{i,n} = S_{i-n} \overline{S}_{i-n} S_{i-n} \overline{S}_{i-n} \cdots S_{i-n} \overline{S}_{i-n},
\]
where the right hand side consists of \(2^{n-1}\) copies of \(S_{i-n} \overline{S}_{i-n}\).

Theorem 3. \(S_i = A_{i,n} \# S_n\) and \(S_i^R = A_{i,n} \# S_n^R\).

Note that particular values of \(n\) yield familiar expressions for \(S_i\). That is,
\begin{enumerate}
 \item For \(n = 1\), \(S_1 = A_{1,1} \# S_1 = S_{i-1} 1 \overline{S}_{i-1}\), and
 \item For \(n = i - 1\), \(S_i = A_{i,i-1} \# S_{i-1} = A_{i-1} \# S_{i-1}\).
\end{enumerate}

In order to evaluate \(f_i\), we represent \(i\) as \(2^k (2r + 1)\) where \(k, r \geq 0\). This representation is characteristic of many folding structures apart from paperfolding, such as with the stickbreaking sequence, the Stern-Brocot tree and the Sarkovskiy ordering of cycles in chaos (See Devaney [3]). It follows that \(i\) in binary is the binary number \(r\), followed by a 1 and then \(k\) 0s.

The following two results for \(f_i\) are found in Bates et al [1].

Theorem 4. For \(i = 2^k (2r + 1)\), \(f_i = 1 + r \mod 2\).

We use the fact that \(2r + 1\) can be partitioned into \(4h + 1\), for \(r = 2h\); and \(4h + 3\), for \(r = 2h + 1\) in the formulation of the following result.

Theorem 5. For \(k, h \geq 0\),
\[
f_i = \begin{cases}
 1, & \text{if } i = 2^k (4h + 1) \\
 0, & \text{if } i = 2^k (4h + 3)
\end{cases}
\]

Corollary 2. For \(i = 2^k (4h + a)\) and \(s = 2^k (4l + t)\) where \(a, t \in \{1, 3\}\),
\begin{enumerate}
 \item \(f_i = \frac{1}{2} (3 - a)\)
 \item \(f_i = f_s\), if and only if \(a = t\).
\end{enumerate}

Theorem 6. For \(i = 2^k (4h + a)\) and \(s = 2^k (4l + t)\) where \(a, t \in \{1, 3\}\),
\begin{enumerate}
 \item if \(b < k - 1\),
 \begin{enumerate}
 \item \(f_{i+s} = f_s\),
 \item \(f_{i+s} = f_t\), if and only if \(a = t\),
 \end{enumerate}
 \item if \(b = k - 1\),
 \begin{enumerate}
 \item \(f_{i+s} \neq f_s\),
 \item \(f_{i+s} = f_t\), if and only if \(a \neq t\),
 \end{enumerate}
 \item if \(b = k\),
 \begin{enumerate}
 \item \(f_{i+s} = f_t\), if and only if \(a = t\) and \(2 \mid (h + 1)\); or,
 \[a \neq t \text{ and } h + l + 1 = 2^u (4v + a) \text{ for some } u, v \geq 0, \]
 \item \(f_{i+s} = f_s\), if and only if \(a = t\) and \(2 \mid (h + l)\); or,
 \[a \neq t \text{ and } h + l + 1 = 2^u (4v + t) \text{ for some } u, v \geq 0. \]
 \end{enumerate}
\end{enumerate}

Proof. We have \(i = 2^k (4h + a)\) and \(s = 2^k (4l + t)\) where \(a, t \in \{1, 3\}\). We examine each case.
\begin{enumerate}
 \item If \(i + s = 2^k (4 (2h+b) + l + 2^k - b - a)\), (a) and (b) follow from Corollary 2 ii),
 \item If \(i + s = 2^{k-1} (4 (l+2h) + (2a + t))\), as \(t \neq (2a + t) \mod 4\) for any \(a\) and \(t\) and \(a = (2a + t) \mod 4\), if and only if \(a \neq t\), (a) and (b) follow by Corollary 2 ii),
 \item (a) For \(a = t\), \(i + s = 2^{k+1} (2 (h + l) + a)\). Also by Corollary 2 ii),
\end{enumerate}
* if \(2 \mid (h + l) \), then \(i + s = 2^{k+1} \left(4 \left(\frac{h+1}{2} \right) + a \right) \) so \(f_{i+s} = f_i = f_s \).
* if \(2 \nmid (h + l) \), and \(a = 3 \), then \(i + s = 2^{k+1} \left(4 \left(\frac{h+1}{2} \right) + 1 \right) \) so \(f_{i+s} \neq f_i, f_s \).
* if \(2 \mid (h + l) \), and \(a = 1 \), then \(i + s = 2^{k+1} \left(4 \left(\frac{h+1}{2} \right) \right) + 3 \) so \(f_{i+s} \neq f_i, f_s \).

(b) For \(a \neq t \), \(i + s = 2^{k+2} (h + l + 1) \). Accordingly,
* if \(h + l + 1 = 2^v (4v + a) \) for some \(u, v \geq 0 \), \(f_{i+s} = f_i \).
* if \(h + l + 1 = 2^v (4v + t) \) for some \(u, v \geq 0 \), \(f_{i+s} = f_s \).

In the special case where \(s = 1 \), by i), ii) and iii) for \(u \geq 0 \) and \(h' = 4 - h \),

\[
f_{i+1} = f_i \quad \text{if and only if} \quad i = \begin{cases}
2^{u+2} (4h + 1), & \text{or} \\
2 (4h + 3), & \text{or} \\
8h' + 1, & \text{or} \\
2^{u+2} (4v + 3) - 1. & \text{or}
\end{cases}
\]

3. The Graph of the Self-Matching Function, \(M (d) \)

We now state our main result.

Theorem 7. Let \(d = 2^k (2r + 1) \). Then \(M (d) = \left| 1 - \frac{3}{2d + 1} \right| \).

Proof. There are two cases to consider:

i) \(d \) is odd, that is, \(b = 0 \). There are two sub-cases:

(a) \(d = 4l + 1 \).

(1) Consider \(l = 0 \), that is, \(d = 1 \). From Definition 4, \(S \) is the interleave of the sequences in 3.1.1 and 3.1.2 while \(S \) displaced by 1, is the interleave of 3.1.3 and 3.1.4. Corresponding matched or mismatched entries in the overlay are shown by:

\[
\begin{align*}
(3.1.1) & \lim_{i \to +\infty} A_{2i-1} : \quad 1 & 0 & 1 & 1 & 1 & \ldots \\
(3.1.2) & S : \quad 1 & : & 1 & : & 0 & : & 1 & : & 1 & \ldots \\
(3.1.3) & \lim_{i \to +\infty} A_{2i-1} : \quad 1 & : & 0 & : & 1 & : & 0 & : & 1 & \ldots \\
(3.1.4) & S : \quad 1 & 1 & 0 & 1 & \ldots
\end{align*}
\]

Consider (3.1.3):

- Every odd entry is a 1. Each is aligned with odd entries in \(S \) in (3.1.2) which by Definition 4 are consecutive values of an infinite alternating sequence. Thus half of these alignments match.
- Every even entry is a 0. Each is aligned with even entries in \(S \) in (3.1.2) which by Definition 4 are consecutive values of \(S \). By Theorem 2, the ratio of matching 0s in (3.1.3) is \(\lim_{i \to +\infty} \frac{2^i - 1}{2^i + 1} = \frac{1}{2} \).

Thus half of these alignments match.

Consider (3.1.4):

- Consecutive odd entries form an infinite alternating sequence. Each is aligned to even entries in (3.1.1) which are all 0s. Thus half of these alignments match.
Consecutive even entries form S. Each is aligned with a 1 from (3.1.1). By Theorem 2, the ratio of matching 1s in (3.1.4) is \[\lim_{i \to \infty} \frac{2^{i-1}}{2^{i-1} - 1} = \frac{1}{2}. \] Thus half of these alignments match.

It follows that $M(1) = \frac{1}{2}$.

(II) Consider $l > 0$. Each entry in 3.1.3 and 3.1.4 moves $4l$ spaces to the right. Despite this move, each entry in 3.1.1 and 3.2.1 (except the leftmost d entries which are now unaligned) is aligned to a value identical to that found in the case for $l = 0$. Thus $M(4l + 1) = M(1) = \frac{1}{2}$, $l \in \mathbb{N}$.

(b) $d = 4l + 3$.

(I) Consider $l = 0$, that is, $d = 3$. As with (a), S overlaid with itself, with displacement 3, can be broken down into the following four subsequences:

\[
\begin{align*}
(3.2.1) \quad \lim_{i \to \infty} A_{2i-1} : & \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad \cdots \\
(3.2.2) \quad S : & \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad \cdots \\
(3.2.3) \quad \lim_{i \to \infty} A_{2i-1} : & \quad 1 \quad 0 \quad 1 \quad 0 \quad \cdots \\
(3.2.4) \quad S : & \quad 1 \quad 1 \quad 0 \quad \cdots
\end{align*}
\]

Consider (3.2.3):

- Every odd entry is a 1. Each is aligned with even entries in S in (3.2.2) which by Definition 4 are consecutive values of S. By Theorem 2, the ratio of matching 1s in (3.2.3) is \[\lim_{i \to \infty} \frac{2^{i-1}}{2^{i-1} - 1} = \frac{1}{2}. \] Thus half of these alignments match.

- Every even entry is a 0. Each is aligned with odd entries in (3.2.2) which form an infinite alternating sequence. Thus half of these alignments match.

Consider (3.2.4):

- Consecutive odd entries form an infinite alternating sequence. Each is aligned to odd entries in (3.2.1) which are all 1s. Thus half of these alignments match.

- Consecutive even entries form S. Each is aligned with a 0 from (3.2.1). By Theorem 2, the ratio of matching 0s in (3.2.4) is \[\lim_{i \to \infty} \frac{2^{i-1} - 1}{2^{i-1}} = \frac{1}{2}. \] Thus half of these alignments match.

It follows that $M(3) = \frac{1}{2}$.

(II) Consider $l > 0$. Each entry in 3.2.3 and 3.2.4 moves $4l$ spaces to the right. Despite this move, each entry in 3.2.1 and 3.2.2 (except the leftmost d entries which are now unaligned) is aligned to a value identical to that found in the case for $l = 0$. Thus $M(4l + 3) = \frac{1}{2}$, $l \in \mathbb{N}$.

Combining (a) and (b), for $b = 0$, $M(d) = \frac{1}{2}$.

ii) d is even, that is, $d = 2^b(4l + t)$ where $t \in \{1, 3\}, b > 0$.
From Theorem 3, taking limits, $S = S_b f_1 \overline{S_b} f_2 S_b f_3 \overline{S_b} f_4 \ldots$. Since each $S_b f_i$ and $\overline{S_b} f_i$ is of length 2^k, we also have

$$S = S_b f_2 \overline{S_b} f_2 \overline{S_b} f_3 \overline{S_b} f_3 \overline{S_b} f_4 \overline{S_b} f_4 \overline{S_b} \ldots$$

So S overlaid with itself with displacement d can be viewed as

$$S_b \quad 1 \quad \overline{S_b} \quad 1 \quad \ldots \quad S_b \quad f_d \quad \overline{S_b} \quad f_d \overline{S_b} \quad \ldots$$

where after the $\left\lceil \frac{d+1}{2} \right\rceil$th instance of S_b in the first line, S_b entries are overlaid with $\overline{S_b}$, and $\overline{S_b}$ entries are overlaid with S_b. Consider these overlays of S_b and $\overline{S_b}$ entries in (3.3). By Theorem 1, each middle term is mismatched, thereby generating mismatches every 2^k spacings in (3.3). Thus for large m, $\frac{m}{2^k}$ terms are mismatched. Now consider the overlay of the other entries in (3.3). These occur every 2^k spacings and represent S overlaid with itself with odd displacement. By i), half of these entries mismatch and so for large m, there are $\frac{m}{2^k + 1}$ of these mismatches. Since these overlays are mutually exclusive, we can add the mismatches. That is, for large m, there are $\frac{3m}{2^k + 1}$ mismatches. Thus $M(d) = 1 - \frac{3m}{2^k + 1}$ for d even.

From Theorem 7, as $M(d)$ is a function of b only, then $M(d)$ is constant for constant b. Hence the graph of $M(d)$ consists of horizontal bands based on b such that each band has height $\lfloor 1 - \frac{3}{2^k + 1} \rfloor$ as shown in Figure 1. We note that although the matching band for $2(2r + 1)$ is below the band for odd numbers ($b = 0$) all the other bands are above the odd band. That is,

- Band 0, ($b = 0$), $M(d) = \frac{1}{2}$, d is odd,
- Band 1, ($b = 1$), $M(d) = \frac{1}{3}$, $d = 2 + 4s = 2, 6, 10, \ldots$,
- Band 2, ($b = 2$), $M(d) = \frac{1}{6}$, $d = 4 + 8s = 4, 12, 20, \ldots$,
- \vdots
- Band n, ($b = n$), $M(d) = \left\lfloor 1 - \frac{3}{2^k + 1} \right\rfloor$, $d = 2^n + 2^n + 1 \cdot s = 2^n, 2^n + 3, 2^n + 5, \ldots$

Theorem 8. For $k > 0$, and $1 \leq d < 2^k$,

$$M(d) = M\left(2^k \pm d\right).$$

Proof. If $d = 2^k (2r + 1) < 2^k$, then $b < k$, and $2^k \pm d = 2^k (2^{k-b-1} \pm r) \pm 1$. By Theorem 7, $M\left(2^k \pm d\right) = M(d)$.

Theorem 8 tells us that if we have the section of the graph up to $d = 2^k - 1$, we can generate the graph up to $2^k + 1 - d$ by adding the point $(2^k, M(2^k))$ and then translating the earlier section to the right of 2^k.

4. The Expected Value of $M(d)$

The terms associated with band b for $b > 0$ have period 2^k+1. Hence the proportion of these terms that possess this matching is $\frac{1}{2^k+1}$. Band 0 makes the largest contribution to the expected value of $M(d)$, $E\left(M(d)\right)$, of any band. It contains
half the total number of points, each with value $\frac{1}{2}$, making its total contribution $\frac{1}{4}$. It contributes half of $E(M(d))$ as shown below.

$$E(M(d)) = \sum_{k=0}^{\infty} \left(1 - \frac{3}{2^{k+1}} \right) \frac{1}{2^{k+1}}$$

$$= \frac{1}{4} + \sum_{k=1}^{\infty} \left(1 - \frac{3}{2^{k+1}} \right) \frac{1}{2^{k+1}}$$

$$= \frac{1}{2}$$

REFERENCES

