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Emotional States Control for On-line Game Avatars

Ce Zhan, Wanqing Li, Farzad Safaei, and Philip Ogunbona
University of Wollongong

Wollongong, NSW 2522, Australia
{cz847, wanqing, farzad, philipo}@uow.edu.au

ABSTRACT
Although detailed animation has already been achieved in
a number of Multi-player On-line Games (MOGs), players
have to use text commands to control emotional states of
avatars. Some systems have been proposed to implement a
real-time automatic system facial expression recognition of
players. Such systems can then be used to control avatars
emotional states by driving the MOG’s “animation engine”
instead of text commands. Some of the challenges of such
systems is the ability to detect and recognize facial compo-
nents from low spatial resolution face images. In this paper
a system based on an improved face detection method of
Viola and Jones is proposed to serve the MOGs better. In
addition a robust coarse-to-fine facial landmark localization
method is proposed. The proposed system is evaluated by
testing it on a database different from the training database
and achieved 83% recognition rate for 4 emotional state ex-
pressions. The system is able to operate over a wider range
of distance from user to camera.

General Terms
Algorithms, Experimentation, Design

Keywords
avatar control, multiplayer on-line game, facial expression
recognition

1. INTRODUCTION
Multi-player On-line Games (MOGs) have become popu-

lar over the last few years, largely due to the communication,
collaboration, and interactivity provided to players. Thus
players are able to cooperate or compete with each other on
a large scale and experience relationships often comparable
to those in the real world. The attractiveness of the “real
feeling” has created a whole new community of players and
the supporting lucrative industry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors.
NetGames&apos;07, September 19-20, 2007, Melbourne, Aus-
tralia
.

Despite the realism of the interactivity enjoyed by play-
ers of MOGs, a comparison of the conversational aspects of
the communication reveals that the interfaces are still primi-
tive when conveying affective states of the player. Birdwhis-
tell’s linguistic analogy [2] suggests that the information con-
veyed by words amounts to only 20-30% of the information
conveyed in a conversation. The underlying emotions con-
veyed by different facial expressions often make the same
word have different meanings. In order to feel immersed
and socially aware as in the real world, players must have
an efficient method of conveying and observing changes in
emotional states. Except in few MOGs where affective ex-
pressions are not supported, all other existing MOGs deal
with emotions by using text commands. For example, when
a player, John, types the command “/smile” while having a
conversation with another player, Bruce, in a game, “John
smiles at Bruce” appears on the screen. At the same time
and depending on the degree of animation implemented in
the MOG, John’s avatar smiles or a body gesture animation
is presented (like a swing of an arm). Text commands are
simple and straightforward, but they do not provide an effi-
cient and natural way to control the emotional state of the
avatar.

Zhan et al. [15] proposed a real-time automatic system
to recognize players’ facial expressions, so that the recogni-
tion results can be used to control avatars’ emotional states
through the “animation engine” of the MOG. As a client
application of a MOG, the system consumes less system re-
sources and achieved a high frame rate (16 frames of 256x256
pixels per second on a PC with 2.80 GHz Intel Pentium) with
an average recognition rate of 82%. However, it failed to rec-
ognize expressions accurately when the spatial resolution of
input face regions is lower than 100× 100. The system also
exhibited decreased performance when the testers are not
included in the training data.

In this paper, we improve the facial expression recogni-
tion system proposed in [15], so as to make the system deal
with low resolution input and provide user-independent op-
eration. In Section 2, an overview of the improved system
is presented. Section 3 explains the essence of the object
detection method proposed by Viola and Jones [13], and
the modifications of the object detection method used in
the proposed system for key facial component detection are
presented in Section 4. A coarse-to-fine facial landmark lo-
calization scheme is demonstrated in Section 5. Section 6
describes the classification method and Section 7 presents
the experimental results. Conclusions are given in Section
8.
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2. SYSTEM OVERVIEW
The improved facial expression recognition system catego-

rizes each frame of the facial video sequence into a neutral
expression or one of the six basic emotions introduced by
Ekman and Friesen [4], namely, happiness, sadness, fear, dis-
gust, surprise and anger. Figure 1 shows the block diagram
of the system with its five components, including, face detec-
tion, key facial component detection, landmark localization,
feature extraction and classification of the expressions.

Figure 1: The architecture of the system

In the face detection and the feature extraction modules,
methods similar to those adopted in [15] are used. Due to its
high efficiency and detection rate, the system employs the
face detection method proposed by Viola and Jones [13]; the
essence of the method is introduced in Section 3. Among a
number of feature extraction algorithms [5] proposed in the
literature, comparative evaluation has demonstrated that
Gabor filters are most discriminative for facial expressions
and provide robustness against various types of noise. We
apply Gabor filters only to a set of facial landmark positions
rather than the whole face in order to lower the computation
cost and sensitivity to illumination variations. Subsequent
to feature extraction, each face image is represented by a
360-dimensional vector derived from 20 selected landmarks.
Details of the feature extraction process can be found in [15].

As mentioned in Section 1, the system proposed in [15]
cannot handle input face regions with the resolution lower
than 100 × 100. Assuming a web camera with focal length
of 3cm and resolution of 320× 240 is used, the approximate
relationship between distance of user to camera and face res-
olution is shown in Table 1. It is instructive to note that the
corresponding distance for a 100 × 100 face is about 50cm.
It is also noteworthy that this distance range cannot meet
the requirement of a MOG, especially when wireless input
devises and lower resolution cameras are used. Since Gabor
filters are only applied at facial landmarks to extract fa-
cial information, the landmark localization is crucial for the
entire system. In [15], fixed landmarks were used after face
alignment so as to reduce computation load. However, when
the scale (or spatial resolution) of the face is small, the es-
timation error of the approximate landmark localization in-
creases. Experiments show that by using manually selected
landmarks, the previous system works well on lower resolu-
tion input. Thus, a new coarse-to-fine method is proposed
in this work to locate the facial landmarks more accurately
and robustly when low resolution face images are presented
to the system. As a pre-stage of landmark localization, a
key facial component detection module is added to the sys-
tem. In this detection module, the detection method (Viola
and Jones) in [13] is modified to find the areas of mouth,
nose and eyes. Another important requirement in the con-
text of MOG is that the system must be able to handle users

Figure 2: The rectangle features

of different gender, ages, and ethnicities. To meet this re-
quirement, a more effective classification method, namely,
support vector machine (SVM) is to categorize the differ-
ent expressions. All the improvements are described in the
following sections.

3. FACE DETECTION METHOD OF VIOLA
AND JONES

Recently Viola and Jones [13] proposed a multi-stage ob-
ject detection procedure based on AdaBoost that reduces
the processing time substantially while achieving almost the
same accuracy as compared to a much slower and more com-
plex classifier. Although the method is claimed to be suit-
able for any object detection, it has only been demonstrated
on the task of finding faces. The method achieves a fast face
detection through a careful choice of features and classifier
architecture.

3.1 Rectangular features
Very simple and easy to compute rectangular features, as

shown in Figure 2 are used to represent the image informa-
tion in a sub-window. With different sizes and positions, a
sub-window in an image contains a large number of these
features. The feature value in each case is simply the differ-
ence between the sum of the pixel intensities in the white
section and the sum of the intensities in the black section.

3.2 Cascade of classifiers
In the training process, samples of face (named as posi-

tive samples) and non-face (named as negative samples) are
rescaled to a specified sub-window size and used to train a
binary classifier. In order to reduce the computation load,
the binary classifier consists of multiple sub-classifiers which
form a cascade. The cascade of classifiers is a degenerate de-
cision tree where at each stage a classifier is trained to detect
almost all objects of interest (faces) while rejecting a certain
fraction of the non-object patterns (non-face). Each stage
was trained using the fundamental boosting algorithm, Ad-
aBoost [6], which selects and combines very simple (weak)
classifiers to build a more powerful (strong) classifier. Each
weak classifier use one feature from the rectangular feature
pool in combination with a simple binary thresholding deci-
sion.

3.3 Detection via multi-scale scanning
In detection process, the trained cascade classifier for a

certain sub-window size (size of training samples) scans over
the input image at all possible locations. Then face detec-
tion is posed as classifying the pattern in the sub-window as
either face or non-face. To achieve multi-scale image search,
features are rescaled and thresholds are recalculated to form
classifiers for different scale sub-windows.

4. KEY FACIAL COMPONENT DETECTION
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30cm 50cm 80cm 130cm
Face 165× 165 100× 100 65× 65 45× 45

Mouth 56× 28 30× 15 20× 10 12× 6
Eyes 36× 18 22× 11 14× 7 8× 4
Nose 42× 42 26× 26 16× 16 9× 9

Table 1: The approximate relationship between dis-
tance of user to camera and facial component reso-
lution

The low computational cost of using rectangular features
and the efficiency of the cascade structure suggests the adop-
tion of “AdaBoost” method to search key facial components
(nose, mouth and eyes and ) within the detected face area.
We note however, that the nature of objects and the detec-
tion context have changed and this leads to low detection
performance when the face detection method is directly ap-
plied to fine component detection. The experimental results
for mouth detection is shown in Figure 4a, and it easily seen
from the plots that the size of the objects plays a significant
role. Since mouth, nose and eyes are only small parts of
the face, a low spatial resolution face image does not au-
gur well for fine facial component detection. Using the same
assumption as in Section 2, the approximate relationship be-
tween distance and facial component resolution is shown in
Table 1. Another consideration is that the shapes of facial
components vary widely when people are conveying differ-
ent expressions, especially for mouths. In this situation, the
mouth detector could still fail to achieve good performances
even for high resolution faces. To solve these problems, we
improve the “AdaBoost” detection method in several ways.

4.1 High hit rate cascade training
As introduced in section 3, each classifier in the cascade is

trained with a goal to reject a certain fraction of the nega-
tive (non-object) training samples. Thus, later stage classi-
fier faces a more difficult task since it has to reject the same
fraction of negative samples among training samples which
passed through all the previous stages. To handle negative
samples misclassified by previous stages, classifiers in the
later stages are more complex and using more subtle fea-
tures. In other words, adding a stage in the cascade reduces
the false positives. However, at the same time, some pos-
itives will be missed since more specified features are used
and thus, the hit rate reduces with more stages. When facial
components are small, the subtle information is missing and
only major features are retained. They can pass through the
first few stages of the trained cascade but will be rejected by
more complex classifiers in the later stages of the cascade, if
the cascade classifier is trained with low false positive rate.

To ensure that small scale facial components could be de-
tected, a minimum overall hit rate is set before training. For
each stage in the training, the training goal is set to achieve
a high hit rate and an acceptable false positive rate. The
number of features used is then increased until the target
hit rate and false positives rate are met for the stage. If
the overall hit rate is still greater than the minimum value,
another stage is added to the cascade to reduce the overall
false positive rate.

4.2 Regional scanning with a fixed classifier
In face detection, multi scale scanning is achieved by rescal-

ing the classifier. In this process, the positions and corre-
sponding thresholds of rectangular features selected by Ad-
aBoost during training have to be recalculated. The discrete
nature of digital image implies that discretization error aris-
ing from integer pixel coordinates cannot be avoided when
the rescaling factor is fractional. This error is exacerbated
when objects being detected are small.

The discretization error can be reduced by opting to re-
size the input image and use a fixed classifier for detection.
This method is not suitable for face detection since calculat-
ing the pyramid of images for each input is time consuming.
However, in the case of facial component detection, the in-
put images are face images. Due to the structure of face, we
can predict the size of face area according to the area size
of facial components. Thus, during scanning, all the input
face images are rescaled into one given size corresponding to
the training size of facial components. Then, if the detector
cannot find an object, face images are rescaled again to the
size around the predicted size until the object is detected.
In this way, although a fixed size detector is used, the com-
putation of the whole image pyramid is avoided. In most
cases, rescaling three times are enough to find the object.

Since in the cascade classifier training, false positive rate is
somehow sacrificed to achieve a high hit rate, regional scan-
ning is conducted to reduce false positives. Prior knowledge
of face structure is used to partition the region of scanning.
Area in top region of the face image is used for eye detection;
the central region of the face area is used for nose detection;
and mouth is searched in the lower region of the face. By
regional scanning, fewer area exists that can produce false
positives. It also increases efficiency since fewer features
need to be computed.

4.3 Specialized classifiers
Two cascade classifiers are trained for mouth: one is trained

to detect all kinds of closed mouths, and the other one is
specialized for open mouth detection. During scanning, if
the closed mouth detector failed to find a mouth, the open
mouth detector is used. Two eyes are treated as different
objects, so a right eye classifier and a left eye classifier are
trained separately.

5. FACIAL LANDMARK LOCALIZATION
As mentioned in Section 2, the reliability of landmark

localization has a major influence on the performance and
usability of the entire system. Based on the nature of the
feature, Appearance-based ( e.g.[1] [12]) or Geometric-based
( e.g.[3] [14] ) approaches are usually applied to find accu-
rate position of landmarks. However, most of the methods
involve multiple classification steps, which is not affordable
for MOGs due to the high computational cost. The robust
and accurate facial component detectors we have described
forms the basis of a new coarse-to-fine approach to simplify
the landmark localization process, which consists of 4 steps:
Estimation, Localization, Refining and Tracking.

First, approximate positions of 20 facial landmarks are es-
timated based on the boundary box of detected facial com-
ponents. The estimation scheme is shown in Figure 3. The
accuracy of the estimations can be improved by using posi-
tive training samples that are cropped tightly around eyes,
mouth and nose, when training the detectors. The corre-
sponding actual landmark is considered to localized within
a D ×D neighborhood of the estimated landmark, D is de-
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Figure 3: Landmark Estimation

termined by the size of facial components (4 neighbourhoods
of mouth landmarks are indicated on Figure 3). To find the
accurate landmark positions, images are converted into grey
scale, thus each image can be represented by an intensity
function f(x, y). Within a D × D neighborhood, the loca-
tion with the highest variation of intensity function f(x, y)
in both x and y directions is considered to be the position
of a landmark. In essence localization is implemented by
finding the maximum eigenvalues of local structure matrix
C within neighborhoods, where

C = wG (r; σ) ∗
�

f2
x fxfy

fxfy f2
y

�

and wG (r; σ) is the Gaussian filter for smoothing the ma-
trix entries. The classic Harris [7] corner finder is applied
to refine the detected landmark positions so as to achieve
sub-pixel accuracy. The refining method is based on the
observation that every vector from the true corner q (or a
radial saddle point) to a point p located within a neighbor-
hood of q is orthogonal to the image gradient at p. Detail
of the refining process can be found in [7].

Sometimes due to out-of-plane rotations of the head, key
facial components cannot be found. And there are also some
cases where the true landmarks are not located in the D×D
neighborhood of the estimated landmarks. With the goal of
obtaining more accurate and smooth landmark positions,
linear Kalman filters are employed to track landmarks de-
tected from the above steps. The linear Kalman filter is
a recursive procedure consisting of two stages: prediction
and correction. During each iteration, the filter provides
an optimal estimate of the current state using the current
input measurement, and produces an estimate of the future
state using the underlying state model. As we are interested
in positional coordinates, the state vector is formulated as

S =
�

x y ẋ ẏ ẍ ÿ
�T

and the measurement vector

is formulated as M =
�

x y
�T

where x, ẋ, ẍ are, respec-
tively, the landmark position, velocity and acceleration in
x direction. The corresponding variables in the y direction
are respectively, y, ẏ, ÿ. Thus, using Newtonian dynamics,
the prediction process is modeled as,

Sk+1 =

2
6666664

1 0 t 0 t2

2
0

0 1 0 t 0 t2

2
0 0 1 0 t 0
0 0 0 1 0 t
0 0 0 0 1 0
0 0 0 0 0 1

3
7777775

Sk +

2
66666664

t3

6
t3

6
t2

2
t2

2
t
t

3
77777775

wk.

The measurement M, can be written as,

Mk =
�

1 1 0 0 0 0
�
Sk + vk,

where t is the sampling time interval(which is taken as the
reciprocal of frame rate). The change rate of acceleration,
wk, is modeled as a white noise process.The measurement
noise, vk, is modeled as white noise. The random variables
wk and vk are assumed to be independent and identically
distributed (normal distribution).

Kalman filters predict landmark positions in the next frame
and correct the localization results in the current frame. The
prediction makes the localization process more stable when
previous processing stages failed or huge error occurred. At
the same time, the correction enhances the accuracy.

6. CLASSIFICATION

6.1 Support Vector Machines
Support vector machines (SVMs) [8] are a set of related

supervised learning methods that try to find the biggest
margin to separate different classes. Kernel functions are
employed by SVMs to efficiently map input data which may
not be linearly separable to a high dimensional feature space
where linear methods can then be applied. Recall that there
are often only subtle differences between different expres-
sions posed by different people and this consideration has
led to the poor performance of the system described in [15],
especially in person-independent tests. The high discrimi-
nation ability of SVMs makes them the classifier of choice
in this work. SVMs also demonstrates relatively good per-
formance when only a modest amount of training data is
used. Furthermore, since only inner products are involved
in the computation of SVMs, the learning and predicting
process is much faster than some traditional classifiers such
as a multilayer neural network.

6.2 Multi-class decision making
JAFFE database [10] combined with a facial expression

dataset collected in our research laboratory are used to train
the SVMs. Classifiers are trained to identify Gabor coeffi-
cient vectors derived from feature extraction process, as one
of the six basic emotions or a neutral expression. Since Sup-
port vector machines are binary classifiers, for 7 categories,
21 SVMs are trained to discriminate all pairs of emotions.
Then, to make multi-class decisions, we combine SVM out-
puts by voting. For example, if one SVM makes the deci-
sion that the input is happiness not sadness, then the class
happiness gets +1 and sadness gets -1. The SVMs make de-
cisions on each pair, and thus cast votes for each category.
The votes are summed together and the expression with the
highest score is considered to be the final decision.

7. EXPERIMENTAL RESULTS

7.1 Facial component detection and landmarks
localization

By employing the face detection method introduced in
Section 3, the face detector of the proposed system can pro-
cess 16 frames of 384× 286 pixels per second on a PC with
2.80 GHz Intel Pentium, and achieve a 99.3% detection rate
on the BioID face database [9]. Real-time detection exam-
ples can be seen in Figure 7.
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a. Original “AdaBoost” b. Improved “AdaBoost”

Figure 4: Mouth detection result. Both detectors
are trained using the same dataset and tested by
JAFFE database. All face areas of images in the
database are first obtained by our face detector,
then face images are down-scaled to different res-
olutions for testing.

Based on the improved facial component detection method,
areas of eyes, mouth and nose can be detected in real-time,
and the detection scheme is robust to variations in facial
component’s resolution and shape. The improvement gained
with the new detector when compared with the original de-
tection method is depicted in the example mouth detection
result for different face resolutions presented in Figure 4b.
Real-time component detection samples are shown in Figure
5 a,b.

Due to lack of benchmark video database, it is hard to
evaluate the performance of landmark localization. How-
ever, the real-time test and the final recognition results re-
flect that the landmark localization process is robust and re-
liable. Examples of results with real-time samples are shown
in Figure 5 c,d.

7.2 Expression recognition
We conducted a person-independent test based on the

FG-NET database [11]. The database contains 399 video se-
quences of 6 basic emotions and a neutral expression from 18
individuals. Not all the sequences are used for testing, sam-
ples that failed to present an expression (e.g. interrupted
by talking, laughing etc.) were excluded. The recognition
result is presented in Table 2. The results show that Hap-
piness, Surprise and Neutral were detected with relatively
high accuracy while other more subtle emotions were harder
to be recognized, especially the expression, sadness. The
low recognition rate is thought to be mainly due to people
conveying their emotions differently, and for more subtle
expressions, the variation is wide. Some samples that were
unable to be recognized, but with corresponding expressions
in training database are presented in Table 4. During test-
ing, we found that sadness, anger, fear and disgust are fre-
quently confused with each other, however they are seldom
confused with other expressions. We note even human be-
ings sometimes have difficulty in discriminating these ex-
pressions. Thus, if these four expressions are treated as one,
together with happiness, surprise and neutral, we can es-
timate user’s emotional state more accurately on a higher
level. Naming the new expression as unhappy, classification
result for 4 expressions are presented in Table 3. In this way,
the system is able to tell with a 83% accuracy if the user is
in good mood, bad mood or just surprised.

a. A sample from FG-NET b. A real-time sample

c. A sample from FG-NET d. A real-time sample

Figure 5: Facial component detection and landmark
localization

Emotion Recognition rate
Happiness 85%
Sadness 52%

Fear 74%
Disgust 63%
Surprise 82%
Anger 69%

Neutral 80%

Table 2: Recognition results for 7 expressions clas-
sification

Emotion Recognition rate
Happy 85%

Unhappy 86%
Surprise 82%
Neutral 80%

Table 3: Recognition results for 4 expressions clas-
sification

Figure 6: Recognition rates at different distances
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Data in JAFFE Data in FG-NET

Sadness

Disgust

Anger

Table 4: Failed samples with corresponding expres-
sions in training database

Tests were also conducted on the system in practical con-
ditions, especially for low resolution input. During the test,
user’s expressions are classified into the four high level emo-
tions (happy, unhappy, surprise and neutral), and a 320×240
web camera with 3cm focal length is used. The recognition
result for different distance of user to camera is presented
in Figure 6, and some samples are shown in Figure 7. The
results show that the improved system works on the images
taken from a practical range of distances from user to cam-
era.

8. CONCLUSIONS
Research in computer vision has produced several ad-

vanced techniques for face detection, facial feature extrac-
tion, and facial landmarks localization. When integrating
these algorithms to build a facial expression recognition sys-
tem for a MOG, many issues were encountered. The most
important problem is that people convey their emotions in so
many different ways, sometimes even human are not able to
recognize the emotional states of others. Since facial land-
mark positions are localized accurately and robustly, it is
possible to use the landmarks directly to control facial ac-
tions of avatars. However, mapping 2D information onto the
surface of a 3D face model is another challenging task that
needs to be addressed.
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