2004

Phytochemical studies on Stemona burkillii Prain: Two new dihydrostemonofoline alkaloids

Pitchaya Mungkornasawakul
University of Wollongong

Stephen G. Pyne
University of Wollongong, spyne@uow.edu.au

Araya Jatisatienr
Chiang Mai University

Wilford Lie
University of Wollongong

Alison T. Ung
University of Wollongong

See next page for additional authors

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Phytochemical studies on Stemona burkii Prain: Two new dihydrostefolamine alkaloids

Abstract
Two new dihydrostefolamine alkaloids, 11(S),12(R)-dihydrostefolamine (3) and stemoburkline (4), along with stefolamine (1) and 2'-hydroxystefolamine (2) have been isolated from a root extract of *Stemona burkii* Prain. The structure and relative configuration of (3) have been determined via spectroscopic data and from comparison with synthetic 11(S),12(S)-dihydrostefolamine (5). The configuration of the exo-cyclic alkene group in (4) is tentively assigned as (E) based upon mechanistic considerations.

Keywords
CMMB

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Authors
Pitchaya Mungkornasawakul, Stephen G. Pyne, Araya Jatisatienr, Wilford Lie, Alison T. Ung, Kritchaya Issakul, Auntika Sawatwanich, Damrat Supyen, and Chaiwat Jatisatienr

This journal article is available at Research Online: http://ro.uow.edu.au/scipapers/5313
REVISED

Phytochemical Studies on *Stemona burkillii* Prain: Two new Dihydrostefemofoline Alkaloids

Pitchaya Mungkornasawakul,†‡ Stephen G. Pyne,*† Araya Jatisatienr,§ Wilford Lie,† Alison T. Ung,† Kritchaya Issakul,§ Auntika Sawatwanich,§ Damrat Supyen,┴ and Chaiwat Jatisatienr§

Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia, Division of Environmental Sciences, Chiang Mai University, Chiang Mai 50202, Thailand, Department of Biology, Chiang Mai University, Chiang Mai 50202, Thailand, and Department of Chemistry, Chiang Mai University, Chiang Mai 50202, Thailand

*To whom correspondence should be addressed. Tel: +61-24221-3511. Fax: +61-24221-4287. E-mail: spyne@uow.edu.au

† Department of Chemistry, University of Wollongong.

‡ Division of Environmental Sciences, Chiang Mai University.

§ Department of Biology, Chiang Mai University.

┴ Department of Chemistry, Chiang Mai University.
Two new dihydrostefomolone alkaloids, 11(S),12(R)-dihydrostefomolone (3) and stemoburkilline (4), along with stemofoline (1) and 2’-hydroxystemofoline (2) have been isolated from a root extract of *Stemonax burkillii* Prain. The structure and relative configuration of (3) have been determined via spectroscopic data and from comparison with synthetic 11(S),12(S)-dihydrostefomolone (5). The configuration of the *exo*-cyclic alkene group in (4) is tentively assigned as (E) based upon mechanistic considerations.
The *Stemona* group of alkaloids includes more than forty different natural products that have been structurally classified into five different groups.¹ The pyrrolo[1,2-a]azepine (5,7-bicyclic A,B-ring system) nucleus is common to all compounds in these groups. In 2003 we² and then Hofer and Greger³ reported the structures of *Stemona* alkaloids with a pyrido[1,2-a]azepine A,B-ring system (that is, a 6,7-bicyclic A,B-ring system) and in 2004 we disclosed the structure of another pyrido[1,2-a]azepine *Stemona* alkaloid.⁴ These alkaloids comprise a new and sixth structural group. The pure alkaloids derived from the extracts of the leaves and roots of *Stemona* species have insect toxicity, antifeedent and repellent activities.³-⁵ We report here the isolation and structure determination of two novel *Stemona* alkaloids, (3) and (4), from the root extracts of *Stemona burkillii* Prain that were collected at Tambol Mae Hea, Amphur Meang, Chiang Mai, Thailand.

A crude ethanol extract (10.4 g) of the roots of *S. burkillii* was partitioned between 5% hydrochloric acid solution and dichloromethane. The aqueous solution was made basic with aqueous ammonia and extracted with dichloromethane to afford 0.224 g of crude alkaloid material. Successive purifications of this material by preparative TLC gave pure samples of stemofoline 1 (6.8 mg), 2’-hydroxystemofoline 2 (3.7 mg), 11(S),12(R)-dihydrostemofoline 3 (2.1 mg) and stemoburkilline (4) (1.5 mg). The former two known alkaloids were identified from a comparison of their spectroscopic/spectrometric data (NMR and MS) with those reported.⁵,⁶ Compounds 3 and 4 are new compounds, we have named compound 4 stemoburkilline, based on its botanical origin. Examination of the crude ethanol extract by TLC and ¹H NMR analysis showed the presence of all four
alkaloids indicating that these compounds were not being produced via an acid catalysed reaction during the acid extraction process.

The HRMS (EI +ve, m/z [M]+ 389.2202, calcd 389.2202) of 3 showed it had the molecular formula C\textsubscript{22}H\textsubscript{31}NO\textsubscript{5} and indicated that it was a dihydrostemonofoline derivative. The 1H and 13C NMR spectra of 3 indicated the presence of the A,B,C,D-ring system of stemonofoline (1).5-15 However a comparison of the 13C/DEPT NMR spectra of 3 with that of 1, showed that 3 had two additional methine carbons (C-11 [\(\delta\) 86.3] and C-12 [\(\delta\) 76.5]), and was missing the two quaternary carbons at \(\delta\) 148.4 and 127.9 and for C-11 and C-12, respectively, of stemonofoline5,6 (Table 1). Furthermore, the 1H NMR spectrum of 3 showed two new signals at \(\delta\) 3.79 (dd, \(J = 3, 9\) Hz, H-11) and 4.60 (br s, H-12) indicating compound 3 was an 11,12-dihydrostemonofoline. NOESY experiments showed a significant cross peak between the C-10 methyl protons (H-17) and H-11 indicating their \textit{syn}-relationship. Thus, assuming that 3 had the same absolute configuration as stemonofoline in the rings A-C, we have assigned the 11(S) configuration to compound 3. Unfortunately, these experiments did not permit assignment of the configuration at C-12. In 2003, Velten7 reported the synthesis of 11(S),12(S)-dihydrostemonofoline 5 from the \textit{syn}-hydrogenation of stemonofoline, this compound also showed a significant cross peak between the C-10 methyl protons (H-17) and H-11, consistent with the 11(S) configuration. Complete NMR data for 5 were, however, not reported. We have prepared compound 5 from hydrogenation of stemonofoline 1 and the NMR data for this compound are shown in Table 1.7,8 The 1H and 13C NMR spectra of 3 and 5 are similar but not the same. Indeed, there is a significant difference in the chemical shifts and coupling constants for the signals for H-11 and H-12 in the 1H NMR spectra of these two
compounds, especially J_{11,12} which was 3 Hz in 4 and 7 Hz in 5. Based on these differences we have assigned the 12(\(R\)) configuration to 3. The full \(^1\)H and \(^{13}\)C NMR spectra assignments for 3 and 5 based on extensive COSY, TOCSY, NOESY, HMQC, and HMBC experiments, are shown in Tables 1. NOESY cross peaks between H-9 and H-5b and H-6b permitted the unequivocal assignment of the H-5 and H-6 protons (Table 1).

The HRMS (EI +ve, \(m/z\) [M]+ 389.2194, calcd 389.2202) of stemoburkilline 4 showed that it also had the molecular formula C\(_{22}\)H\(_{31}\)NO\(_5\). Its \(^1\)H NMR spectrum indicated the presence of an olefinic proton (\(\delta\) 5.5, 1H, d, J = 10 Hz, H-11) coupled to an adjacent CH group (H-10) while its \(^{13}\)C/DEPT NMR spectrum, in comparison with that of 3, showed the C-11 and C-12 methines in 3 had been replaced by two olefinic carbons (one quaternary and one methine). The full \(^1\)H and \(^{13}\)C NMR spectra assignments for 4 based on extensive COSY, TOCSY, NOESY, HMQC, and HMBC experiments, are shown in Table 1 and indicated that 4 was formally the C-ring opened product of 3. Our attempts to induce ring opening of 3 to produce 4 were not successful using either base (excess DBU, RT 16 h) or acid (5% aqueous HCl, RT 1h) catalysis. The \(^{13}\)C NMR spectrum of 4 showed that this compound existed in the hemiacetal form (\(\delta\) 105.7, C-8, quaternary) and this was further supported from its IR spectrum (3382 cm\(^{-1}\), br) that showed a hydroxyl group. NOESY experiments did permit assignment of the configuration of the C-11, C-12 alkene group. We have assigned the \((E)\)-configuration to 4 based upon the assumption that 4 arises from 3 via an anti-elimination process.

Antifungal studies were done on the crude ethanol extract and on pure samples of 1 and 2 and mixtures of 1 and 2, and of 3 and 4. However these compounds and mixtures
showed no significant activities (EC$_{50} > 219$ ppm) on inhibiting spore germination on *Cladosporium cladosporiodes* using the assay and procedures recommended in the literature. Brine shrimp assays on similar pure and mixed samples showed low to moderate toxicities (LC$_{50} > 33$ ppm).

In conclusion, two new dihydrostomofolone alkaloids, 11(S),12(R)-dihydrostomofolone (3) and stemoburkilline (4), along with stefofoline (1) and 2′-hydroxystomofoline (2) have been isolated from a root extract of *S. burkillii*. The structure and relative configuration of (3) have been determined by spectroscopic data interpretation and by comparisons with synthetic 11(S),12(S)-dihydrostomofolone (5), that was prepared by syn-hydrogenation of stefofoline (1). The configuration of the exo-cyclic alkene group in (4) could not be unequivocally determined and is tentatively assigned as (E) based upon mechanistic considerations.

Experimental Section

General Experimental Procedures. These were as described previously.

Plant material. The roots of *S. burkillii* were collected at Tambol Mae Hea, Amphur Meang, Chiang Mai, Thailand, in December 2003. The plant material was identified by Mr. James F. Maxwell from the Department of Biology, Chiang Mai University. A voucher specimen is deposited at the Herbarium (number 17579) of the Department of Biology, Chiang Mai University.

Extraction and Isolation. The dry ground root of *S. burkillii* (1.8 kg) was extracted with 95% EtOH (3 x 2000 mL) over 3 days at room temperature. The EtOH
solution was evaporated to give a dark residue (98 g). A portion of the extract (10.4 g) was partitioned between H₂O and CH₂Cl₂. The CH₂Cl₂ extract was extracted with 5% HCl solution, and the aqueous solution was made basic with aqueous ammonia and extracted with CH₂Cl₂ to afford 0.224 g of crude alkaloid material. This material was chromatographed on silica gel (100 mL) using gradient elution from 100% CH₂Cl₂ to 10% MeOH/CH₂Cl₂ containing 1% concentrated aqueous ammonia as eluent. A total of 900 mL of eluent was collected in test tubes of 20 mL. On the basis of TLC analysis these fractions were pooled to give two alkaloid fractions, fraction 1 (62 mg) and fraction 2 (88 mg). These fractions were further purified by preparative TLC. Separation of fraction 1 by three successive preparative TLC purifications (CH₂Cl₂-MeOH-aqueous ammonia, 97:3:1 and then CH₂Cl₂-MeOH-aqueous ammonia, 98:2:1 and then (CH₂Cl₂-EtOAc-MeOH-Et₂NH, 70:30:5:1) gave pure samples of stemofoline 1 (6.8 mg) and 2′-hydroxystemofoline 2 (3.7 mg).

Separation of fraction 2 by three successive preparative TLC purifications (CH₂Cl₂-MeOH-aqueous ammonia, 95:5:1 and then CH₂Cl₂-MeOH-aqueous ammonia, 96:4:1 and on TLC plates that were impregnated with NH₄OAc using MeOH as eluent) gave pure samples of 11(5),12(R)-dihydrostemofoline 3 (2.1 mg) and stemoburkilline (4) (1.5 mg). The ¹H and ¹³C NMR data of 1 and 2 were identical to that reported,⁵,⁶ while those of 3, 4 and 5 are shown in Table 1.

Compound 3: yellow brown gum [α]²⁶_D +38.9° (c 0.35, CHCl₃); IR(film)ν_max 1753, 1671, 1458, 1389, 1339, 1233, 1216, 1079, 1031, 983 cm⁻¹, HREI m/z 389.2202 [M⁺], calcd for C₂₂H₃₁NO₅ 389.2202.
Compound 4 (stemoburkilline): yellow brown gum $[\alpha]_{D}^{26} +37.5^\circ$ (c 0.28, CHCl$_3$); IR(film)ν_{max} 3382 (br), 1754, 1634, 1455, 1262, 1032, 987, 802 cm$^{-1}$, HREI m/z 389.2195 [M$^+$], calcd for C$_{22}$H$_{31}$NO$_5$ 389.2202.

Hydrogenation of stemofoline: To a solution of stemofoline (10.8 mg) in EtOH (1 mL) was added 10% Pd/C (3.7 mg). The mixture was left to stir under a hydrogen atmosphere (hydrogen balloon) at RT for 5 h and then the reaction was filtered through a small pad of celite, and washed with more EtOH. The solvent was removed under reduced pressure and the crude product was purified by preparative TLC (CH$_2$Cl$_2$-EtOAc-MeOH-Et$_2$NH, 70:30:5:1) to give compound 5 (5.3 mg) and an over reduced product (2.5 mg).7

Compound 5: yellow gum; $[\alpha]_{D}^{26} +35.9$ (c 0.22, CHCl$_3$); IR (film) ν_{max} 1754, 1668, 1636, 1458, 1391, 1339, 1061, 987 cm$^{-1}$; HREIMS m/z 389.2201 [M$^+$], calcd for C$_{22}$H$_{31}$NO$_5$ 389.2202.

Acknowledgment: We are grateful to the National Research Council of Thailand (NRCT), the National Center for Genetic Engineering and Biotechnology, Thailand (BIOTEC), and the University of Wollongong for supporting this project. We thank Dr. R. F. Velten, Bayer Crop Science AG, Leverkusen, Germany for sending us NMR data of compound 5.

References and Notes

(8) The NMR data of 5 prepared in our laboratory was almost identical to that of the data kindly sent to us by Dr. R. F. Velten, Bayer Crop Science AG, Leverkusen, Germany.

1, X = H
2, X = OH
Table 1. 13C NMR (125 Hz) and 1H NMR (500 MHz) Spectra Data for Compounds 3, 4 and 5 in CDCl$_3$ Solution.

<table>
<thead>
<tr>
<th>position</th>
<th>δC (DEPT)</th>
<th>δH (mult., J (Hz), assign.)</th>
<th>HMBC</th>
<th>δC (DEPT)</th>
<th>δH (mult., J (Hz), assign.)</th>
<th>HMBC</th>
<th>δC (DEPT)</th>
<th>δH (mult., J (Hz), assign.)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>33.4 (CH$_2$)</td>
<td>1.99 (m) 1.63 (dd, J_{α}=3, J_{β}=7.5)</td>
<td>-</td>
<td>32.9 (CH$_2$)</td>
<td>1.99 (m) 1.80 (m)</td>
<td>-</td>
<td>33.4 (CH$_2$)</td>
<td>1.97 (m) 1.62 (m)</td>
<td>-</td>
</tr>
<tr>
<td>2b</td>
<td>78.2 (CH)</td>
<td>4.22 (br s)</td>
<td>H-1a, H-1'b</td>
<td>79.8 (CH)</td>
<td>4.38 (br s) H-1a, H-1'a</td>
<td>H-7</td>
<td>78.6 (CH)</td>
<td>4.21 (br s) H-1b, H-1'b, H-6b</td>
<td>H-7, H-1'</td>
</tr>
<tr>
<td>3b</td>
<td>54.4 (CH$_2$)</td>
<td>3.14 (m) α 3.01 (m) β</td>
<td>H-1a, H-1'b, H-1'</td>
<td>82.9 (C)</td>
<td>-</td>
<td>H-1a, H-5b, H-1'a</td>
<td>50.5 (CH)</td>
<td>2.47 (d, J=6) H-6, H-6'b</td>
<td>H-7</td>
</tr>
<tr>
<td>5a</td>
<td>47.4 (CH$_2$)</td>
<td>- 3.27 (m) 3.09 (m) β</td>
<td>-</td>
<td>46.5 (CH$_2$)</td>
<td>1.93 (m)</td>
<td>-</td>
<td>47.5 (CH$_2$)</td>
<td>3.09 (m) 2.96 (m) β</td>
<td>H-7</td>
</tr>
<tr>
<td>6a</td>
<td>26.5 (CH$_2$)</td>
<td>1.82 (m) 1.72 (m)</td>
<td>H-7 (w), H-5b (w)</td>
<td>25.3 (CH$_2$)</td>
<td>1.93 (m)</td>
<td>-</td>
<td>26.8 (CH$_2$)</td>
<td>1.85 (m) 1.73 (m)</td>
<td>-</td>
</tr>
<tr>
<td>7b</td>
<td>50.5 (CH)</td>
<td>2.45 (d, J=6)</td>
<td>-</td>
<td>55.4 (CH)</td>
<td>2.34 (d, J=5.9)</td>
<td>H-6</td>
<td>50.5 (CH)</td>
<td>2.47 (d, J=6) H-6, H-6'b</td>
<td>H-7, H-1'</td>
</tr>
<tr>
<td>8b</td>
<td>111.8 (C)</td>
<td>- 114.7 (CH)</td>
<td>H-1b, H-2-H-7</td>
<td>105.7 (C)</td>
<td>-</td>
<td>H-6, H-7</td>
<td>112.8 (C)</td>
<td>- H-1b, H-6b, H-9, H-11</td>
<td>H-10, H-17</td>
</tr>
<tr>
<td>9b</td>
<td>47.3 (CH$_2$)</td>
<td>1.64 (dd, J_{α}=3, J_{β}=12)</td>
<td>H-7, H-10, H-17</td>
<td>44.2 (CH)</td>
<td>1.85 (m)</td>
<td>H-7, H-10, H-11, H-17</td>
<td>47.2 (CH)</td>
<td>1.60 (m)</td>
<td>-</td>
</tr>
<tr>
<td>9a</td>
<td>61.0 (CH)</td>
<td>3.44 (br s)</td>
<td>H-2, H-5b</td>
<td>63.4 (CH)</td>
<td>3.60 (br s)</td>
<td>H-2, H-5a, H-5b, H-9</td>
<td>61.1 (CH)</td>
<td>3.38 (br s) H-2, H-5a, H-5b, H-9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>33.0 (CH)</td>
<td>2.61 (m)</td>
<td>H-17</td>
<td>28.4 (CH)</td>
<td>3.18 (m)</td>
<td>H-9, H-17</td>
<td>35.1 (CH)</td>
<td>2.48 (m)</td>
<td>H-9, H-12, H-17</td>
</tr>
<tr>
<td>11</td>
<td>86.3 (C)</td>
<td>3.79 (dd, J_{α}=9, J_{β}=5)</td>
<td>H-17</td>
<td>114.7 (CH)</td>
<td>5.5 (d, J=10)</td>
<td>H-10, H-17, H-18</td>
<td>87.8 (CH)</td>
<td>3.69 (t, J=7) H-18, H-18,</td>
<td>H-10, H-12, H-17</td>
</tr>
<tr>
<td>12</td>
<td>76.5 (CH)</td>
<td>4.60 (br s)</td>
<td>-</td>
<td>141.9 (C)</td>
<td>-</td>
<td>H-10, H-11, H-16</td>
<td>78.7 (CH)</td>
<td>4.75 (d, J=6.5) H-10, H-16</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>170.3 (C)</td>
<td>- 161.8 (C)</td>
<td>H-12, H-16, OMe</td>
<td>-</td>
<td>-</td>
<td>H-11, H-16, OMe</td>
<td>173.3 (C)</td>
<td>- H-11, H-12, H-16, OMe</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>98.5 (C)</td>
<td>- 99.1 (C)</td>
<td>H-16</td>
<td>98.8 (C)</td>
<td>-</td>
<td>H-16</td>
<td>174.3 (C)</td>
<td>- H-12, H-16</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>174.5 (C)</td>
<td>- 170.5 (C)</td>
<td>H-16</td>
<td>-</td>
<td>H-16</td>
<td>8.2 (CH$_3$)</td>
<td>1.95 (br s)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8.7 (CH$_3$)</td>
<td>2.01 (br s)</td>
<td>-</td>
<td>8.7 (CH$_3$)</td>
<td>2.07 (s)</td>
<td>-</td>
<td>8.2 (CH$_3$)</td>
<td>1.95 (br s)</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>14.8 (CH$_3$)</td>
<td>1.08 (d, J= 6.5)</td>
<td>-</td>
<td>18.7 (CH$_3$)</td>
<td>1.08 (d, J=6.8)</td>
<td>H-10, H-11</td>
<td>16.9 (CH$_3$)</td>
<td>1.12 (d, J= 6.3)</td>
<td>H-11</td>
</tr>
<tr>
<td>18</td>
<td>31.5 (CH$_3$)</td>
<td>1.56 (t, J=8)</td>
<td>-</td>
<td>30.2 (CH$_3$)</td>
<td>1.67 (m)</td>
<td>H-2'b</td>
<td>31.8 (CH$_3$)</td>
<td>1.54 (m)</td>
<td>H-7, H-3', H-4'</td>
</tr>
<tr>
<td>1'a</td>
<td>27.2 (CH$_3$)</td>
<td>1.40 (m) 1.23 (m)</td>
<td>H-1', H-3', H-4'</td>
<td>27.5 (CH$_3$)</td>
<td>1.39 (m)</td>
<td>H-1', H-3'</td>
<td>27.4 (CH$_3$)</td>
<td>1.40 (m) 1.23 (m)</td>
<td>H-3', H-4'</td>
</tr>
<tr>
<td>2'a</td>
<td>32.3 (CH$_3$)</td>
<td>1.33 (m)</td>
<td>-</td>
<td>23.7 (CH$_3$)</td>
<td>1.36 (m)</td>
<td>H-2', H-2'b, H-4'</td>
<td>23.4 (CH$_3$)</td>
<td>1.35 (q, J=6.8) H-2', H-2'b, H-4'</td>
<td></td>
</tr>
<tr>
<td>3'a</td>
<td>13.9 (CH$_3$)</td>
<td>0.87(t, J= 7)</td>
<td>-</td>
<td>14.1 (CH$_3$)</td>
<td>0.92 (t, J=6.8)</td>
<td>H-3'</td>
<td>14.1 (CH$_3$)</td>
<td>0.92 (t, J= 6.8)</td>
<td>H-3'</td>
</tr>
<tr>
<td>4'a</td>
<td>58.8 (CH$_3$)</td>
<td>4.11 (s)</td>
<td>-</td>
<td>59.3 (CH$_3$)</td>
<td>4.13 (s)</td>
<td>-</td>
<td>59.4 (CH$_3$)</td>
<td>4.10 (s)</td>
<td>-</td>
</tr>
<tr>
<td>OMe</td>
<td>-</td>
<td>4.11 (s)</td>
<td>-</td>
<td>-</td>
<td>4.11 (s)</td>
<td>-</td>
<td>-</td>
<td>4.10 (s)</td>
<td>-</td>
</tr>
</tbody>
</table>