Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

James P. Sullivan
Australian National University, james.sullivan@anu.edu.au

Luca Chiari
Australian National University, luca.chiari@flinders.edu.au

Emma Anderson
Australian National University

Wade Tattersall
Australian National University

Prasanga Palihawadana
Australian National University

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation
Sullivan, James P.; Chiari, Luca; Anderson, Emma; Tattersall, Wade; Palihawadana, Prasanga; Machacek, J R.; Makochekanwa, Casten; McEachran, R P.; Buckman, Stephen J.; Brunger, M J.; Garcia, Gustavo; and Blanco, Francisco, "Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran" (2014). *Faculty of Engineering and Information Sciences - Papers: Part A*. 6655. https://ro.uow.edu.au/eispapers/6655

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

Abstract
We present new cross section results from a joint experimental and theoretical investigation into low-energy positron and electron scattering from two targets of biological interest, namely tetrahydrofuran and 3-hydroxy-tetrahydrofuran. We compare and discuss the total, elastic and inelastic cross sections for these species in the light of potential positron and electron-induced damage in biomolecular systems.

Keywords
scattering, electron, tetrahydrofuran, positron, hydroxy, energy, low, 3

Disciplines
Engineering | Science and Technology Studies

Publication Details

Authors

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/6655
Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

* ARC Centre for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, The Australian National University, Canberra ACT, Australia
† ARC CAMS, School of Chemical and Physical Sciences, Flinders University, Adelaide SA, Australia
‡ ARC CAMS, School of Engineering and Physical Sciences, James Cook University, Townsville QLD, Australia
+ Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia
Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Madrid, Spain
& Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW, Australia
^ Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid, Spain

Synopsis

We present new cross section results from a joint experimental and theoretical investigation into low-energy positron and electron scattering from two targets of biological interest, namely tetrahydrofuran and 3-hydroxy-tetrahydrofuran. We compare and discuss the total, elastic and inelastic cross sections for these species in the light of potential positron and electron-induced damage in biomolecular systems.

We present recently measured and computed cross sections for low-energy positron collisions with the structurally related molecules tetrahydrofuran (THF) [1] and 3-hydroxy-tetrahydrofuran (3H-THF) [2]. Those two species represent suitable models for the sugar rings contained in the phosphate-deoxyribose backbone structure of the nucleic acids [3, 4]. As the knowledge of the impact cross sections is essential for charged-particle track simulations, studying those compounds can assist us in shedding more light on the effects of positron and electron-induced damage in biological media.

Total, positronium formation, elastic differential and inelastic integral cross sections have been measured at selected energies in the range 1-190 eV using the buffer-gas trap and positron beam spectrometer at the Australian National University [5] with an energy resolution of 60-100 meV.

Total, elastic and inelastic integral, as well as elastic differential cross sections have also been computed at energies between 1 and 1000 eV within the Independent Atom Model and using the Screening Corrected Additivity Rule formalism [6]. In addition, electron-impact cross sections have also been calculated in order to explore the different role that positrons and electrons play in the low-energy scattering dynamics for those species.

References