Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

James P. Sullivan
Australian National University, james.sullivan@anu.edu.au

Luca Chiari
Australian National University, luca.chiari@flinders.edu.au

Emma Anderson
Australian National University

Wade Tattersall
Australian National University

Prasanga Palihawadana
Australian National University

See next page for additional authors

Publication Details

Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

Abstract
We present new cross section results from a joint experimental and theoretical investigation into low-energy positron and electron scattering from two targets of biological interest, namely tetrahydrofuran and 3-hydroxy-tetrahydrofuran. We compare and discuss the total, elastic and inelastic cross sections for these species in the light of potential positron and electron-induced damage in biomolecular systems.

Keywords
scattering, electron, tetrahydrofuran, positron, hydroxy, energy, low, 3

Disciplines
Engineering | Science and Technology Studies

Publication Details

Authors

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/6655
Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/488/7/072007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.130.37.85
This content was downloaded on 11/01/2015 at 22:09

Please note that terms and conditions apply.
Low-energy positron and electron scattering from tetrahydrofuran and 3-hydroxy-tetrahydrofuran

* ARC Centre for Antimatter-Matter Studies (CAMS), Research School of Physics and Engineering, The Australian National University, Canberra ACT, Australia
† ARC CAMS, School of Chemical and Physical Sciences, Flinders University, Adelaide SA, Australia
‡ ARC CAMS, School of Engineering and Physical Sciences, James Cook University, Townsville QLD, Australia
Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Madrid, Spain
& Centre for Medical Radiation Physics, University of Wollongong, Wollongong NSW, Australia
^ Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid, Spain

Synopsis We present new cross section results from a joint experimental and theoretical investigation into low-energy positron and electron scattering from two targets of biological interest, namely tetrahydrofuran and 3-hydroxy-tetrahydrofuran. We compare and discuss the total, elastic and inelastic cross sections for these species in the light of potential positron and electron-induced damage in biomolecular systems.

We present recently measured and computed cross sections for low-energy positron collisions with the structurally related molecules tetrahydrofuran (THF) [1] and 3-hydroxy-tetrahydrofuran (3H-THF) [2]. Those two species represent suitable models for the sugar rings contained in the phosphate-deoxyribose backbone structure of the nucleic acids [3, 4]. As the knowledge of the impact cross sections is essential for charged-particle track simulations, studying those compounds can assist us in shedding more light on the effects of positron and electron-induced damage in biological media.

Total, positronium formation, elastic differential and inelastic integral cross sections have been measured at selected energies in the range 1-190 eV using the buffer-gas trap and positron beam spectrometer at the Australian National University [5] with an energy resolution of 60-100 meV.

Total, inelastic and elastic integral, as well as elastic differential cross sections have also been computed at energies between 1 and 1000 eV within the Independent Atom Model and using the Screening Corrected Additivity Rule formalism [6]. In addition, electron-impact cross sections have also been calculated in order to explore the different role that positrons and electrons play in the low-energy scattering dynamics for those species.

References

E-mail: james.sullivan@anu.edu.au

Figure 1. Comparison of the present experimental and theoretical total cross sections for positron scattering from THF and 3H-THF.

We also compare the present cross sections for THF and 3H-THF in order to examine how small changes in the molecular structure (that can lead to quite different physico-chemical properties) can affect the scattering process for those systems.