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Abstract 

The geomorphological evolution of the Holocene wave-dominated barrier estuary at Burrill Lake on the New 

South Wales coast, Australia, has been delineated using a combination of seismic stratigraphy and the lithostratigraphic 

analysis of vibracores collected from the back-barrier estuarine environment. A combination of radiocarbon and aspartic 

acid racemisation-derived ages obtained on Holocene fossil molluscs, and the thermoluminescent signal in remnant Last 

Interglacial barrier sediments provides the chronological framework for this investigation. Results from this paper show 

that the barrier estuary occupies a relatively narrow (<1.5 km wide) and shallow (<40 m deep) incised bedrock valley 

formed during sea-level lowstands. Late Pleistocene sedimentary successions and remnants of the Last Interglacial barrier 

have been preserved within the incised valley axis and the mouth of the incised valley. These sediments, deposited during 

the Last Interglacial sea-level highstand, have subsequently been partially removed during the last glacial maximum. 

Overlying the antecedent late Pleistocene landsurface is a near basin-wide basal marine sand deposited in response to 

rising sea level associated with the most recent post-glacial marine transgression, which inundated the shallow incised 

valley ca.7800 years ago. More open marine conditions, with a diverse assemblage of estuarine and marine mollusc 

species, persisted until ca. 4500 years ago when the stabilizing Holocene barrier resulted in the development of a low-

energy back-barrier lagoonal environment. A late Holocene 1-2 m regression of sea level ca. 3000 years ago further 

restricted oceanic circulation, increased the rate of fluvial bay-head delta progradation and the extension of the back-

barrier central basin mud facies. This evolutionary model of barrier estuary evolution developed for Burrill Lake is 

consistent with recent research conducted in Lake Illawarra and St Georges Basin and can be applied to other estuaries 

that have formed in relatively shallow and narrow incised bedrock valleys on tectonically stable, wave-dominated 

coastlines. 
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1. Introduction 

Following the last glacial maximum (LGM) sea-level rose rapidly from ca. -120 m at 20,000 

cal yr BP (Ferland et al., 1995; Murray-Wallace et al., 1996, 2005) reaching and stabilizing within 

+1.5 m of present sea-level between 7,500 and 7,000 years ago (Jones et al., 1979; Thom and Roy, 

1983, 1985; Young et al., 1993; Sloss et al., 2005a, b). The stabilization of the sea surface during the 

culmination of the most recent post-glacial marine transgression (PMT) and subsequent Holocene 

sea-level highstand allowed shoreward prograding sediment to stabilize within the mouths of incised 

valley systems from ca. 6,500 years ago. This resulted in the growth and stabilization of Holocene 

barriers and the deposition of fine-grained estuarine mud in back-barrier estuarine lakes (Roy et al., 

1980, 1994, 2001; Chapman et al., 1982; Thom and Roy, 1983; Roy, 1984a, b, 1994). Previous 

stratigraphic studies into the geomorphological evolution of wave-dominated barrier estuaries on the 

southeast coast of Australia suggested that the initial stages of sedimentary infill display a tripartite 

facies division (Chapman et al., 1982; Roy, 1984a, b, 1994; Roy et al., 1980; Heap et al., 2004). 

Landwards, lowstand fluvial deposits directly overlie the antecedent Pleistocene landsurface and are, 

in turn, overlain by mid to late Holocene estuarine mud. In the central basin fine-grained estuarine 

mud disconformably overlies the antecedent Pleistocene substrate. Seaward, a basal sequence 

comprising transgressive sands containing estuarine and nearshore molluscan fauna directly overlies 

the Pleistocene substrate and inter-fingers landward with mid to late Holocene central basin estuarine 

mud. Directly overlying the PMT sandsheet are flood-tide delta, back-barrier sand-flats and barrier 

sands associated with the early stages of barrier development (Roy et al., 1980; Thom and Roy, 1983; 

Roy, 1984a, b, 1994). Following the early deposition of the basal estuarine sedimentary successions, 

marine sediments continued to accumulate in the mouth of the incised valleys promoting the further 



development of the Holocene barrier and resulting in a low-energy back-barrier depositional 

environment and the early stages of fluvial progradation (Roy et al., 1980; Chapman et al., 1982; 

Roy, 1984a, b, 1994).  

 

 Recent research conducted in Lake Illawarra and St Georges Basin, two wave-dominated 

barrier estuaries formed within broad (ca. 10 km wide) and relatively shallow (<30 m deep) incised 

valley systems, indicated that the early stage of barrier estuary evolution is different to the established 

conceptual models (Sloss et al., 2005b). The differences from the previous models of barrier estuary 

evolution reflects a greater emphasis on the palaeo-morphology of the lowstand incised valley and 

antecedent Late Pleistocene landsurface, and the deposition of a near basin-wide basal transgressive 

sandsheet during the most recent PMT. The transgressive sandsheet, comprising marine quartzose 

sand and containing a mix of estuarine and nearshore shallow marine fossil molluscs, was deposited 

as rising post-glacial sea levels breached remnant Last Interglacial barrier systems and inundated the 

incised valleys from ca. 8,000 years ago (Sloss et al., 2004b, 2005a, b, in submission). During this 

stage of Holocene sedimentary infill, the drowned incised valley system operated as a sheltered ocean 

embayment or broad drowned river estuary open to direct oceanic influences. This contrasts with 

established models for barrier estuary evolution on the southeast coast of Australia, where 

transgressive sandsheets are restricted to the mouths of incised valleys and back-barrier central basin 

muds lie directly over the antecedent Pleistocene landsurface.  

 

While the incised bedrock valley associated with Burrill Lake is relatively shallow (ca. <40 m 

deep) the narrow nature of the bedrock valley (<2 km wide) has resulted in a morphology that is 

significantly different to the Lake Illawarra and St Georges Basin barrier estuaries (Fig. 1). As a 

result, the investigation of the Burrill Lake barrier estuary provides the opportunity to assess the 



geomorphological evolution of barrier estuaries that have experienced the same climatic conditions 

and sea-level fluctuations throughout the Holocene to those recently investigated on the New South 

Wales southern coast (Sloss et al., 2004b, 2005a, b) and to those used to construct previous estuarine 

evolutionary models (Roy et al., 1980; Chapman et al., 1982; Roy, 1984a, b, 1994), but have formed 

in incised valley systems with a significantly different palaeo-morphology.  

 

2. Geological setting 

Burrill Lake located ca. 230 km south of Sydney is a wave-dominated barrier estuary with a 

bilobate morphology that formed in a relatively shallow (ca. <40 m) and narrow (<2 km wide) valley 

that was incised into bedrock basement during previous lowstands of sea-level (Fig. 1). The southern 

limb of the bilobate system is underlain by Permian quartz sandstone (Snapper Point Formation), 

while the northern limb has scoured into the Mesozoic Milton Monzonite (Carr, 1984; Jones et al., 

2003). Around the margin of the estuary the sandstones of the Snapper Point Formation crop out as 

low sub-horizontal rock benches or small cliffs. At its narrowest point, close to where the two limbs 

merge, the bedrock bound estuarine lake is only ca. 400 m across. At its widest position in the 

northern limb the impounding bedrock embankments are ca. 1.2 km apart (Fig. 2).  

 

The estuarine water body at present covers an area of 4.2 km2, draining a total catchment area 

of ca. 80 km2 that is bounded to the west by the Budawang Range with elevations in excess of 270 m. 

Stony Creek is the major tributary that enters Burrill Lake in the northern limb of the estuary 

producing a bayhead delta extending ca. 1.4 km into the lagoon (Fig. 2; Jones et al., 2003). Water 

depths in the estuarine lake reach a maximum of ca. 10 m and the estuary is connected to the Pacific 

Ocean by a narrow and extensively shoaled (<2 m deep) sinuous channel ca. 2.4 km long (Fig. 2). 

The tidal channel is sufficiently long to reduce the tidal range within the estuary to a few centimeters, 



although periodically the lagoon is cut off from the sea by a sand barrier and shows no tidal variation. 

Sand has largely filled the tidal channel area and produced a flood-tide delta extending as a prominent 

feature into the central part of the estuarine lake (Fig. 2). The flood-tide delta has a sharp delta-front 

building out into the deepest part of the estuary (ca. 10 m deep). It also extends across the narrow 

channel between the northern and southern limbs of the estuary and lines the southeastern embayment 

near Bungalow Park (Fig. 2; Jones et al., 2003). The impounding barrier and extensively shoaled inlet 

channel have resulted in a mean elevated back-barrier estuarine water level of 23 cm above PMSL. 

 

3. Methods  

In this paper the geophysical evolution of the Burrill Lake wave-dominated barrier estuary has 

been delineated within the framework of ca. 40 km of seismic surveys (Figs 2 and 3) and the facies 

association and faunal analysis of 14 vibracores collected from the back-barrier environment (Fig. 2; 

Table 1). The chronostratigraphy of the sedimentary successions preserved in the Burrill Lake barrier 

estuary has been delineated based on thermoluminescence dating of remnant Late Pleistocene barrier 

sands, and radiocarbon analysis and the extent of amino acid racemisation of fossil specimens of 

Anadara trapezia, Notospisula trigonella and Katelysia scalarina preserved in Holocene sedimentary 

successions (Tables 1 and 2). The combination of geophysical, lithological and geochronological data 

has permitted the location of lowstand channel incision (Fig. 4) and the geomorphological evolution 

of Burrill Lake to be determined. 

 

3.1 Seismic profiles 

The seismic stratigraphy of Burrill Lake has been delineated based on recurring seismic 

sequences observed around the margins of the estuarine lake, in southern limb and the central basin 

and at the seaward margin of the lagoon (Figs 2 and 3). The seismic traces were obtained using a SB-



424 Towfish sonar and X-star interface software system. This Edgetech acoustic sub-bottom system 

has a single transmitter and duel receivers operating over a frequency of 2-24 kHz. This method of 

seismic investigation provided high resolution of up to 20 m in cohesive estuarine muds but had the 

disadvantage of low penetration in sandy substrates (ca. 2 m).  

 

Additional seismic data was obtained using a ¼ second 200 joule, Geo-acoustics boomer with 

EG&G power supply operating over a frequency of 500 kHz, with a Benthos 20 element streamer 

(Fig. 3). The Geo-acoustic boomer had the advantage of greater penetration in sandy substrates (>25 

m), but the resolution was not as good as the Towfish. Nevertheless, the second series of seismic 

traces (Fig. 3) gained more data from the Pleistocene/Holocene boundary and determined the location 

of incised river channels and prior inlet channels at the marine margin of the estuarine lake (Fig. 4).  

 

3.2 Vibracores 

Fourteen semi-undisturbed cores of unconsolidated sediment were extracted from the 

estuarine lake using a petrol-operated vibracorer (Fig. 2; Table 2). The cores were obtained from the 

marine-influenced facies and the fluvial bay-head delta. The retrieved cores were opened and visually 

logged documenting color, sediment texture, lithological composition, and significant facies changes. 

The cores were adjusted for compaction (measured depth vs. recovered depth) and compiled data 

were plotted into the graphic logging program WinLoG 3.12 (GAEA Technologies; see Fig. 9).  

 

3.3 Faunal assemblages 

Faunal assemblages from the major sedimentary units were described to determine their 

palaeo-ecological significance and to determine depositional environments of sedimentary 

successions preserved in Burrill Lake. A visual assessment of the nature of preservation and relative 



abundance of macrofossil populations was made on the vibracores collected. The macrofossils were 

collected by dividing the cores into obvious divisions related to shell density. The collected samples 

were then washed and the macrofossils present were identified. The relative abundance of individual 

molluscan species in relation to specific facies divisions was determined (Table 1). As Roy (1981) 

noted, this qualitative analytical method provided a quick faunal population assessment, as counting 

individual tests would be time consuming and impractical. Nevertheless, the use of the visual 

population assessment provided a good estimate of the faunal assemblages in each sedimentary facies 

preserved within incised valley succession.  

 

4. Geochronology 

4.1 Thermoluminescence age determination 

 One sample of bleached unconsolidated medium-grained sand was submitted for 

thermoluminescence (TL) analysis at the University of Wollongong. The sample was obtained from a 

vibracore that penetrated the antecedent Pleistocene landsurface in the back-barrier environment 

(core BUR8; Figs 2, 8 and 9). Sediment submitted for this analysis was collected from the relatively 

homogenous “A” horizon of the remnant barrier sands ensuring an even radiation flux, and the 

sample would not have undergone significant water-content variation, accumulation of clay minerals 

or organic detritus, or experienced significant diagenetic changes during Holocene burial (core 

BUR8; Fig. 9). The sample comprises medium-grained, moderately to well-sorted bleached quartzose 

sand dominated by rounded to well-rounded frosted quartz grains suggesting aeolian reworking and it 

is interpreted as remnant barrier sands. The sample was sealed to prevent light exposure and preserve 

prevailing moisture. TL-sensitive mineral fractions were prepared for dating following techniques 

employed at the University of Wollongong (Shepherd and Price, 1990; Nanson et al., 1991; Price et 

al., 2001). A TL delineated age of >84.4±4.1 ka BP was obtained from these sediments. As this 



deposit displays characteristics of aeolian reworking and minor post-emplacement diagenetic 

alteration it is suggested that the sample was originally deposited in a marginal marine back-barrier 

environment during the Last Interglacial sea-level highstand. The sediment may have been 

subsequently reworked and bleached (reset) by aeolian processes during a period of lower sea-level 

following the Last Interglacial. 

 

4.2 Amino acid racemisation 

Amino acid racemisation is a bio-chemical dating method that measures the relative 

abundance of amino acid isomers preserved within organic materials. The application of amino acid 

dating method has traditionally been used for the study of Quaternary coastal successions (Miller and 

Brigham-Grette, 1989; Wehmiller, 1993; Murray-Wallace, 1995, 2000; Wehmiller and Miller, 2000). 

However, Goodfriend (1991, 1992) and Goodfriend et al., (1992) highlighted the potential of aspartic 

acid (Asp), one of the fastest racemising amino acids, for the dating of early Holocene to recent 

sediments (10,000 cal yr BP to ca. 50 years). More resent research by Sloss et al. (2004a, b, 2005a, b, 

in submission) has shown that the extent of Asp racemisation observed in fossil molluscs preserved in 

Holocene back-barrier sedimentary successions can provide numeric ages between ca. 8000 yr and 

<100 yr ago. 

 

Sample preparation and analytical techniques undertaken during this study follow the 

procedures outlined in Murray-Wallace and Kimber (1987), Murray-Wallace (1993) and Sloss et al. 

(2004a). Average amino acid D/L ratios for each sample analyzed were based on at least three 

replicate injections on a Hewlett-Packard model 5890A series II Gas Chromatograph at the Amino 

Acid Dating Laboratory, University of Wollongong, NSW, Australia. Asp racemisation-derived ages 

were obtained with reference to the radiocarbon dated shells and the degree of Asp racemisation 



using an apparent parabolic kinetic model. This permitted a direct comparison between the degree of 

Asp acid racemisation and fossil age (Sloss et al., 2004a, b, 2005a, in submission). Numeric ages for 

subsequent Asp D/L ratios obtained from fossil molluscs collected from Burrill Lake were calculated 

following the protocol proposed by Mitterer and Kriausakul (1989) and Sloss et al. (2004a, 2005b) 

and using the following formula (Table 1); 

t = [(D/Ls - D/Lm) / Mc]2 

where: 

- t is the calculated age; 

- D/Ls is the average D/L ratio of multiple analyses on a specimen of unknown age; 

- D/Lm is the D/L ratio for a modern sample of the same species as D/Ls; and 

- Mc is the slope of the regression line, defined as [D/Lcal/t1/2] where D/Lcal is the extent of 

racemisation in a fossil of known age and t1/2 is the square root of fossil age. 

 

4.3 Radiocarbon age determinations 

Radiocarbon ages obtained for this paper utilized both conventional and accelerator mass 

spectrometry (AMS) dating methods for fossil molluscs collected from sedimentary successions 

preserved in incised valley fill successions (Table 2). The conventional radiocarbon age was obtained 

from the Waikato University, New Zealand, and AMS radiocarbon ages were obtained from the 

Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, New South Wales. 

Radiocarbon ages used in this thesis have been calibrated to sidereal years (calendar age) using the 

radiocarbon calibration program CALIBTM REV4.4.2 (Stuiver et al., 1986, 1998a, b). The calibration 

was made using the marine model calibration curve with a Δr value of -1±70 yr to correct for the 

marine reservoir effect for the southern Australian coastal and estuarine waters (-450 ± 35 a; 



Gillespie and Polach, 1979). We present the calibrated radiocarbon ages (cal yr BP) using a 2-sigma 

uncertainty term (95% degree of confidence; Table 2).  

 

5. Results 

5.1 Seismic profiles 

Throughout the basin the seismic profiles obtained using the Towfish sonar are generally 

similar, starting with a strong acoustic reflector representing the bedrock basement (Figs 5 and 6). 

The valley axis material resting over the strong acoustic reflector starts with up to 3 m of seismically 

homogeneous material forming a massive fill in the base of channels, most likely representing 

antecedent Pleistocene or LGM fluvial sedimentary fill. Overlying the seismically homogeneous 

material is a ca. 2 m thick sequence of strong multi-layered reflectors forming a prominent lower 

marker throughout the estuarine lake. The seismically well-laminated succession at the base of the 

Holocene fill may represent deposition during variable energy levels within the embayment during 

the most recent PMT prior to the development of the coastal sand barrier. Overlying the seismically 

well-laminated succession is 1-2 m of massive fill then another prominent upper single reflector. The 

massive (seismically homogenous) sequence is probably related to the slow and relatively uniform 

accumulation of estuarine mud in sheltered areas and deeper portions of the incised valley behind the 

initial coastal barrier following the culmination of the most recent PMT. The prominant internal 

acoustic reflector is probably related to compaction and dewatering of the estuarine muds and/or 

laterally extensive shell beds. This seismic unit grades upwards into a 4-6 m thick unit of acoustically 

transparent material. This almost seismically transparent sequence equated to the uniform 

accumulation of estuarine mud deposited as a near basin-wide sequence following the stabilization 

and growth of the Holocene barrier. A very faint reflector at about half height within this seismic unit 

and is also probably related to compaction and dewatering of the estuarine muds and/or laterally 



extensive shell beds.  

 

At the marine margin the seismic profile obtained using the Geo-acoustic boomer starts with a 

strong prominent reflector between -5 m and extending to ca. -30 m and represent the surface of the 

antecedent Late Pleistocene substrate (Figs 7 and 8). Overlying the strong basal reflector is a 

sequence of seismically massive fill that ranges between 2 m to ca. 20 m thick in the Bungalow Park 

area (Figs 7 and 8). Discontinuous sub-parallel internal laminae showing on-lap and top-lap occur 

within this unit, suggesting that this unit was deposited in a higher-energy regime most likely 

associated with the most recent PMT when shoreward prograding sediments breached the Last 

Interglacial remnant barrier and filled the LGM incised channel in the Bungalow Park area. 

Overlying the PMT deposits is a laterally extensive single prominent reflector representing the top of 

the Late Pleistocene substrate and the base of the mid to late Holocene sedimentary succession. The 

overlying seismic unit is up to 6 m thick and contains relatively continuous and laterally extensive 

internal reflectors. It represents flood-tide delta and back-barrier sedimentary successions deposited 

after the culmination of the most recent PMT and during the Holocene sea-level highstand. At the 

westward margin of the marine influenced facies the flood-tide delta deposits drop off sharply to 

depths of ca. 9 m and interfinger with the central basin mud facies represented by strongly laminated 

horizontal reflectors (Figs 7 and 8).  

 

5.2 Low-stand incised bedrock valley  

The actual position of the lowstand palaeo-channels and the extent of the preservation of 

Pleistocene sediments cannot be accurately defined in the northern part of the estuary due to 

entrapped gas produced from the thick sequences of organic-rich Holocene estuarine mud, and 

extensive sea-grass beds in the shallow margins. Both attenuate the seismic penetration and thus the 



profile imaging of the underlying strata. Similarly, delineation of the depth to bedrock basement 

around the tidal entrance channel and flood-tide delta have been complicated due to the thick deposits 

of marine sand in this locality. However, the most-likely location of the incised bedrock channels is 

based on the seismic sections obtained from the central basin and southern limb, as well as the 

location of the bounding bedrock margin of the estuarine lake (Fig. 4). In the deeper portions of the 

central basin and the southern limb of the estuarine lake seismic profiles indicated the presence of a 

duel cut-and-fill phase that is relatively sharply incised into the bedrock valley and Late Pleistocene 

valley fill successions (Figs 5 and 6). 

 

Results from the seismic stratigraphy in the central basin to the north of Kings Point indicated 

that the depth of the incised bedrock valley extends to ca. 14 m (Fig. 5a). In the deeper portions of the 

central basin and the southern limb the incised bedrock valley extends to a depth of between 20 and 

22 m (Figs 5b and 6). At the seaward margin of the estuarine lake the depth to the incised bedrock 

valley is difficult to ascertain due to the thick sequences of marine sand within the mouth of the 

incised valley. However, seismic profiles indicate that up to 30 m of sand has accumulated within the 

lowstand incised channel in the Bungalow Park area (Figs 7 and 8). Taking into account that the 

incised bedrock valley in the central basin extends to ca. -20 m where the two limbs converge and 

that the valley-fill succession at the marine margin extend to depths of ca. -30 m, the bedrock valley 

must be >30 m in this region and would extend to ca. 40 m at the mouth of the incised bedrock valley 

(Fig. 4). 

 

5.3 Pleistocene sedimentary successions  

The seismic stratigraphy of Burrill Lake indicates that the incised valley contains a second 

phase of cut-and-fill represented by a lowstand valley incised into remnant Late Pleistocene 



sediments most likely during the LGM. In the central basin and deeper portions of the southern arm 

Late Pleistocene deposits have been partially removed during the lowstand of sea-level and only 

occur in the deeper portions of the incised valley (Figs 5 and 6). This is clearly evident along much of 

the margin of the estuarine lake where Permian sandstone outcrops form benches or low cliffs, which 

are overlain by the Holocene muddy-sand facies that rims the estuarine lake in water depths <2 m and 

by laminated estuarine mud to depths of ca. 7 m in the deeper portions of the lagoon (Figs 5 and 6). 

 

Based on seismic stratigraphy, preservation of Pleistocene successions is evident in both the 

northern limb near Kings Point and in the southern limb (Fig. 5a) where these earlier deposits have 

been partially eroded by a steep-sided small channel incised down to -10 m, presumably during the 

LGM. Further evidence of Pleistocene deposits can be seen in the central basin where up to 5 m of 

probable Pleistocene material lies between the bedrock and the Holocene fill (Fig. 5b). The second 

phase of fluvial incision into remnant Pleistocene deposits follows the same axial trend as the incised 

bedrock valley and extends to depths of ca. 15 m in the deeper portions of the central basin and the 

southern limb (Fig. 6). However, these conclusions are based on seismic data, and it is difficult to 

ascertain the nature of the sediments preserved in the valley axis due to problems associated with 

obtaining samples from greater water depths. These sediments may represent older estuarine clays or 

remnant Last Interglacial transgressive deposits similar to those observed in St Georges Basin and 

Lake Illawarra (Sloss et al., 2004a, b, 2005b, in submission). 

 

At the seaward margin of the estuarine lake Late Pleistocene barrier deposits have been 

partially preserved and underlie much of the Holocene flood-tide delta and barrier sediments (Figs 7 

and 8). Seismic profiles indicate that the second phase of fluvial incision reached a maximum depth 

of 30 m in the Bungalow Park region (Fig. 7a). However, Pleistocene deposits in the present inlet 



channel and along the seaward margin of the southern limb occur within 3 m of the water/sediment 

interface (Figs 7b and 9). The Pleistocene deposits comprise fine- to medium-grained bleached 

quartzose sand that is moderately to well-sorted. These sands are typically white, yellow or light grey 

with minor mottling. This facies has very few lithic constituents, very little carbonate content and is 

dominated by rounded to well-rounded frosted quartz grains suggesting aeolian reworking. It is 

interpreted as remnant barrier sands. A TL age determination obtained from the remnant barrier 

sediments yielded a minimum age of >84.4±4.1 ka BP (Fig. 9a). The characteristics of the sediment 

and age of this facies suggest that the sand represents a remnant Last Interglacial barrier system that 

has undergone minor post-emplacement aeolian reworking and diagenetic alteration.  

 

From the seismic data and the position of the bedrock embankments around the margin of the 

estuarine lake, the position of the lowstand valleys has been delineated (Fig. 4). In Burrill Lake the 

bedrock incised valley and the LGM lowstand valley follow the same valley axis, merging into a 

single channel just south of Kings Point. The valley cuts through the Last Interglacial remnant barrier 

system in the Bungalow Park area and exits the incised valley system to the north of Dolphin Point 

(Fig. 4).  

 

5.4 Holocene marine influenced facies 

Thick deposits of marine sand have been transported into the mouth of the incised valley in 

the Bungalow Park area during the most recent PMT forming a coastal barrier and an exposed low-

lying sandy bar extending ca. 2.5 km into the estuarine lake (Fig. 2). This accumulation of marine 

sand represents the landward progradation of sediment from the continental shelf during the most 

recent PMT and subsequent sea-level highstand and is represented by two distinct facies:  



- a basal quartzose carbonate-rich sand with a mix of nearshore and estuarine molluscan fauna; 

and  

- an overlying medium-grained quartzose sand with a impoverished faunal assemblage grading 

up core to an organic-rich quartzose sand with sea-grass colonization. 

 

The basal Holocene sand facies lies unconformably over the antecedent Last Interglacial 

remnant barrier system and comprises unconsolidated medium- to coarse-grained, rounded to sub-

rounded quartz and carbonate-rich marine sand that has only minor lithic constituents. This suggests 

the sand was sourced from sediment stored on the continental shelf and it prograded landward with 

rising sea levels during the most recent PMT rather than being sourced from the surrounding 

catchment, which is composed of lithic sandstone and monzonite. Faunal elements within the 

transgressive sandsheet show a dominance of the gastropod Astele subcarinata and minor occurrence 

of Bankivia fasciata and Zeacumantus diemenensis, as well as common to abundant specimens of the 

bivalves Brachidontes rostratus and Katelysia scalarina, and rare Dosinia crocea and 

Fulvia tenuicostata. All these molluscs typically inhabit low- to high-energy sandy shores and rock 

reefs in the lower littoral zone in nearshore environments (Ludbrook, 1984; Yassini, 1984; Jensen, 

1995, 2000; Fig. 9; Table 1). Also occurring within the transgressive sand are rare to common 

specimens of the bivalves A. trapezia, N. trigonella and the gastropods Batillaria australis, 

Zeacumantus diemenensis and Nassarius jonasii, molluscs that typically inhabit estuarine sand-flats 

(Ludbrook, 1984; Yassini, 1984; Jensen, 1995, 2000; Fig. 9; Table 1). The transgressive deposit also 

contains rounded clasts of indurated quartz-rich sediment showing similar characteristics to the 

underlying Last Interglacial remnant barrier succession.  

 



Asp racemisation-derived ages obtained on specimens of A. trapezia and K. scalarina 

collected from the base of the transgressive deposit range between ca. 7,500 – 7,000 years 

(7,220±380 yr, UWGA-1358; 6,910±320 yr, UWGA-1356; Fig. 9b; Table 1). Similarly radiocarbon 

ages of 7,770±160 cal yr BP (OZH-285, BUR8) and 7,290±160 cal yr BP (OZG-749, BUR9) were 

obtained on specimens of A. trapezia and K. scalarina (Fig. 9; Table 2). The age determinations on 

fossil molluscs from the base of the transgressive deposit indicate that the initial deposition of this 

facies occurred between ca. 7,800 and 7,000 years ago. Asp racemisation-derived ages of 4,420±200 

yr (UWGA-1354, BUR9) and 4,670±210 yr (UWGA-1357, BUR9) obtained on specimens of 

A. trapezia and a radiocarbon derived age of 4,790±240 cal yr BP (OZH-293, BUR9; Fig. 9b) 

towards the top of the transgressive sand deposit indicate that more open marine conditions lasted 

until ca. 4,500 years ago. 

 

At the seaward margin of the estuarine lake the shell-rich transgressive deposit is overlain by 

olive/brown moderate to very poorly sorted medium-grained sand. This facies forms broad sub-

horizontal back-barrier sand-flats colonized by Posidonia and Zostrea sea-grass beds. This facies also 

contains random individuals and isolated shell beds dominated by the estuarine molluscs A. trapezia 

and N. trigonella along with B. australis (Table 1). Asp racemisation-derived ages of 1,160±60 yr 

(UWGA-1095) and 1,080±50 yr (UWGA-1424) obtained A. trapezia towards the top of this facies 

indicates that active sedimentation in the back-barrier sand-flats continued from ca. 4,500 years ago 

until ca. 1,000 years ago. The upper 0.5 to 1 m of this facies has a significant increase in organic 

matter associated with sea-grass beds, and in places contains common to abundant disarticulated, 

fragmented and weathered A. trapezia, N. trigonella and B. australis. The presence of the organic-

rich facies and the fossil death assemblage suggests that active sedimentation had ceased allowing 

colonization by sea-grass and the reworking of this facies by internally generated wind-waves and 



currents. Landwards, the back-barrier sand-flat facies grades to muddy sand and inter-fingers with the 

central basin muds facies (Figs 7b and 8). 

 

5.5 Holocene central basin facies 

Unconformably overlying the antecedent Pleistocene landsurface is 1-2 m of strong multi-

layered reflectors (Figs 5 and 6). This seismically well-laminated succession near the base of the 

Holocene fill occurs throughout the lagoon and possibly represents deposition in variable energy 

levels within the embayment during the most recent PMT and prior to the development of the coastal 

sand barrier. These well-laminated successions are presumed to be synchronous with the deposition 

of the transgressive deposits at the seaward margin of the estuarine lake as both form basal Holocene 

sequences. Overlying the well-laminated succession is a seismically homogeneous unit with a 

prominent internal acoustic reflector that may relate to a dewatering surface due to sediment 

compaction or to laterally extensive shell beds. This sequence probably represents slow and relatively 

uniform accumulation of estuarine mud in sheltered areas and deeper portions of the incised valley 

following the stabilizing of sea-level and the early development of the Holocene barrier in its present 

location, i.e. onset of the low-energy back-barrier environment (Figs 5 and 6). 

 

The upper parts of the seismic profiles are generally acoustically transparent or contain a very 

faint reflector (Figs 5 and 6). This seismic facies is interpreted as the deposition of the central basin 

mud facies comprising fine-grained terrigenous detritus supplied from the freshwater streams entering 

the low energy back-barrier depositional environment. This facies is composed of very fine-grained 

grey/black estuarine silty clay, with considerable organic detritus characteristic of an anoxic 

environment (Jones et al., 2003). This silty clay represents the full development of the low-energy 



estuarine environment, facilitated by emergent Holocene barrier systems and the further restriction of 

open marine oceanic water circulation. 

 

The timing of this change to the near basin-wide low-energy central basin mud facies 

occurred ca. 4,500 years ago. The timing of this transition can only be regarded as an estimate based 

on the cessation of the more open marine conditions observed at the marine margin of the incised 

valley that last until ca. 4,500 years ago. However, these conclusions are consistent with the timing of 

the transition to low-energy back-barrier environments observed in Lake Illawarra and St Georges 

Basin (Sloss et al., 2004a, 2005b, in submission). 

 

5.6 Fluvial dominated facies: Stony Creek 

The fluvial-influenced facies associated with the landward margin of Burrill Lake is 

dominated by the progradation of the Stony Creek delta in the northern arm of the estuary (Fig. 2). 

This very shallow sandy bay-head delta extends ca. 1 km into the estuary. Due to a limited catchment, 

the equivalent bay-head delta in the southern arm is small and fluvial sediments are restricted to 

organic-rich sandy mud pro-delta deposits that are extensively colonized by sea-grass.  

 

Shallow vibracores collected from the Stony Creek region permit the stratigraphic sequence to 

be determined (Fig. 10). The results of the facies analysis show that the delta consists of ca. 2-3 m 

thick muddy sand. Faunal elements within earlier bay-head delta sands are preserved in shell beds in 

the river banks and redistributed onto the delta top. This faunal assemblage is composed 

predominantly of disarticulated, fragmented and bleached fossil molluscs. However, isolated 

individuals and relatively small shell beds of articulated and well preserved fossil molluscs randomly 

occur within this facies suggesting a mix between fossil life and death assemblages. A radiocarbon 



age of 0-310 cal yr BP (OZG-229, BUR3) and an Asp racemisation-derived age of ca. 50 yr obtained 

on articulated specimens of N. trigonella collected from the in situ life assemblage preserved within 

this facies point to a recent phase of deposition.   

 

The death assemblage preserved in the fluvial bay-head delta contains a mix of purely 

estuarine molluscs and molluscs that are more characteristic of an estuarine environment open to 

direct oceanic influences. The latter include Saccostrea glomerata, Barbatia pistachia, 

Dosinia crocea, Austrocochlea constricta, Astele subcarinata, Zeacumantus diemenensis and Bedava 

paivae. An aspartic acid derived age of 4,570±70 yr (UWGA-890) obtained on a specimen of 

A. trapezia from this facies is consistent with the timing of the deposition of the transgressive deposit 

at the seaward margin of the estuary (ca. 7,800 – 4,500 cal yr BP). The occurrence of the more 

marine specimens of fossil molluscs and the mid Holocene age suggests that the fossil assemblage 

preserved in the modern bay-head delta was eroded from older transgressive deposits that 

accumulated when the incised valley was more open to direct marine influence. 

 

Landward, the bay-head delta sands are underlain by coarse- to very coarse-grained fluvial 

channel sands that grade in a westerly direction to a thick sequence of peaty mud associated with pro-

delta deposits, and eventually into cohesive estuarine muds with isolated peat lenses. Faunal elements 

preserved in the pro-delta deposits are dominated by the estuarine molluscs A. trapezia, N. trigonella 

and Tellina deltoidalis. Asp derived-ages obtained from fossil molluscs preserved in the fluvial pro-

delta deposits indicate that delta progradation into the present lagoon occurred over the last 300 years 

(Fig. 10; 320±20 yr, UWGA-1089; 310±20 yr, UWGA-1094).  

 



Underlying the fluvial channel sands and the peaty pro-delta muds is shell-rich muddy sand. 

Faunal elements within this facies are dominant by articulated and disarticulated specimens of 

A. trapezia and N. trigonella that are interpreted as a back-barrier sand-flat deposited ca. 2,500 – 

2,000 years ago (Fig. 12; 2,500±120 yr, UWGA-1087, BUR1; 1,940±90 yr, UWGA-1092, BUR4). 

This facies is, in turn, underlain by cohesive estuarine mud that presumably extends down to the 

antecedent Pleistocene substrate or bedrock extending southwards beneath the estuarine lake.  

 

6. Discussion: The geomorphological evolution of the Burrill Lake wave-dominated barrier 

estuary 

Based on seismic stratigraphy, facies associations, fossil faunal assemblages and 

geochronological data, the geomorphological evolution of Burrill Lake has been determined. This 

geomorphological evolution can be divided into distinct phases associated with sea-level fluctuations 

including fluvial incision during the LGM and deposition during the PMT. 

 

6.1 Lowstand incised valley system (Fig. 11a) 

Based on seismic data and the position of Permian sandstone benches and small cliffs that rim 

the margin of the lagoon, the location of the lowstand incised valley channels has been determined 

(Figs 4 and 11a). Results indicate that the incised bedrock valley extends to depths of 15 m at the 

landward margin of the northern limb of estuarine lake. In the central basin the incised bedrock valley 

extends to a depth of ca. 20 m. Results from the seismic profiles and vibracores that penetrated the 

Holocene sedimentary successions indicate that the initial bedrock valley has subsequently been 

partially filled with Late Pleistocene sediments and that a second phase of valley during the LGM 

incision removed much of the Pleistocene sediments from the northern limb and central basin and 

where it is now confined to the valley axis. These sedimentary successions are presumed to comprise 



unconsolidated alluvium that was deposited during the LGM and/or older estuarine clays deposited 

during the Last Interglacial sea-level highstand.  

 

In both the northern and southern limb the LGM lowstand valley reached depths of ca. 10 m. 

Where the two limbs converge the palaeo-channels coalesced into a single channel that incised into 

the Late Pleistocene substrate to depths of ca. -15 m. At the seaward margin a combination of seismic 

data and vibracores that penetrated the Holocene sedimentary successions identified the presence of a 

remnant Last Interglacial barrier system that has undergone aeolian reworking and minor post-

emplacement diagenetic alteration. The Last Interglacial barrier still partly fills the mouth of the 

incised bedrock valley and provides a core on which the Holocene barrier system has stabilized (Figs 

8 and 11a). In this region the LGM lowstand channel cut through the Last Interglacial remnant barrier 

in the location of Bungalow Park to a depth of ca. -30 m and exited the lowstand valley just to the 

north of Dolphin Point (Figs 8 and 11a). 

. 

6.2 Most recent PMT (Fig. 11b) 

Rising sea levels during the most recent PMT inundated the lowstand river channel and 

breached the Last Interglacial remnant barrier resulting in the development of a drowned river estuary 

or sheltered ocean embayment from ca. 7,800 – 4,500 years ago. It resulted in the deposition of relict 

flood-tide delta and transgressive deposits within the incised valley channel as a near basin-wide 

deposit (Fig. 11b). The deposition of a shell-rich transgressive deposit with a diverse mix of marine 

species, which typically inhabit medium- to high-energy nearshore zones, and estuarine molluscs 

represents reworked intertidal sand-flats, tidal channel sands and flood-tide delta indicates that Burrill 

Lake was more open to direct ocean influences as rising sea-levels inundated the incised valley, 

breaching and reworking the Last Interglacial remnant barrier system during the most recent PMT. 



The presence of the estuarine fossil assemblage suggests that this early stage of Holocene 

sedimentation occurred in a mixed energy environment comprising intertidal sand-flats in a sheltered 

coastal embayment or drowned river estuary. 

 

Supporting evidence for a near-basin wide transgressive deposit is the presence of reworked 

fossil molluscs that inhabit shallow-marine nearshore environments preserved in the prograding 

fluvial bay-head delta associated with Stony Creek ca. 5 km from the present coastline.  

 

6.3 Holocene sea-level highstand (Fig. 11c) 

Following the deposition of the transgressive deposits, marine sand continued to build up 

within the mouth of the incised valley resulting in the accumulation of a thick sand succession 

overlying the Last Interglacial remnant barrier. This probably formed a series of barrier beaches, 

flood-tide delta deposits and an embryonic Holocene barrier overlying the Last Interglacial remnant 

barrier system within the mouth of the incised valley. Nevertheless, more open marine conditions 

persisted until ca. 4,500 years ago when the infilling of the palaeo-inlet channel and the stabilizing of 

the Holocene barrier system in its present position restricted open ocean influences (Fig. 11c). During 

this time fine-grained estuarine mud accumulated in the deeper portions of the incised valley and in 

sheltered areas following the stabilizing of sea-level and the early development of the Holocene 

barrier in its present location. The infilling and eventual closure of the palaeo-inlet in the Bungalow 

Park area and the further growth and stabilization of the Holocene barrier resulted in greater 

restriction of open ocean influences. This resulted in the extension of a low-energy back-barrier 

environment and the central basin mud facies from ca. 4,500 years ago. 

 

6.4 Fluvial progradation ca. 2,000 yr – present (Fig. 11d). 



The final stage of geomorphological evolution in Burrill Lake is represented by the infilling of 

the barrier estuary from ca. 2,500 years ago to the present (Fig. 11d). At the landward margin this 

period of geomorphological evolution is dominated by progradation of the Stony Creek fluvial bay-

head delta into the present estuarine lake (Fig. 11d). The initial sedimentation associated with Stony 

Creek post-dates the development of back-barrier sand-flats at the landward margin of the estuarine 

lake (ca. 2,500 – 2,000 years ago). Fluvial channel sands overlie the back-barrier sand-flats and 

indicate that initial fluvial progradation occurred sometime after 2,000 years ago as falling sea level 

following the Holocene sea-level highstand resulted in a decrease in accommodation space. Fluvial 

progradation is ongoing with extensive delta progradation occurring over the last 300 years.  

 

 

At the seaward margin of the estuarine lake the final stage of geomorphological evolution 

represents the cessation of active accretion on back-barrier sand-flats (ca. <1,000 years ago) and the 

reworking of these sand-flats by internally generated wind-waves and currents. With the infilling of 

the early to mid-Holocene palaeo-inlet and the further growth and stabilization of the Holocene 

barrier the marine influenced facies were restricted to extensive shoaling of the inlet channel in its 

present location and the continued development of a small flood-tide delta at the mouth of the inlet 

channel (Figs 2 and 11d).   

 

6.5 Barrier estuary evolution on the New South Wales southern coast 

Research presented in this paper is consistent with results obtained from Lake Illawarra and St 

Georges Basin (Fig. 12a; Sloss et al., 2004a, 2005a, b, in submission). While all three estuarine 

systems are relatively shallow (<40 m) Burrill Lake is significantly smaller and the incised bedrock 

valley is much narrower than the previously described examples. Nevertheless, the stratigraphic 



evolution of the Burrill Lake estuary is similar to that observed in the larger and boarder estuaries on 

the southeast coast of Australia (Fig. 12a). This indicates that wave-dominated barrier estuaries on the 

New South Wales southern coast follow a similar evolutionary pathway that is significantly 

influenced by Holocene sea-level fluctuations, the palaeo-morphology of the incised valley and the 

amount of preserved Last Interglacial remnant barrier. The early stage of sedimentary infill in both 

broad and narrow incised valley systems was initiated when rising sea levels during the most recent 

PMT breached the antecedent Last Interglacial remnant barrier ca. 8,000 years ago (Fig. 12). This 

resulted in the deposition of a near basin-wide shell-rich transgressive deposit unconformably over 

the antecedent late Pleistocene land surface with the estuarine systems operating as sheltered ocean 

embayments or drowned river estuaries open to direct oceanic influences. More open marine 

conditions lasted to some time between 5,000 and 4,000 years ago when growth and stabilization of 

the Holocene barrier systems restricted open ocean influences and resulted in the development of 

extensive back-barrier sand-flats, mud basins and the eventual progradation of fluvial bay-head deltas 

(Fig. 12).  

 

7. Conclusions 

The geomorphological evolution of barrier estuaries that formed in narrow and relatively 

shallow incised valleys has been shown to be different to previously established models of Holocene 

barrier estuary evolution. In particular, the early stage of sedimentary infill is characterized by 

deposition of a near basin-wide transgressive sandsheet extending up to near present sea-level. The 

transgressive sandsheet disconformably overlies the antecedent Pleistocene land surface and was 

deposited as rising post-glacial sea-level breached the remnant Last Interglacial barrier and inundated 

the incised valleys from ca. 8,000 years ago. This stratigraphy contrasts with previous established 

models for barrier estuary evolution on the southeast coast of Australia, where transgressive 



sandsheets were said to be restricted to the mouths of incised valleys and back-barrier central basin 

muds lie directly over the antecedent Pleistocene land surface. However, results from this paper are 

consistent with recent research conducted in Lake Illawarra and St Georges Basin and adds to the 

growing evidence that more extensive marine-influenced transgressive deposits form the basal 

Holocene successions in coastal lagoons as a result of rising sea levels during the most recent PMT.  
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Table 1: Relative abundance of fossil molluscs preserved in Holocene facies in Burrill Lake.  
 

Species Habitat MTS BBSF CBM FPD/FBS FBD 
Anadara trapezia Estuarine mud and sand-flats AAD A*AD RAD AAD AD 
Astele subcarinata Shallow marine nearshore  A - - - - 

Austrocochlea constricta Shallow marine nearshore A* R - - - 
Barbatia pistachia Shallow marine nearshore R-C - - - - 
Bankivia fasciata Shallow marine nearshore R-C - - - - 
Batillaria australis Estuarine mud and sand-flats A A R C VC 

Bedava paivae Intertidal in sheltered bays C R R R - 
Brachidontes rostratus Shallow marine rocky reefs C-ADF - - - - 

Dosinia crocea Shallow marine nearshore RAD - - - - 
Epitonium helicornum Shallow marine nearshore VR - R - - 

Eumarcia fumigate Intertidal in sheltered bays R D - - - - 
Fulvia tenuicostata Shallow marine nearshore R D - - - - 
Katelysia scalarina Shallow marine nearshore C-AF R - - - 
Nassarius jonasii Estuarine mud and sand-flats C C C C C 

Notospisula trigonella Estuarine mud and sand-flats CAD VCAD A* AD A*D A*D 
Ostrea angasi Intertidal in sheltered bays CD - - - - 

Polinices conicus Shallow marine nearshore C C - - - 
Polinices sordidum Intertidal in sheltered bays C C R - - 
Pyrazus ebeninus Estuarine sand-flats R - - - - 
Tellina deltoidalis Estuarine mud and sand-flats RD CAD CAD VCAD AD 

Saccostrea glomerata Intertidal in sheltered bays C - - - - 
Zeacumantus  diemenensis Estuarine mud and sand-flats C - R - - 

 

MTS: Marine transgressive sandsheet 
BBSF: Back-barrier sand-flat  
CBM: Central basin mud facies  
FPD/FBS: Fluvial pro-delta/baskswamp 
FBD: Fluvial bay-head delta 

VR= very rare 
R= rare 
C= common 
VC= very common 
A= abundant 

*  = dominant species  

D = mainly disarticulated 
A = mainly articulated 
F = mainly fragments 
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decreasing down core.

Medium-grained sand with abundant B. rostratus 
and rare  A. trapezia.      

Oxidised fine- to coarse-grained sand with large 
rounded quartz pebbles up to 1 cm.
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abundant K. scalarina.

Pale white/grey  dense coarse-grained silty sand 
with large rounded quartz (upto 3 cm).

Pale white/grey  dense medium-grained silty sand.
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