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ABSTRACT 

The Lower Permian (Artinskian to Sakmarian) Pebbley Beach Formation of the southernmost 

Sydney Basin in New South Wales, Australia, records sediment accumulation in shallow marine 

to coastal environments at the close of the Late Palaeozoic Gondwanan ice age. This paper 

presents a sequence stratigraphic re-evaluation of the upper half of the unit based on the 

integration of sedimentology and ichnology. Ten facies are recognized, separated into two facies 

associations. Facies Association A (7 facies) comprises variably bioturbated siltstones and 

sandstones with marine body fossils, interpreted to record sediment accumulation in open marine 

environments ranging from lower offshore to middle shoreface water depths. Evidence of deltaic 

influence is seen in several Association A facies. Facies Association B (3 facies) comprises 

mainly heterolithic, interlaminated and thinly interbedded sandstone and siltstone with some 

thicker intervals of dark grey, organic-rich mudstone, some units clearly filling incised channel 

forms. These facies are interpreted as the deposits of estuarine channels and basins. Throughout 

the upper half of the formation, erosion surfaces with several metres relief abruptly separate open 

marine facies of Association A (below) from estuarine facies of Association B (above). Vertical 

facies changes imply significant basinward shift of environment across these surfaces, and 

lowering of relative sea level on the order of 50 metres. These surfaces can be traced over several 

kilometres along depositional strike, and are defined as sequence boundaries. On this basis, at 

least nine sequences have been recognized in the upper half of the formation, each of which is 

<10 m thick, condensed, incomplete and top-truncated. Sequences contain little if any record of 

the lowstand systems tract, a more substantial transgressive systems tract and a highstand 

systems tract that is erosionally truncated (or in some cases, missing). This distinctive stacking 

pattern (which suggests a dominance of retrogradation and progradation over aggradation) and 
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the implied relative sea-level drop across sequence boundaries of tens of metres are remarkably 

similar to some other studies of continental margin successions formed under the Neogene 

icehouse climatic regime. Accordingly, it is suggested that the stratigraphic architecture of the 

Pebbley Beach Formation was a result of an Icehouse climate regime characterised by repeated, 

high-amplitude cycles of relative sea-level change. 

 

Keywords Lower Permian, shallow marine facies, estuarine facies, sequence stratigraphy, 

icehouse. 

 

INTRODUCTION 

 

Much research has been devoted to documenting stratigraphic stacking patterns on continental 

margins, with particular reference to the stratigraphic consequences of cycles of sea-level 

change. To date, however, much of this research (e.g., Van Wagoner et al., 1990, 1991; 

Posamentier & Allen, 1999) has focused on successions formed under relatively benign climatic 

regimes (so-called “Greenhouse” periods of Earth history, such as the Mesozoic era). The 

architecture of continental margin sedimentary successions formed under “Icehouse” climatic 

regimes is, however, less well documented. The nature of stratal stacking patterns, including the 

character and scales of vertical facies cyclicity, are particularly poorly understood for 

successions of pre-Cenozoic age. Nonetheless, studies of more widely preserved Cenozoic 

successions, for which there are more precise and accurate geochronological constraints, should 

assist in the analysis of similar older successions. A variety of work has demonstrated that sea-

level fluctuations during the Cenozoic Icehouse era were rapid, high frequency and of high 
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amplitude (10’s to 100+ m: e.g., Zachos et al., 2001). Forcing mechanisms operating at orbital 

(Milankovitch) frequencies have been identified for several parts of the Cenozoic in a variety of 

areas worldwide (see reviews by Miller et al., 1991; Zachos et al., 2001). It is likely that these 

forcing mechanisms leave discernible imprints on the sedimentary record of continental margins. 

The stratal architectures of nearshore marine successions deposited during the Cenozoic, 

particularly during the more severe Icehouse conditions of the Neogene, have been documented 

by a number of workers. For example, the Miocene Chesapeake Group of Maryland and adjacent 

regions of the eastern USA consists of a series of thin (typically a few m) cycles or “cyclothems” 

of predominantly shallow marine origin, bounded by regionally extensive erosion surfaces 

(Kidwell, 1984, 1989, 1997). In the Plio-Pleistocene Wanganui Basin succession in New 

Zealand, a large number of erosionally based cycles, up to a few 10’s of metres in thickness, are 

attributed to deposition in nearshore marine environments under Milankovitch-band forcing 

frequencies (Naish & Kamp, 1997; Saul et al., 1999). A third example is given by the Oligocene 

to Miocene succession of the Victoria Land Basin, Antarctica, as investigated by the Cape 

Roberts Drilling Project. In a depositional setting proximal to the Antarctic continental margin, a 

series of 2-80 m (typically 10-25 m) thick erosionally based cycles have been recognized 

(Fielding et al., 2000, 2001a), recording repeated advances and retreats of glaciers during the 

period 34-17 Ma. Precise geochronological constraints have allowed the recognition of 

Milankovitch-band forcing on the section straddling the Oligocene-Miocene boundary (Naish et 

al., 2001). 

The sequence architectures of these examples share much in common. All of the 

successions mentioned, as well as many more from the same time period, comprise stacks of 

relatively thin (< a few 10’s of m), condensed, incomplete (in terms of systems tracts) and top-
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truncated stratal cycles. It is conceivable that this stratigraphic architectural style is a 

characteristic of the Neogene Icehouse, or indeed of icehouse periods in general. In a review of 

the seismic stratigraphy of various continental margins, Bartek et al. (1991) proposed a cross-

sectional stratal architecture that typifies the Neogene for continental margins that are 

comparable in terms of subsidence patterns. This architecture is one of several thin sequences, 

bounded by regionally extensive erosion surfaces (sequence boundaries) that stack in 

predominantly retrogradational to progradational (as opposed to aggradational) patterns, 

suggesting that accommodation space on continental margins was limited during this interval of 

time. Bartek et al. (1991) also show how this pattern contrasts with the more aggradational 

pattern of the underlying Paleogene succession. Thus, an increasing body of data suggests that 

the Neogene Icehouse climatic regime was responsible for a distinctive stratigraphic architecture 

on continental margins. In this paper, a similar stratigraphic stacking pattern is documented in 

the Early Permian of southeastern Australia, and the conclusion is drawn that it too arose from 

sediment accumulation during a period of repeated, large-scale cycles of relative sea-level 

change. 

Two issues combine to limit understanding of pre-Cenozoic icehouse periods: 1. a 

general lack, to date, of robust geochronological frameworks; and 2. a lack of confidence in 

geological information originally used to diagnose glacial conditions in ancient rocks prior to the 

1980’s. These have led to enduring controversies over the timing, duration, character and even 

existence of pre-Cenozoic ice ages. The Late Palaeozoic Gondwanan Ice Age (LPGIA) is a case 

in point. In a widely cited authority on this period of the geological record, Veevers & Powell 

(1987) proposed that the acme of the ice age was brought about by a major orogenic event that 

created extensive upland areas across Gondwana in the mid-Carboniferous, that the event was 
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characterized in large part by the formation of a continental ice sheet of great areal extent, and 

that this ice age persisted from the mid-Carboniferous until the late Early Permian, some 55 m.y. 

The data upon which these assertions were based, at least in Australia, arose principally from 

regional geological investigations carried out in the 1960’s. These data had not been tested 

rigorously against the more complete understanding of glacial depositional systems that were 

available by the 1980’s, a problem indeed that has persisted to the present day. 

More recently, efforts have been made to critically re-evaluate the stratigraphic record of 

the LPGIA in Australia (e.g., Dickens, 1996; Tye et al., 1996; Eyles et al., 1998; Eyles & Eyles, 

2000; Isbell et al., 2003). An emerging theme, reviewed comprehensively by Isbell et al. (2003), 

is that rather than being a single, protracted glacial period within which glaciers waxed and 

waned, the LPGIA perhaps comprises three discrete glacial periods, each of a few m.y. duration, 

separated by non-glacial periods. Most recently, Jones & Fielding (2004) have proposed that the 

stratigraphic record in Queensland, NE Australia, preserves only three short periods of 

glaciation, each 1-4 m.y. This and other hypotheses regarding the timing and duration of 

glaciation have as yet to be rigorously tested by correlation to other regions. 

Most of the successions that record Late Palaeozoic glacial events in the Queensland 

record occur in continental basins. Elsewhere, in eastern Queensland and New South Wales, 

however, coastal to nearshore marine successions were accumulating in the coeval Bowen-

Gunnedah-Sydney Basin system, during the Early Permian, within a north-south elongate 

seaway that formed initially as a failed rift (Fielding et al., 2001b). One such unit is the Pebbley 

Beach Formation (PBF) of the southern Sydney Basin in New South Wales, the subject of the 

present paper. As far as can be determined from mainly biostratigraphic constraints (e.g., Briggs, 

1998), the PBF records one of the glacial intervals mentioned above, of late Sakmarian to early 
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Artinskian age. The PBF is interpreted to preserve a shallow marine record of the glacial interval 

in its lower half, and the immediate postglacial period in its upper half. In this paper, an analysis 

of stratal stacking patterns within the upper half of the PBF is presented, with a revised sequence 

stratigraphic framework for the unit. It is suggested that the distinctive stacking patterns 

observed may be a consequence of large-scale and high-frequency relative sea-level fluctuations 

such as are characteristic of Icehouse climatic regimes. 

 

GEOLOGICAL SETTING AND PREVIOUS WORK 

 

The Pebbley Beach Formation crops out in a series of spectacular coastal headlands and cliffs in 

southern New South Wales, Australia (Fig. 1). The unit forms part of the Permian succession of 

the southern Sydney Basin, contiguous with the Gunnedah and Bowen Basins in northern New 

South Wales and Queensland, respectively (Fig. 2). The unit, of Sakmarian to Artinskian age, 

forms the easternmost tract of an eastward-thinning, coarse clastic wedge (Figs 2, 3). In proximal 

areas to the west, the unit comprises stacked alluvial conglomerates and sandstones of the 

Yadboro Conglomerates, which pass eastward (down-depositional dip) into, and are overlain by, 

a more lithologically variable unit termed the Yarrunga Coal Measures. The PBF forms an 

eastward extension of the Yadboro Conglomerate and possibly in part the Yarrunga Coal 

Measures, and is interpreted as a distal equivalent to those facies (Figs 2, 3). These formations 

are part of a suite of similar coarse clastic wedges recording sediment dispersal eastward along 

the western margin of a developing, north-south-elongate seaway (or possibly open continental 

margin) during Sakmarian to Artinskian times (Fig. 3). These units characteristically exhibit 

abrupt lateral facies and thickness variations, and locally host thick (<40 m), areally restricted 



 8 

coal bodies (such as in the Greta Coal Measures of New South Wales and the Blair Athol Coal 

Measures of Queensland). For these reasons, coupled with their lateral confinement within older, 

extensional depocentres, they were regarded by Fielding et al. (2001b) as having formed late 

during a phase of modest crustal extension (Figs. 2, 3). The subsidence regime is interpreted to 

have been temporally and spatially irregular, with some intervals of rapid, perhaps coseismic 

subsidence in certain areas.  Widespread marine transgressions established shallow marine 

conditions across the entire basin system during the late Sakmarian stage (at about the 

Tastubian/Sterlitamakian boundary), linking the previously discrete extensional basins into a 

single connected basin that was probably contiguous with the palaeo-Pacific Ocean to the east 

(Fig. 3). 

The PBF is widely regarded to have formed in coastal and nearshore marine 

environments (Gostin & Herbert, 1973; Tye et al., 1996; Tye, 1995; Bann, 1998; Bann et al., 

2004). An analysis by Eyles et al. (1998), however, interpreted the unit to be the product of 

entirely marine depositional environments, occupying inner to outer shelf water depths. Eyles et 

al. (1998) also presented a sequence stratigraphic analysis of the PBF, in which they inferred a 

series of relative sea-level fluctuations and attributed these to a combination of tectonic, 

sediment supply and glacio-eustatic sea level drivers in a glacially-influenced marine setting. 

The present work has established that the lower and upper halves of the PBF preserve 

quite different facies assemblages, and are interpreted to record distinct palaeoenvironmental 

conditions. The lower half of the formation contains a repetitive series of 1-5 m thick cycles each 

comprising, in ascending order, laminated, unbioturbated siltstone, capped by a hiatal surface 

with subtending unlined, coarse-grained burrow fills, and overlain by crudely stratified 

diamictite. These are interpreted to record glacial-interglacial cycles in a shallow glacimarine 
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environment. This succession grades upward through more homogeneous, bioturbated 

sandstones, into the upper association that is the subject of the present paper. 

The upper half of the PBF preserves a number of prominent erosion surfaces, some of 

which form channels. While earlier workers interpreted these features and their mainly 

heterolithic fills as coastal, estuarine channels (Gostin & Herbert, 1973; Mifsud, 1990; Tye, 

1995; Tye et al., 1996; Bann, 1998), Eyles et al. (1998) regarded them as having formed in open 

marine settings by unspecified erosional processes. Eyles et al.’s (1998) figure 7 shows many of 

the erosion surfaces as recording abrupt deepening of the depositional surface, i.e., as 

transgressive surfaces of erosion, although they also argue for shallowing in certain cases (p. 

149-150). Eyles et al. (1998) noted that previous workers have interpreted these features as 

estuarine channel fills, but they appear not to favour this interpretation. Furthermore, their 

classification of the heterolithic facies that overlie the erosion surfaces as mid-outer shelf 

deposits (“Facies Association 5”: see their figures 7 and 10) seems to be at odds with their 

assertion that the channels formed in “relatively shallow water” (p. 149 and 150). 

In this paper, the erosion surfaces in the PBF are shown to be overlain by estuarine facies, 

rather than by deposits of mid-outer shelf environments (see also Bann et al., 2004). These 

predominantly heterolithic sandstone-siltstone strata in many cases abruptly overlie offshore 

marine facies that superficially are lithologically similar, making recognition of the contact 

challenging. The pronounced dislocation in facies across these surfaces indicates that they record 

10’s of m of erosional incision and relative sea level fall. This, together with the lateral 

continuity of the surfaces over at least several kilometres, suggests strongly that the erosion 

surfaces delimit sequence boundaries. The <10 m thick sequences between these boundaries 
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record repeated, high-amplitude relative sea-level fluctuations at a time that is likely to have 

experienced major fluctuations in ice storage in palaeo-polar Gondwana. 

 

FACIES ANALYSIS 

 

A facies and sequence stratigraphic analysis of the upper half of the PBF, emphasizing the role 

of ichnological data, was presented by Bann et al. (2004). This combined lithofacies/ichnofacies 

scheme is extended and further details of the sedimentology are given here. The facies scheme 

comprises two facies associations. Facies Association A contains seven facies (A1-A7) and 

records sediment accumulation in open, nearshore marine environments, some of which show 

deltaic influences (cf. Bann & Fielding, 2004; MacEachern et al., 2005) (Table 1). Facies 

Association B consists of three facies (B1-B3), and records deposition in estuarine channels and 

basins (Table 1). Following a brief review of Facies Association A, the principal focus is on the 

facies characteristics of Association B, including external and internal bounding surfaces, 

sediment body geometry, physical and biogenic sedimentary structures, palaeocurrent 

relationships and contacts with enclosing facies. 

 

Facies Association A 

 

Description 

Facies Association A comprises seven facies, A1-A7 (Table 1, Figs 4-7), that range from fine-

grained to progressively coarser-grained upward. Concomitant with this change in grain-size the 

facies also grade from most pervasively bioturbated to least pervasively bioturbated (see Bann et 
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al., 2004, for further details). All facies, but particularly the fine-grained variants, contain sparse 

to abundant, dispersed, outsized clasts of basement lithologies (principally quartzite, phyllite, 

chert, vein quartz, granite and volcanic rocks). 

Facies A1 consists of thoroughly bioturbated, muddy siltstone with few if any preserved 

primary sedimentary structures (Fig. 4). Glendonites, carbonate pseudomorphs that are thought 

to be after the calcium carbonate hexahydrate mineral ikaite, are common locally in this facies. 

Rare dispersed gravel and hummocky cross-stratified (HCS) sandstone lenses are the principal 

physical features (Fig. 4B, C), while the trace fossil suite contains a diverse mixture of deposit-

feeding and grazing structures representing a distal expression of the Cruziana Ichnofacies (Fig. 

4C). 

Facies A2 comprises thoroughly bioturbated sandy siltstone, with an increased incidence 

of discrete, thin HCS sandstone beds. The trace fossil suite contains a diverse mixture of 

complex deposit-feeding, detritus-feeding, grazing and foraging structures with less common 

vertical structures, and corresponds to the archetypal Cruziana Ichnofacies. Vertical burrows 

represent elements of the Skolithos Ichnofacies and indicate opportunistic colonization of the thin 

HCS beds by suspension-feeding infauna. 

Facies A3 contains interbedded bioturbated sandy siltstone and laminated sandstone, 

showing variable levels of bioturbation (Fig. 5). Sandstone beds preserve HCS with associated 

oscillation and combined-flow ripples. The trace fossil suite is diverse, recording a wide variety 

of feeding strategies, consistent with the archetypal Cruziana Ichnofacies (Fig. 5C). Vertical 

structures are common and indicate opportunistic colonization by elements of the Skolithos 

Ichnofacies (Fig. 5C). Facies A4 comprises thoroughly bioturbated muddy sandstone with 

physical structures comparable to Facies A3, and a trace fossil suite characterized by robust 
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deposit- and detritus-feeding structures, vertical domiciles, and grazing and foraging structures 

(Fig. 6). This diverse assemblage represents a proximal expression of the Cruziana Ichnofacies . 

Facies A5 consists of interbedded laminated sandstone, bioturbated muddy sandstone, 

and dark claystone. The facies contains well-preserved, large-scale HCS, and distinctive beds of 

coarse-grained sandstone to granule conglomerate preserved as large, symmetrical (oscillation) 

ripple forms (cf. Forbes & Boyd, 1987; Cheel & Leckie, 1992, Fig. 6). The trace fossil suite 

contains a diverse mixture of robust detritus-, deposit- and suspension-feeding structures, grazers 

and foragers, and escape traces. It represents a diverse, proximal expression of the Cruziana 

Ichnofacies (Fig. 6). The dark claystone interbeds are generally not burrowed and contain 

common synaeresis (subaqueous shrinkage) cracks, as well as an abundance of phytodetrital 

material (Fig. 6B-E).  

Facies A6 (not included in Bann et al., 2004) comprises amalgamated, tabular beds of 

sparsely bioturbated sandstone that display large-scale HCS and unidirectional cross-bedding. 

The trace fossil suite comprises ichnogenera reflecting sedentary deposit-feeding and 

suspension-feeding behaviours, and represents a distal expression of the Skolithos Ichnofacies. 

Facies A7 consists of bioturbated, poorly sorted, laterally variable sandstones, with a wide 

variety of sedimentary structures including unidirectional cross-bedding and symmetrical wave 

ripples (Fig. 7). Bioturbation intensities and assemblage diversities are also variable throughout 

the facies. Sedentary and mobile deposit-feeding, opportunistic grazing, and suspension-feeding 

behaviours dominate the ichnological suite (Fig. 7C). The trace fossil suite represents a distal 

expression of the Skolithos Ichnofacies. The upper surface of one unit within Facies A7, which is 

well-exposed at Mill Point and Clear Point, is covered with articulated Eurydesma hobartense 

shells. 
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Interpretation 

There is substantial evidence to suggest that the facies of Association A were deposited in an 

open marine setting. This interpretation is supported by the abundance of marine invertebrate 

fossils and the ichnological signatures, which reflect deposition in well oxygenated offshore to 

shoreface environments that experienced intermittent, high-energy storms. A range of 

depositional environments from lower offshore (A1), upper offshore (A2) and offshore transition 

(A3), to distal lower shoreface (A4), proximal lower shoreface (A5) and middle shoreface (A6) 

are indicated (see Bann et al., 2004, for more details). Facies A7 contains evidence of sediment 

accumulation in a range of potential water depths, but its vertical context indicates that it formed 

during periods of transgression and the facies is, therefore, interpreted as a transgressive sand 

sheet deposit. Several of the facies contain physical structures and ichnological signatures that 

suggest deposition within proximity to contemporaneous deltas. In particular, the unbioturbated, 

carbonaceous mudstone partings with associated synaeresis cracks are consistent with fresher 

water discharge events with associated phytodetrital pulses, such as are typical of some delta 

front and prodelta settings (Raychaudhuri and Pemberton, 1992, Saunders et al., 1994, Coates & 

MacEachern, 1999; Bann & Fielding, 2004, MacEachern et al., 2005). Limited direct evidence 

of delta front deposition was identified in the PBF, however, and sediment accumulation is 

interpreted to have occurred in shallow marine environments alongshore from a delta (either 

downdrift of distributaries or possibly updrift of the active lobes). The abundance of dispersed 

clasts in Association A facies, their variable long-axis orientations with respect to bedding, and 

the fact that they puncture the lamination of immediately underlying strata, indicate that some 
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sediment was dropped or dumped from floating ice The presence of glendonites indicates that the 

sea-floor environment must have been cold and at times dysaerobic (Carr et al., 1989). 

 

Facies Association B 

 

Description 

Association B comprises three fine-grained or heterolithic sandstone-siltstone facies that for the 

most part lack dispersed coarse clasts (Figs 8-10). All three facies occur together in units <9 m 

thick that overlie erosion surfaces. Association B facies commonly pass laterally into one 

another, a feature that is not evident in the facies of Association A. Erosion surfaces have relief 

of <6 m in coastal exposures, particularly at the southern end of Point Upright (Figs 1, 8A, 10A), 

and cut through a variety of lithologies, including sandstone-dominated middle and lower 

shoreface deposits of Association A. Surfaces are locally mantled by single clast-thick pebble 

lags (Fig. 10B), and concentrations of flattened, coaly plant compressions and petrifactions of 

fossil trees are also common. In some cases, the intervals immediately underlying the surfaces 

are strongly disrupted by soft-sediment deformation, particularly load casts and convolute 

bedding, which may be truncated by the erosion surface itself. Many such erosion surfaces, 

however, separate heterolithic facies of Association A below from heterolithic facies of 

Association B above (e.g., Fig. 9A, 11), making the recognition of some surfaces a challenging 

task. In such cases, the principal diagnostic criteria are the variety and intensity of bioturbation 

and degree of preservation of physical sedimentary structure (Fig. 11). 

 Association B facies are sparsely to moderately bioturbated (Table 1, Figs 8-10). The 

ichnological signatures are characterised by low diversity assemblages containing simple 
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deposit-feeding and vertical dwelling (suspension-feeding?) structures that reflect the activities 

of resilient trophic generalists. Fugichnia (escape or equilibrium adjustment structures) are also 

common in some intervals. The assemblage is restricted (impoverished), comprising elements of 

both the Skolithos and Cruziana Ichnofacies, here termed a mixed Skolithos-Cruziana 

Ichnofacies, and contrasts markedly with the diverse, archetypal Cruziana Ichnofacies that 

characterises the otherwise lithologically similar offshore marine deposits of Facies A1 and A2 

(cf. Bann et al., 2004). 

Facies B1 comprises sparsely bioturbated, interbedded and interlaminated, fine-grained 

sandstone and siltstone, with a discrete depositional dip that defines inclined heterolithic 

stratification (IHS, sensu Thomas et al., 1987) and, in many cases, a channelised form in cross-

section (Figs. 8A, 12, 13). Individual channels are <6 m deep and typically 100-250 m wide, 

where dimensions can be determined. At the margins of channel forms, Facies B1 passes 

laterally into thin units of Facies B2. IHS sets range up to 6 m thick, with apparent dips reaching 

maximums of 250, flattening tangentially at the set base (Fig. 8A, 12). While many Facies B1 

bodies comprise a single set of IHS, a few (notably an interval exposed at Mill Point and on the 

south side of Clear Point), are composite units comprising up to at least four storeys (Fig. 13). 

Individual storeys are traceable over several hundred metres along the cliff line at Mill Point by 

physical correlation (Fig. 13), but the equivalence of these storeys with similar units on Clear 

Point is more speculative. 

Internally, IHS sets comprise thinly-bedded sandstone/siltstone alternations (sandstone 

beds <5 cm, sand:silt ratios typically around 50:50: Fig. 8B, C) that preserve a variety of current 

ripple-scale interlamination structures, with thicker sandstone beds at intervals. In some cases, 

notably at the south end of Point Upright, the thicker sandstone beds show apparent intraset 
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bedding, with internal bedding surfaces that either are inclined very gently up the dip of the 

large-scale IHS or are flat-lying (Fig. 8A). Interlamination structures comprise a full spectrum 

from pinstripe (linsen), through lenticular and wavy bedding, to flaser lamination in the more 

sand-dominated intervals (Fig. 8C). In all cases, the internal cross-lamination is largely 

undisturbed by bioturbation (Fig. 8C), although locally it may be disrupted by soft-sediment 

deformation in the form of convolute bedding or overturned slump folding. Cross-lamination 

structures are predominantly unidirectional, (i.e., current-generated); although foreset dip 

directions typically describe bimodal (commonly bipolar) distributions (Fig. 8C). The modal 

azimuths of small-scale structures typically lie at high angles (60-120o) to the azimuth of dip of 

the large-scale, IHS sets (e.g., Figs 12, 13). Some ripple sets show evidence of wave 

modification, such as reversed asymmetry of the external ripple form relative to the internal 

cross-lamination, bidirectional cross-lamination within a single set, or symmetrical drape over a 

unidirectional cross-lamination set (Fig. 8C). Synaeresis cracks are abundant in this facies. Trace 

fossils are low in abundance and assemblage diversity is extremely impoverished. The suite 

contains only the simple feeding and dwelling structures of trophic generalists and corresponds 

to a highly stressed expression of the mixed Skolithos-Cruziana Ichnofacies (Bann et al., 2004). 

The basal portion of some Facies B1 bodies comprises trough cross-bedded, coarse- to 

very coarse-grained or even pebbly sandstone (Facies B1a: Fig. 13). In such cases, the basal 

erosion surface commonly shows load casts of the coarse-grained facies projecting downward 

into the underlying sediment. The trough cross-sets are typically 0.3-0.6 m thick, with a few up 

to 1.0 m. Their foreset dip directions typically describe bimodal to bipolar distributions (Fig. 13). 

Flattened, coalified plant compressions are also commonly preserved within the coarse-grained 
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sandstones. These coarse-grained sandstones typically pass upward abruptly into the heterolithic 

lithologies described above (Fig. 13). 

Facies B2 comprises heterolithic, interlaminated and thinly interbedded fine-grained 

sandstone and siltstone, similar to the lithology of Facies B1 but with the important distinction 

that bedding is flat and tabular in all orientations, concordant with the lower and upper bounding 

surfaces (Fig. 9). A similar range of small-scale interlamination structures is present, with an 

increased incidence of wave-modified current ripple cross-lamination relative to Facies B1. 

Furthermore, small-scale hummocky cross-stratification (sets with bedform amplitude of 0.03-

0.1 m, wavelength 0.15-0.4 m) is locally well-developed, and symmetrical wave ripples are 

abundantly developed on some bedding planes. An additional, highly distinctive sedimentary 

structure, seemingly restricted to this facies, is a rhythmic alternation of fine-grained sandstone 

and siltstone (individual laminae 1-3 mm thick), either in flat lamination or within sets of current 

ripple cross-lamination (Fig. 9B, D). Synaeresis cracks and other soft-sediment deformation 

structures are well-developed, particularly in the uppermost part of certain intervals below 

overlying Association A facies. Detrital plant debris is less abundant, and petrified log casts are 

absent, as are basal clast layers. Facies B2 contains a sporadically distributed, moderately diverse 

trace fossil assemblage (Fig. 9C). Trace fossil abundances and diversities change markedly both 

vertically and laterally within the facies, suggesting spatial and temporal variations in the degree 

of marine influence (Fig. 9C). Bioturbation intensities are highly variable. The trace fossil suite 

contains a mixture of simple deposit- and less common suspension-feeding structures, and 

corresponds to a stressed expression of the Cruziana Ichnofacies. The sporadically distributed, 

more marine influenced intervals tend to be characterized by the mixed Skolithos-Cruziana 

Ichnofacies (Bann et al., 2004). 
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Facies B3 consists of medium to dark grey to black, laminated to blocky, fine-grained 

siltstone and claystone, with uncommon interlaminated fine-grained sandstone (Fig. 10A-C). 

Some occurrences show flat internal bedding with a tabular external geometry, while others fill 

channel forms as described above (Fig. 10A). A sulphurous smell is evident, and discrete small 

pyrite crystals are visible locally. Apart from linsen and lenticular bedding in the rare, thin 

sandstone laminae, the only physical sedimentary structure evident is common normal grading 

over 1-5 mm intervals. Small rounded dispersed gravel-sized clasts were noted in some 

exposures (Fig. 10B). This facies is characterised by having virtually no evidence of 

bioturbation, other than burrows that subtend from overlying units (Fig. 10C, Bann et al., 2004). 

 

Interpretation 

Facies Association B comprises an array of heterolithic and fine-grained terrigenous clastic 

deposits, characterised by generally low-energy, current-generated, wave-modified and, to a 

lesser extent, wave-generated sedimentary structures, with abundant plant fossils, a lack of 

marine invertebrate body fossils, and a low diversity, low abundance Cruziana Ichnofacies. This, 

together with the evidence for reversing flows (bimodal to bipolar palaeocurrent distributions) is 

suggestive of coastal environments in which the principal depositional mechanism is from tides, 

and where waves play a subordinate role and fluvial outflow is minimal (cf. Boyd et al., 1992). 

The basal, trough cross-bedded grits of Facies B1a are suggestive of more substantial fluvial 

sediment supply at certain times, following excavation of the major erosion surfaces on which 

these facies lie. 

Broadly estuarine environments of deposition are envisaged for Facies Association B 

(Bann et al., 2004). Facies B1 is interpreted to record sediment accumulation in sinuous 
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estuarine channels of moderate size (<6 m x 250 m, at least). Channel forms are evident from the 

geometry of the basal erosion surface, while lateral accretion patterns are evident from the 

relationship of IHS dip directions to the migration directions of small-scale structures (Figs 12, 

13). Facies B2 represents sediments deposited in laterally adjacent estuarine basins (largely 

shallow subtidal, since little if any evidence of emergence was noted). Facies B3 records passive 

fill of both channels and basins. Association B facies in all cases abruptly overlie erosion 

surfaces that cut into a variety of Association A facies, and form discrete intervals (a few metres 

in thickness) that can be traced laterally over several kilometres. 

 

Overall Depositional Setting 

 

The facies recognized in the upper half of the PBF suggest a coastal to shallow water, open 

marine environment of deposition. Sedimentary structures in Association A facies indicate a 

wave- and storm-dominated shoreface to offshore setting with deltaic influence. The ubiquitous 

presence of outsized clasts of basement lithologies indicates ice-rafting of material to the marine 

environment, possibly from seasonal river and sea ice sources (Bann, 1998). Furthermore, the 

abundance of the thick-shelled bivalve Eurydesma (Dickins, 1978; Runnegar, 1979) and of 

glendonites (Carr et al., 1989) are widely regarded as evidence of cold sea floor conditions at this 

time (<6° C: Bischoff et al., 1993). Given this and the evidence of glaciation in Australia 

immediately prior to this time, the PBF can be regarded as the product of coastal to shallow 

marine deposition in a high-latitude setting, perhaps analogous to the modern coast of 

northeastern Canada or Patagonia. The abundance of fine-grained estuarine facies in the upper 

PBF, however, suggests coastal estuaries that were dominated by low-energy current deposition. 
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In the spectrum of known estuarine depositional settings (Dalrymple et al., 1992), a series of 

funnel-shaped estuaries with barred entrances (consistent with the evidence for storm-driven 

processes in the over- and underlying marine facies) seems appropriate for the upper PBF. In this 

setting, sinuous channels migrated across and into shallow but permanent brackish-water basins, 

delivering sediment to the coastal zone. Comparable facies assemblages and interpretations have 

recently been documented by Shanmugam et al. (2000), Takano & Waseda (2003) and Holz 

(2003). 

 

STRATIGRAPHIC STACKING PATTERNS 

 

Graphic logs of the three key sections (Clear Point, Mill Point and Point Upright, from north to 

south) show an apparent complex interbedding of the various lithofacies, with little obvious 

vertical cyclicity evident from grain-size variations (Figs 14-16). However, through the 

identification and correlation of the various erosion surfaces, a coherent high-resolution 

stratigraphic framework can be constructed (Figs 17, 18). Our correlations have established that 

the erosion surfaces noted in the cliff exposures are laterally extensive, being traceable 

(physically across substantial portions of the coastal section) over several kilometers (Fig. 17), 

and can therefore be considered “key surfaces”. The surfaces separate facies recording generally 

offshore marine to lower shoreface environments (Facies Association A) below, from estuarine 

facies (Facies Association B) above, a substantial, abrupt dislocation in terms of formative water 

depth. The abrupt shallowing across these surfaces can be estimated conservatively at 50 m, 

based on published estimates of water depths to storm wave base in storm-dominated, open 

marine environments (see, for example, reviews in Brenchley, 1989; Walker & Plint, 1992) and 
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the fact that no evidence for subaerial exposure is preserved in these rocks. These surfaces 

therefore satisfy many of the criteria for sequence boundaries, namely: they are laterally 

extensive surfaces, record abrupt truncation of underlying facies, and show an abrupt upward 

shallowing in formative water depth (basinward shift of facies). Accordingly, we interpret the 

erosion surfaces overlain by estuarine facies as sequence boundaries, and subdivide the upper 

PBF into a succession of nine discrete sequences (Figs 17, 18), ranging in thickness from <1 m 

to 10 m. 

The vertical facies succession in a typical upper PBF sequence is as follows: estuarine 

channel or basin (Facies B1-B3), abruptly overlain by offshore transition to offshore facies 

(Facies A1-A3), that locally coarsens-upward into lower shoreface (Facies A4-A5) deposits 

before truncation by the next erosion event. Individual sequences vary with respect to the vertical 

facies succession along the coastal section from north to south, but only in the extent to which 

the uppermost shoreface facies are preserved; that is, facies architecture among Association A 

facies are tabular and sheet-like in a depositional strike orientation. Given this and the 

characteristics of the erosion surfaces established above, the vertical facies pattern can be 

interpreted genetically, as follows: 1. the erosion surfaces are sequence boundaries, recording 

tens of metres of sea level fall along with incision into the previous sequence (typically 

highstand systems tract deposits); 2. the coarse-grained, trough cross-bedded sandstones (Facies 

B1a), where present, record late lowstand systems tract deposition in fluvial to estuarine 

environments; 3. the heterolithic estuarine deposits (Facies B1-B3) record backfilling of estuaries 

during early phases of sea-level rise (late lowstand to early transgressive systems tract); 4. the 

abrupt upward transition into offshore marine deposits (Facies A1-A2) records rapid flooding 

during the main phase of sea-level rise, with the maximum flooding surface recorded in the 
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finest-grained offshore deposits; 5. the overlying coarsening-upward succession into lower 

shoreface sandstones (Facies A3-A5) records progradation during the succeeding highstand 

systems tract, before; 6. ensuing sea-level fall resulted in erosion of much of the highstand 

systems tract, forming a new sequence boundary. Where transgressive systems tract facies 

directly overlie an erosion surface, the resulting discontinuity can be considered a coincident 

sequence boundary/ flooding surface (FS/SB) (Bann et al., 2004). Nine sequences are defined 

within the upper half of the PBF. Of these, two (Sequences 1 and 7 on Fig. 18) are not readily 

divisible into systems tracts but rather display stacked coarsening-upward parasequences. The 

remainder, however, display the architecture summarized above. Indeed, Sequences 4 and 5 are 

preserved over much of the outcrop only as estuarine facies, are highly amalgamated, and may 

conceal additional sequences (Fig. 13). 

Little can be said concerning the rate of sea-level fall from the preserved facies patterns, 

but the rate of sea-level rise must have been rapid to produce the observed facies transitions over 

such short vertical intervals. It is also likely that highstands were relatively short-lived, since few 

well-established highstand deposits are preserved within the upper PBF. The general lack of 

coarse-grained highstand facies in the succession (which contrasts with the sandstone-dominated 

formations that underlie and overlie the PBF) also suggests that either they were never deposited 

in this area or substantial volumes of sand were removed by erosion during periods of falling 

sea-level and exported offshore. 

The issue of sequence boundary cross-sectional geometry within the upper PBF is also 

relevant, since the possibility arises that they could record the seaward portions of incised valleys 

excavated during falls and lowstands of sea-level. Figure 17 shows the correlation of logged 

sections over the extent of coastal outcrop. It has been simplified to emphasise the cross-
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sectional form of the sequence boundaries and overlying and other key surfaces. The surfaces 

clearly show erosional relief of up to several metres, possibly in addition to the tens of metres of 

incision inferred from vertical facies dislocations across the sequence boundaries. Furthermore, 

individual channels are in places (particularly at Point Upright, in the far south of the outcrop 

belt) inset relatively steeply, by as much as 6 m into the bases of these more gently sloping 

sequence boundaries. The fact that these estuarine systems and their facies are preserved at all, 

particularly within a transgressive systems tract, suggests that they must, by definition, occupy 

discrete, shore-perpendicular (or more oblique) topographic lows. The sequence boundaries also 

conform to most definitions of incised valleys (given the context of a downdip, coastal setting): 

1. they are significant topographic features with considerable relief and kilometres of lateral 

extent in the depositional strike orientation; 2. they are at a scale significantly larger than that of 

channels that occupy their bases; 3. they show a pronounced basinward shift of facies; and 4. 

internal facies architectures display predominantly onlap relationships with the valley margins 

(cf. Dalrymple et al., 1992, 1994; Schumm & Ethridge, 1994; Zaitlin et al., 1994). On this basis, 

we tentatively ascribe the upper PBF estuarine systems to deposition in the downdip portions of 

incised valleys of indeterminate width. An alternative explanation, that these sequences overlie 

surfaces exhumed without any valley incision, is considered less likely but nonetheless cannot be 

discounted. 

 

DISCUSSION 

 

The overall vertical facies architecture of the upper PBF sequences is quite unlike the generic 

continental margin sequence composition predicted by standard models (e.g., Van Wagoner et 
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al., 1990; Posamentier & Allen, 1999), but is much more closely comparable to examples taken 

from some Neogene successions (Kidwell, 1989; Naish & Kamp, 1997, Fielding et al., 2000, 

2001b) that were formed under a severe Icehouse regime (e.g., Zachos et al., 2001). PBF 

sequences are dominated by the transgressive systems tract, and show only local preservation of 

the lowstand systems tract and the highstand systems tract. Furthermore, PBF sequences are thin 

(<10 m), condensed, incomplete (in terms of systems tracts) and strongly top-truncated, as are 

the Neogene examples cited above. Accumulation of the upper PBF occurred shortly after a 

known glacial period (Isbell et al., 2003; Jones & Fielding, 2004), and within a longer interval of 

icehouse conditions during which variations in polar ice volumes are likely to have driven large-

scale sea-level cyclicity. 

The repetition of abrupt upward shallowing trends of approximately the same magnitude 

in the PBF argues against both an underlying tectonic control and an isostatic (direct loading or 

forebulge formation) driver for the cyclicity. Accordingly, we suggest that the observed patterns 

are most readily explained as glacio-eustatic cycles of sea-level change.  Certainly, the vertical 

facies patterns are consistent with what is known about magnitudes and rates of change of sea-

level rise and fall during Pleistocene glacial cycles, with rapid rises and short highstands being 

the norm (e.g., Lambeck & Chappell, 2001). 

The low rates of accumulation during sea-level rise and highstand recorded in the upper 

PBF are also similar to many modern (post- or ?inter-glacial) coastal settings, such as the 

northeast coast of Australia (e.g., Larcombe & Carter, 1998, 2004) and the eastern seaboard of 

the USA (e.g., McHugh et al., 2004). The study of the Hudson River estuary and shelf is 

possibly a detailed analogue to the situation envisaged for the upper PBF. There, Holocene 

sediment accumulation is restricted to a wedge-shaped body in dip-parallel cross-section that 
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downlaps onto the underlying sequence boundary downdip on the inner shelf and is truncated by 

a nascent sequence boundary updip in the upstream portion of the estuary (McHugh et al., 2004). 

The depositional cycles characterizing the Neogene examples cited above accumulated 

under the control of Milankovitch-band orbital frequencies, operating either singly or in some 

combination. Such controls seem to be prominent during intervals of icehouse climate, and thus a 

Milankovitch signal might be expected in the upper PBF. Best estimates from biostratigraphic 

data and lithostratigraphic correlations suggest that the PBF records c. 10 m.y. of Early Permian 

time. The upper half of the formation contains at least nine sequences, suggesting perhaps 

operation of 400 ka cycles. However, the lower half of the formation contains quite a different 

facies assemblage from the upper half, and may have accumulated at substantially different rates. 

Whatever the timeframe and controlling mechanism(s) under which the upper PBF sequences 

formed, stratigraphic patterns indicate that this forcing mechanism operated consistently 

throughout accumulation of the section. The magnitudes of sea-level fall implied by the PBF 

sequences (of the order of 50 m) are consistent with the more conservative estimates of 

contemporaneous sea-level fall based on studies of northern hemisphere “cyclothems” (60-70 

m), but not with some of the larger estimates from that region (100-200 m: see discussion in 

Isbell et al., 2003). 

 

CONCLUSIONS 

 

The upper Pebbley Beach Formation in the southern Sydney Basin of New South Wales, 

Australia, comprises an array of depositional facies that record a variety of nearshore open 

marine and low-energy estuarine environments. Several of the open, shallow marine facies show 
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evidence of a deltaic influence, perhaps indicating that the study area occupied a position 

downdip or along strike from a delta. Estuarine facies at several stratigraphic levels overlie 

pronounced, laterally extensive erosion surfaces interpreted as sequence boundaries. Facies 

dislocation across these surfaces suggests sea-level falls of c. 50 m with some erosion of shallow 

marine strata, suggesting that the formation preserves a record of high-amplitude relative sea-

level fluctuations. This, together with the cross-sectional geometry of the sequence boundaries, 

suggests that they may represent the downdip manifestation of incised valleys formed in lowland 

continental settings during relative sea-level falls. The <10 m thick sequences preserved between 

sequence boundaries are thin, condensed, incomplete (in terms of systems tracts) and top-

truncated. This architecture is somewhat different from that predicted by published sequence 

stratigraphic models, but is similar in many respects to continental margin successions formed 

during the Neogene Icehouse climate regime. Given this and the proximity between timing of 

Pebbley Beach Formation accumulation and a known period of glaciation elsewhere in eastern 

Australia, we attribute this architectural style to accumulation under conditions of rapid, high-

frequency and high-magnitude sea-level fluctuations that may have been glacio-eustatic. 
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TABLE AND FIGURE CAPTIONS 

 

Table 1 – Characteristics of Facies Associations A and B. The facies scheme is an extended 

version of that presented in Bann et al., 2004. 

 

Figure 1 – Maps showing the location of the study area in Australia, the Permo-Triassic Bowen-

Gunnedah-Sydney Basin system in eastern Australia, the location of the study area at the 

southernmost onshore limit of the Sydney Basin, and the location of specific outcrops utilized in 

the study. 

 

Figure 2 – Stratigraphic framework diagram for the Talaterang and Shoalhaven Groups of 

Permian age in the southern Sydney Basin with underlying tectonic context, and highlighting the 

west to east lithological variations in the interval of interest (modified from Tye et al., 1996). 

Abbreviations: St’mak – Sterlitamakian, Art. – Artinskian, Kun. – Kungurian, Ufim. – Ufimian, 

N-m – Non-marine, Y.C.M. – Yarrunga Coal Measures. 

 

Figure 3 – Palaeogeographic map of the Bowen-Gunnedah-Sydney Basin System (BGSBS) 

during mid Early Permian (Sakmarian-Artinskian) times, showing the formation of a north-

south-elongate seaway by amalgamation of numerous, previously discrete, extensional basins 

(from Fielding et al., 2001b). Isolated outcrop areas of marine facies of this age to the east of the 

basin system, within the fold-thrust belt formed during the later Hunter-Bowen Contractional 

Event, suggest that the. BGSBS may have been open (or at least connected) to the palaeo-Pacific 



 36 

Ocean during the middle Early Permian. The study area is in the far south of the (onshore) basin 

system, on the south coast of New South Wales (NSW). QLD – Queensland. 

 

Figure 4 – Photographs of Facies A1 and A2 (Lower and Upper Offshore, respectively). A) 

general view of the interval 20-22 m at Clear Point (Figure 15), showing heterolithic estuarine 

channel fill (Facies B8) at base, abruptly overlain across a Transgressive Surface of Erosion by 

bioturbated mudrocks of Facies A1 (Lower Offshore, interval arrowed), in turn truncated by an 

abrupt contact (Sequence Boundary) that is overlain by cross-bedded sandstone of Facies B8 

(Estuarine Channel). B) detail of bioturbated sandy siltstone (Facies A1) at Mill Point, 

containing a distal expression of the Cruziana Ichnofacies composed of Rosselia socialis (Rs), 

Cosmorhaphe (Cr), Planolites (P), Zoophycos (Z), Phycosiphon (Ph) and Diplocraterion habichi 

(Dh). C) close-up view of same exposure as in B), showing distal expression of the Cruziana 

ichnofacies. As – Asterosoma, Ch – Chondrites, P – Planolites, Ph – Phycosiphon. 

 

Figure 5 – Photographs of Facies A3 (Offshore Transition). A) general view of Facies A3 at Mill 

Point. B) detail of bedding structure partially destroyed by bioturbation at Clear Point. C) close-

up of mixed, diverse Skolithos-Cruziana ichnofacies in Facies A3 at Clear Point. Ch – 

Chondrites, P – Planolites, Ph – Phycosiphon, Si – Siphonichnus. 

 

Figure 6 – Photographs of Facies A4 (Distal Lower Shoreface) and A5 (Proximal Lower 

Shoreface). A) General view of Facies A5 showing Hummocky Cross-Stratified sandstones 

(Facies A5) with complete preservation of hummock bedform (arrowed interval 20 cm) capped 

by large, gravelly, symmetrical ripples, and overlying bioturbated sandstones (Facies A4) at Mill 
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Point. Dh – Diplocraterion habichi. B) detail of Facies A4 and A5 at Mill Point, showing 

bioturbated intervals, low-angle cross-bedding (Hummocky Cross-Stratification?), unidirectional 

cross-bedding and symmetrical wave ripple-topped beds. Sandstone tempestites display a 

Skolithos ichnofacies, whereas interbedded finer-grained intervals show a Cruziana ichnofacies. 

Dh – Diplocraterion habichi, Rr – Rosselia rotatus. Scale bar is 15 cm. C) detail of bed 

geometry and internal structure in Facies A4 and A5 at Mill Point. Hummocky Cross-Stratified 

bed indicated by arrowed interval (20 cm), white arrow shows scour surface overlain by cross-

bedded sandstone lens. D) close-up of internal structure of Facies A5, showing bioturbated 

intervals, hummocky cross-stratification, small-scale symmetrical wave ripples (white arrows) 

and large, gravelly, symmetrical ripples (black arrow) at Mill Point. Unbioturbated mud drapes 

over ripple forms suggest a deltaic influence on sedimentation (see text). Scale bar is 15 cm. D) 

Close-up of internal structure shown in B), showing Skolithos-Cruziana ichnofacies, and large, 

gravelly, symmetrical ripples (black arrows) with overlying sparsely bioturbated mud drapes. Rr 

– Rosselia rotatus, Te – Teichichnus. 

 

Figure 7 – Photographs of Facies A7 (Transgressive Sand Sheets). A) general view at Clear 

Point, showing lower, heavily bioturbated interval (short arrowed interval: 40 cm), with a 

Glossifungites Ichnofacies-demarked surface at the base, overlain by more sparsely bioturbated, 

cross-bedded sandstone. The total vertical extent of the facies is indicated by the long arrowed 

line. B) general view of Facies A7 at Mill Point, showing strongly bioturbated sandstone 

overlying dark grey mudrocks with loaded sandstone lenses of Facies B10. The basal surface of 

Facies A7 is demarked by a Glossifungites ichnofacies assemblage. C) close-up of bioturbation 
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typical of the cross-bedded variant of Facies A7. Cy – Cylindrichnus, Dh – Diplocraterion 

habichi, S – Skolithos. 

 

Figure 8 – Photographs of Facies B1 (Heterolithic, Estuarine Channel Fills). A) general view of 

extensive channel fill at Point Upright. The basal erosion surface, with c. 6 m relief, overlies 

Facies A4 and A5 and is interpreted as a Sequence Boundary. The channel fill in the foreground 

displays Inclined Heterolithic Stratification (IHS), whereas the concentric channel in the distance 

is composed of Facies B10. Elements of intrasets can be seen within some of the inclined 

stratification. B) detail of the uppermost part of the channel fill at Point Upright, showing 

truncation of Facies B1 by Facies B10. Interval shown is c. 3 m. C) close-up of small-scale 

sedimentary structure within heterolithic sandstone siltstone of Facies B1 at Clear Point, showing 

bidirectional current ripple cross-lamination, wave-modified current ripple cross-lamination, 

synaeresis cracks (sy) and plant debris (white arrows). 

 

Figure 9. Photographs of Facies B2 (Coastal Basin Fills). A) general view of flat-bedded, 

heterolithic Facies B2 abruptly overlying Facies A2 across a Sequence Boundary (Kerrie’s knee 

height) at Point Upright. B) close-up of sedimentary structure, showing ripple cross-lamination 

(cr) with rhythmic alternation of sand and mud laminae. C) close-up of low diversity 

bioturbation in Facies B2 at Mill Point, showing Planolites (P) and Thalassinoides (Th). D) 

close-up of rhythmic alternation of planar laminated fine sandstone and siltstone (beneath scale 

bar), interpreted as tidal basin rhythmites. 
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Figure 10 – Photographs of Facies B3 (Toxic/Anoxic Coastal Channel and Basin Fills). A) 

general view of concentric mudstone-filled channel at Point Upright (see also Fig. 8A). The 

channel base is cut into shoreface sandstones (Facies A4/A5) and constitutes a Sequence 

Boundary. B) Detail of the channel base as above, showing pebble lag along the basal erosion 

surface. C) close-up of sparse bioturbation in Facies B3, mainly Planolites (P) which form part 

of a Glossifungites ichnofacies assemblage subtending from the overlying sandstone. 

 

Figure 11 – Photographs and split core diagram of key surfaces in the upper Pebbley Beach. A) 

combined Sequence Boundary/Flooding Surface (SB/FS) at Mill Point (c. 16.5 m on Fig. 15) 

separating Facies A1 (Lower Offshore:LOS) below from Facies B2 (Estuarine Basin: EB) above. 

Note the fine gravel-filled Conichnus along the contact, demarking a Glossifungites ichnofacies 

assemblage, and the Lingulichnus equilibrium adjustment (ea) structures that cross the boundary 

between the two facies. B) combined Sequence Boundary/Flooding Surface (SB/FS: arrowed) at 

Clear Point (c. 20 m on Fig. 16) separating Facies A3 (Offshore Transition: OST) below from 

Facies B1 (Estuarine Channel: EC) above. Note the Diplocraterion habichi (D) that define a 

palimpsest assemblage along the contact. C) Transgressive Surface of Erosion (TSE) at Mill 

Point (c. 7-8 m on Fig. 15), separating Facies B2 (Estuarine Basin: EB) below from Facies A5 

(Proximal Lower Shoreface: LSF) above. Note the intense soft-sediment deformation of the 

contact. D) combined Sequence Boundary/Flooding Surface (SB/FS) at Point Upright (c. 5-6 m 

on Fig. 14) separating Facies A4 (Distal Lower Shoreface: LSF) below from Facies B3 

(Abandoned Estuarine Channel Fill:EA) above. Note the Diplocraterion habichi along the 

contact (arrowed), demarking a Glossifungites ichnofacies assemblage. E) split core diagram 

illustrating trace fossil assemblages across a combined Sequence Boundary/Flooding Surface 
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(FS/SB) at Mill Point (xx-xx m on Figure 15). The lower part of the diagram illustrates an 

archetypal Cruziana Ichnofacies characteristic of Lower Offshore facies (A1), while the upper 

part of the diagram shows a stressed expression of the Cruziana Ichnofacies characteristic of 

Estuarine Basin deposits (Facies B2). Note the presence of gravelly sandstone-filled burrows 

subtending from the contact between the two facies, demarking a Glossifungites Ichnofacies 

assemblage (GI). Abbreviations: ea – equilibrium adjustment structures, Rs – Rosselia socialis, 

Te – Teichichnus, P – Planolites, L – Lingulichnus, Th – Thalassinoides, Sy – synaeresis cracks, 

C – Conichnus, Cy – Cylindrichnus, Pa – Palaeophycus heberti, Rh – Rhizocorallium, Cr – 

Cosmorhaphe, Ts – Taenidium synyphes, Z – Zoophycos, H – Helminthopsis, Pt – Palaeophycus 

tubularis, Ch – Chondrites, Ph – Phycosiphon, As – Asterosoma. 

 

Figure 12– Photograph, palaeocurrent data and interpretive map of channel fills (Facies B1 and 

B3) at Point Upright. The most southerly channel shows evidence of lateral accretion to the east 

and palaeoflow to the southwest and east, while the external and internal geometry of a smaller 

pair of channels exposed to the north is suggestive of a downstream-bifurcating channel system. 

 

Figure 13– Photomosaic of the southwest face of Mill Point (red arrows on location map), 

showing the complex architecture of the interval around 15 – 20 m on Figure 15, scale drawing 

of the entire face showing subdivision of channel fill facies (B1 and B3) into four discrete 

generations of channels (1-4), and the palaeocurrent data from each of these four generations. 

The composite, multi-storey/multi-lateral channel body abruptly overlies a persistent erosion 

surface interpreted as a Sequence Boundary, which truncates shoreface (A4-A6) and other open 

marine facies. The sequence architecture in this part of the succession is considered to be highly 
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condensed and truncated. Thin lenses of Facies A1 – A3 are locally preserved between 

individual channel bodies, suggesting that each channel generation may record a separate 

sequence. Generation 1 channel fill is coarse-grained, pebbly, trough cross-bedded sandstone 

(Facies B1a), and may record Lowstand Systems Tract deposition. LSF – Lower Shoreface, OS – 

Offshore, EB – Estuarine Basin, EC – Estuarine Channel, SB – Sequence Boundary, FS – 

Flooding Surface, TSE – Transgressive Surface of Erosion. 

 

Figure 14 – A) Composite, graphic sedimentological log of the section exposed at Point Upright. 

The laterally restricted estuarine channel fill shown to the right of the log cuts down from c. 6.5 

m (see Figure 12). B) key to symbols used in Figures 14-18. BI – Bioturbation Index. 

 

Figure 15 – Composite, graphic sedimentological log of the section exposed at Mill Point. See 

Figure 14 for key to symbols used. Of the two laterally restricted estuarine channel fills shown to 

the right of the log, the lower one cuts down from the Sequence Boundary at c. 15 m, and the 

upper one from the Sequence Boundary at c. 22 m. 

 

Figure 16 – Composite, graphic sedimentological log of the section exposed at Clear Point. See 

Figure 14 for key to symbols used. 

 

Figure 17 – Cross-section illustrating the detailed correlation of sections from Point Upright in 

the south to Clear Point in the north, and highlighting the preservation of isolated channel fills at 

various stratigraphic horizons. Note, however, the lateral continuity of every key surface and 

sequence recognized. See Figure 14 for key to symbols used. Sequences 1-9 are as in Figure 18. 
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Figure 18– Composite, graphic sedimentological log of the entire upper Pebbley Beach 

Formation, showing every interval at its maximum vertical thickness recorded at outcrop, 

together with sedimentological and trace fossil data, the sequence stratigraphic subdivision of the 

section, and an interpreted relative sea-level curve. Note the thin, strongly condensed, incomplete 

and top-truncated nature of sequences within this section. See Figure 14 for key to symbols used. 
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