Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film

Attila J. Mozer
University of Wollongong, attila@uow.edu.au

Gordon G. Wallace
University of Wollongong, gwallace@uow.edu.au

David L. Officer
University of Wollongong, davido@uow.edu.au

Matthew Griffith
University of Wollongong, mjg48@uow.edu.au

Pawel W. Wagner
University of Wollongong, pawel@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Mozer, Attila J.; Wallace, Gordon G.; Officer, David L.; Griffith, Matthew; Wagner, Pawel W.; Wagner, Klaudia K.; Tsekouras, George; Mori, Shogo; and Dong, Ying: Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film 2011, 163502-163505.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film

Abstract
A remarkable 300% efficiency enhancement driven by a matching increase in the short circuit current was observed in a mixed porphyrin dye-sensitized solar cell constructed from two dyes in a 3:1 ratio. Absorbed photon-to-current conversion efficiency measurements indicate an improved charge injection yield for both dyes in the mixture. Several possible origins for the observed performance enhancement are discussed.

Keywords
Remarkable, synergistic, effects, mixed, porphyrin, dye, sensitized, TiO2, film

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

Authors
Attila J. Mozer, Gordon G. Wallace, David L. Officer, Matthew Griffith, Pawel W. Wagner, Klaudia K. Wagner, George Tsekouras, Shogo Mori, and Ying Dong

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/3591
Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film
Matthew J. Griffith, Attila J. Mozer, George Tsekouras, Ying Dong, Pawel Wagner et al.

Citation: Appl. Phys. Lett. 98, 163502 (2011); doi: 10.1063/1.3576904
View online: http://dx.doi.org/10.1063/1.3576904
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v98/i16
Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors
Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO$_2$ film

Matthew J. Griffith,1,a Attila J. Mozer,1 George Tsekouras,1,b Ying Dong,1 Pawel Wagner,1 Klaudia Wagner,1 Gordon G. Wallace,1 Shogo Mori,2 and David. L. Officer1,a

1ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2522, Australia
2Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan

(Received 4 February 2011; accepted 10 March 2011; published online 22 April 2011)

A remarkable 300% efficiency enhancement driven by a matching increase in the short circuit current was observed in a mixed porphyrin dye-sensitized solar cell constructed from two dyes in a 3:1 ratio. Absorbed photon-to-current conversion efficiency measurements indicate an improved charge injection yield for both dyes in the mixture. Several possible origins for the observed performance enhancement are discussed. © 2011 American Institute of Physics.

Dye-sensitization of nanocrystalline metal oxides has emerged as an attractive pathway for various technologies, including gas sensors, electrochromic displays, and photo-electrochemical energy conversion. The majority of these devices employ a single photosensitizer, however, optimizing the performance of most single dyes to achieve high efficiencies is difficult. This is because the desirable properties for efficient electron injection (good electronic coupling between dye and oxide, a high density of states in the semiconductor, and a moderate free energy driving force from the dye excited state to the oxide conduction band) and dye regeneration (moderate free energy driving force between dye and redox mediator) are often incompatible with those required for broad visible and near-IR absorption (low dye bandgap). A mixed dye system in which these different functions are distributed between the various constituents presents an interesting concept for device design. However, combining dyes also creates several new potential photophysical pathways, including energy transfer between dyes, electron or hole injection from one dye to another, and chemical reactions between the dyes. These interactions can be harnessed in a synergistic fashion to improve injection, light harvesting, or to limit recombination. However, most previous attempts to improve multiple device functions by direct cosensitization have failed.

In this letter we report an unexpected significant improvement in the performance of inefficient porphyrin photosensitizers when simultaneously anchored to the TiO$_2$ electrode of a dye-sensitized solar cell (DSSC). Using absorbed photon-to-current conversion efficiency (APCE) measurements, we demonstrate an increased charge generation yield for both dyes when they are present as a mixture. This exciting result demonstrates the potential for achieving similar enhancement effects using a wide range of alternative sensitizers.

Current density-voltage curves for the individual dyes and the mixture with the highest performance (76% ZnNC on TiO$_2$ or ~3:1 ZnNC:FbC) are shown in Fig. 1. The solar-to-electrical power conversion efficiency of each mixture surpassed those of either dye individually, increasing from 0.4% for FbC and 0.7% for ZnNC to 2.1% for the best mixture. The mixture efficiency exceeds the sum of the two individual dyes, exhibiting an increase of ~300%. Efficiency values for the individual dyes are limited by poor electron injection for these dyes, most likely due to the poor overlap of the dye lowest unoccupied molecular orbital (LUMO) with TiO$_2$ conduction band states.

The optimized mixture ratio was determined from measured DSSC efficiency and short circuit current densities (J_{sc}) for devices sensitized with dye mixtures in various ratios (Fig. 2 inset). Efficiency enhancements are driven by a matching increase in the J_{sc}, improving from 0.95 mA cm$^{-2}$ for FbC and 1.37 mA cm$^{-2}$ for ZnNC to 3.75 mA cm$^{-2}$ for the 3:1 mixture. The open circuit voltage (V_{oc}) of the mixed DSSCs also increased, from 580 mV for FbC and 650 mV for ZnNC to 685 mV for the best mixture. The simultaneous improvement in J_{sc} and V_{oc} for a cosensitized DSSC could have a significant impact on future device design.

Figure 2 also compares the incident photon-to-current conversion efficiency (IPCE) spectra of the dyes alone and in a 3:1 ZnNC:FbC mixture. The IPCE increases equally across all wavelengths for the mixed dye device. Significantly, both dyes display improved performance in the mixture compared to their performance as individual sensitizers.
APCE spectra of thin-film (∼2 μm) DSSCs, shown in Fig. 3, were calculated from measured IPCE curves (details in SI) to further investigate the origin of the mixture enhancements. Assuming negligible charge collection losses for thin films, APCE spectra are determined by the charge generation yield of the dyes under operating conditions. Measured diffusion lengths indicate this assumption is valid for ZnNC and the mixture, however, FbC most likely experiences some recombination, meaning the internal quantum efficiency is probably higher than the APCE. The individual dyes show low APCE values of ∼2% for FbC and ∼7% for ZnNC. In comparison, an N719 reference exhibits an APCE closely correlating with the magnitude of the ratio dependence. Both dyes show low APCE values of 2% for FbC and 7% for ZnNC. The APCE of the 3:1 mixture is ∼24%, significantly higher than either individual dye. The mixture APCE is enhanced in the absorption regions of both dyes, indicating injection yields for both dyes are enhanced in the mixture. The mixture APCE is also ∼350% higher than that of ZnNC, closely correlating with the magnitude of the J_sc and efficiency enhancements and also exhibiting similar mixture ratio dependence (Fig. 3 inset). This provides clear evidence that an improvement in the charge generation yield of both dyes produces the enhancements in the J_sc.

A number of physical phenomena could be responsible for enhanced performance in the mixture, such as closer packing of the dyes on the TiO2 resulting in reduced recombination, prevention of porphyrin aggregation or enhanced dye electronic coupling to TiO2. A comparison of the total dye surface coverage measured from desorbed dye solutions shows minimal differences, with coverages of (6.5 ± 0.5) × 10^{-9} \text{ mol cm}^{-2} \mu \text{m}^{-1} determined for FbC, ZnNC, and each of the different dye mixtures (see Table III, Ref. 10). Therefore, combining the dyes has little effect on the packing density on TiO2.

As in previous work,11 no evidence for porphyrin aggregation was observed. The absence of aggregates for both dyes was confirmed by adding chenodeoxycholic acid, a cosensitizer used to disrupt aggregation,12 to sensitizing solutions of ZnNC and FbC. Neither dye displayed an improvement, indicating aggregation is not a limiting factor for these dyes. The formation of heteroaggregates or a complex between the dyes was also discounted since the UV-vis and IPCE spectra were unchanged, with the absorption spectrum of the optimal mixture closely reconstructed from a linear combination of the individual dye spectra (Fig. S1).10

Combining dyes could also alter the surface adsorption environment, increasing dye coupling to TiO2. To examine this, TiO2 binding modes for individual dyes and the 3:1 mixture were analyzed. The carboxylate peaks were unchanged for both individual dyes and the mixed system (Fig. S4).10 Peak positions, determined by analyzing TiO2 sensitized with a benzoic acid linker (Fig. S4 inset),10 were located at 1387 and 1527 cm-1 for ZnNC, FbC, and the 3:1 mixture, indicative of bridging bidentate binding modes for both dyes and the mixture as in previous studies.13

Energy or electron transfer from ZnNC to FbC is one possible explanation for the improved injection yield of ZnNC. Such photoinduced excited state interactions could affect the charge generation yield through two key processes; either injection into the TiO2 conduction band, or the degree of asymmetry between the rates for dye ground state regeneration and recombination of conduction band electrons. Energy transfer from ZnNC to FbC is possible due to the spectral overlap between ZnNC emission and FbC absorption,9 and could allow ZnNC to inject through a more efficient conjugated pathway. The theoretical quantum yield for this process was calculated as 85% assuming an isotropic dipole orientation, donor fluorescence yield of 0.05, and an intermolecular spacing of 16 Å (pp. S6, SI). This value neglects deactivation of excited ZnNC by electron injection, providing an upper limit on the energy transfer yield.14 Measurements of emission and photoluminescence excitation spectra (at FbC emissions) for the dye mixture adsorbed onto ZrO2 (a high band gap semiconducting oxide which prevents electron injection) were inconclusive, however, IPCE measurements in which FbC is replaced with a noninjecting free base analog suggest the free base dye is responsible for a much larger proportion of the mixture photocurrent than its fractional absorbance would allow, thus supporting the concept of energy (or electron) transfer. We note however that to increase the injection yield for ZnNC, the internal quantum efficiency for FbC must also be increased simultaneously.

Charge transfer interactions could also affect injection yields in the mixture. ZnNC has higher highest occupied molecular orbital and LUMO energies compared to FbC, enabling hole transfer (HT) from FbC9 to neutral ZnNC (Fig. S3).10 Similar processes between zinc and free base porphyrins have been previously observed on picosecond timescales.15 Such HT may lead to an improved charge generation yield for FbC if k_{HT} ≫ k_{EDR,FbC} ≫ k_{DR,FbC}, where k_{EDR,FbC} is the rate constant for charge recombination between TiO2 electrons and FbC9, and k_{DR,FbC} is the rate constant for dye regeneration of FbC. Transient absorption mea-

FIG. 2. (Color online) Incident photon-to-current efficiencies (IPCEs) for devices sensitized with ZnNC (dash-dot), FbC (dashed), and a 3:1 ZnNC:FbC mixture (solid). The inset shows variation in DSSC efficiencies (solid) and J_sc (dashed line) for mixed devices with various dye ratios.

FIG. 3. APCEs for devices sensitized with ZnNC (dashed), FbC (dotted), the 3:1 ZnNC:FbC dye mixture (solid) and N719 (dashed-dotted). The inset displays average mixture APCEs as a function of the amount of ZnNC present on the TiO2.

FIG. S1. APCEs for devices sensitized with ZnNC (dashed), FbC (dotted), and a 3:1 ZnNC:FbC mixture (solid). The inset shows variation in DSSC efficiencies (solid) and J_sc (dashed line) for mixed devices with various dye ratios.
urements designed to detect such a fast recombination component for FbC+ and examine its possible removal in the mixture are currently being performed. It is also possible that a charge transfer complex could form between the photooxidized and neutral porphyrin dyes which alters their recombination kinetics. The existence of one-electron holes delocalized over metallated and free base porphyrins is well established. Spectroelectrochemical studies of the 3:1 ZnNC:FbC mixture in solution and on TiO2 shows some evidence for interaction of the oxidized ZnNC with the neutral FbC (Fig. S5), however the interaction is absent for the dye mixture on TiO2 (Fig. S6).

The possibility that mixing the dyes could reduce the barrier potential and/or distance for through-space electron tunneling from the dyes to TiO2 was also considered. Given its lower LUMO energy, modifying the TiO2 conduction band edge potential (E_CB) should affect the injection energetics for FbC more than for ZnNC, which could aid in elucidating injection behavior in the mixture. To examine this, the cation species in the redox electrolyte was altered to reside near the TiO2 surface (lithium, Li+) or outside the dye layer (tetraethylammonium, THA+) due to size. Replacing Li+ cations with THA+ produced a ~150 mV negative shift in E_CB (measured using stepped-light induced photovoltage transients and charge extraction techniques), however, the J_sc of the device was unaffected (Fig. 4). This result cannot be explained by energy transfer or hole transfer mechanisms since inducing a negative shift in E_CB by replacing adsorbed Li+ ions with bulky THA+ cations which cannot approach the TiO2 should also reduce the driving force for injection, reducing J_sc unless the density of available acceptor states is unchanged. An alternative explanation was thus considered; that the local potential profile at the TiO2/dye interface could be altered by mixing the dyes, an effect which is amplified for THA+ as the Helmholtz double layer extends beyond the dye layer for this cation and thus does not screen these electric fields. A third electrolyte in which Li+ was beyond the dye layer for this cation and thus does not screen these electric fields will be unaffected. Replacing Li+ with Rb+ produced a ~125 mV negative shift in E_CB, but also resulted in a 30% J_sc decrease, confirming purely negative shifts in E_CB reduce the J_sc. The unaffected current for THA+ devices is therefore consistent with the concept of local electric fields which can aid injection. In this instance the mixture enhancement could arise from a local electric field which develops from an inhomogeneous double layer when the dyes are combined. This field, present only in the mixture, could improve electron injection from both dyes by aiding charge separation, reducing the barrier height for through-space electron tunneling or altering dipole alignment. The magnitude of such fields and their quantitative impact on injection for these dyes cannot be deduced from these results.

In summary, we have combined two individually poor dyes in a specific 3:1 ratio to create a mixed porphyrin DSSC which exhibits a remarkable simultaneous increase in J_sc and V_oc, and consequently overall device efficiency. The enhancement is due to improved charge generation yields for both dyes when present as a mixture. While the reported effect is exciting, there are multiple processes which may contribute to its origin, thus a greater understanding of the mechanism is necessary to extend the principle to alternative sensitizers in the future. Further studies employing transient absorption and luminescence lifetimes measurements to elucidate the exact origin of the mixture enhancement effect remain ongoing.

We thank Professor Keith Gordon for helpful discussions. Financial support of this work from the Australian Research Council and financial and technical support from the Australian Synchrotron is also acknowledged.

10See supplementary material at http://dx.doi.org/10.1063/1.3576904 for UV-vis and photoluminescence spectra, cyclic voltammetry, device fabrication and photovoltaic performance parameters, dye surface coverages, FTIR spectroscopy, light harvesting efficiencies, theoretical energy transfer calculations, and spectroelectrochemistry.