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Abstract 7 

Spontaneous heating of coal stockpile has long been a thermal dynamic hazard during coal storage, processing, 8 

and transport. A transient non-equilibrium thermal CFD model has been developed to study the low-temperature 9 

self-heating behaviour of coal in multiple stockpiles under different prevailing wind conditions. Modelling 10 

results from the initial steady wind flow simulation indicate that a wake region can be induced on the leeward 11 

side of each coal stockpile. Pressure coefficient drops when the wind stream encounters or leaves a stockpile 12 

and the pressure coefficient profiles of multiple stockpiles tend to have more resemblance with a wider spacing. 13 

The first stockpile acts like a wind barrier to the adjacent stockpiles and the maximum temperature of it tends to 14 

be the first approaching the critical temperature. A ‘hot spot’ will develop and then migrate towards deep 15 

regions in each of these stockpiles that are loosely compacted under higher wind velocity conditions. Wind 16 

velocity and porosity of stockpile have significant influences on self-heating behaviour of the stockpiles and 17 

transport pattern of gaseous products liberated by coal oxidation. Compacting stockpiles from loosely packed 18 

scenario to slightly packed scenario might not be able to slow down the temperature rising rate at low-19 

temperature range but could considerably minimise the volume of deteriorated coal. The highest temperature 20 

rising profiles of the stockpiles located in downwind side can approach to that of the first stockpile, particularly 21 

when they are more widely stacked. Stacking coal stockpiles as close as practically possible is recommended to 22 

maximise the “protection” of adjacent stockpiles but would cause undesirable accumulation of carbonic gases. 23 

Stockpiles in low height and gentle slope will have a prolonged safe storage period, especially for the first 24 

stockpile directly facing the wind direction. However, it may not slow down the self-oxidation process of the 25 

adjacent stockpile at very initial stage due to “weakened protection” of the first stockpile. This study has 26 

practical reference to coal industry especially where multiple coal stockpiles require to be constructed. 27 
 28 
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particle and gas stream is important in the thermal behaviour and it is thus necessary to represent the energy stored in 156 

each individual phase as well as the exchange of thermal energy between them, which gives energy conservation for 157 

solid coal pellet: 158 
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In which the successive terms represent internal energy growth of coal particle, heat diffusion in solid coal, heat 160 

convection interacted with gas stream, and heat generated by coal oxidation which is a source term. In view of 161 

temperature variation is not significant in low-temperature self-heating of coal stockpile and to produce a faster 162 

convergence, many models assumed the validity of the Boussinesq approximation [9, 21, 25-27, 30]. This approximation 163 

essentially states that the temperature variation of the fluid properties can be ignored except for the density, and that the 164 

density dependence is only considered when it gives rise to buoyancy convection in natural convection driven flows [12]. 165 

However Boussinesq approximation is not suggested to be used with species calculation and reacting flow involved 166 

otherwise accuracy of result is very likely to become inacceptable [50]. Therefore ideal compressible gas flow is 167 

considered and energy balance for the gas stream is written as: 168 
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In which the successive terms represent transient energy rise of gas stream, heat convection of gas stream, heat diffusion 170 

in gas stream, and heat convection interacted with solid coal. 171 

3.3 Species conservation 172 

Nitrogen is neither consumed nor produced during whole process of self-heating so species conservation is mainly 173 

focused on oxygen, carbon dioxide, and carbon monoxide in gas stream according to the assumed reaction scheme, 174 

which give rise to the species conservation: 175 

{
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In which the successive terms represent the local accumulation of species, the convective transport of species, the 177 

diffusion term of species caused by variation of species concentration and temperature, and the fraction consumed or 178 

produced by coal oxidation. 179 
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 584 
(a) Validation model 585 

   586 
(b) Taraba’s model [39]                                                               (c) Moghtaderi’s model [34] 587 

Fig. 4 The variation of the pressure coefficient around stockpile 588 

 589 

   590 
(a) Taraba’s model [39]                                                                     (b)Validation model 591 

Fig. 5 Validation of maximum temperature rising profile 592 
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 594 
Fig. 6 Airflow vector of the base model 595 
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 597 
Fig. 7 Distribution of the pressure coefficient around the three stockpiles for the base model 598 
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(a) Stockpile A 602 
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(b) Stockpile B 604 

A 

B 

Low pressure zone 

Low pressure zone 

 

1 2a 

3 

2b 

1b 

2a 
2b 

3 
1a 

Chimney 

effect 

Chimney 

effect 



 605 
(c) Stockpile C 606 

Fig. 8 Gauge pressure (Pa) distribution and airflow travel paths inside the three stockpiles 607 
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(a) Stockpile A 614 
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(b) Stockpile B 620 
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