Dendritic flux avalanches in superconducting films

V Yurchenko
University of Oslo

Y M. Galperin
University of Oslo

Tom H. Johansen
University of Wollongong, tomjo@uow.edu.au

Dendritic flux avalanches in superconducting films
V. V. Yurchenko, T. H. Johansen, and Y. M. Galperin

Citation: Low Temp. Phys. 35, 619 (2009); doi: 10.1063/1.3224713
View online: http://dx.doi.org/10.1063/1.3224713
View Table of Contents: http://ltp.aip.org/resource/1/LTPHEG/v35/i8
Published by the American Institute of Physics.

Related Articles
Magnetic and transport currents in thin film superconductors of arbitrary shape within the London approximation
Tunneling investigation of the electron scattering effect on the momentum-dependent energy gap distribution in MgB2
Layer-by-layer shuttered molecular-beam epitaxial growth of superconducting Sr1−xLaxCuO2 thin films
Planar defects, dislocations, and coherently scattering-size in GdBa2Cu3O7−x high-Tc thin films determined by high resolution X-ray diffraction
Nanosecond voltage pulses from dendritic flux avalanches in superconducting NbN films
Appl. Phys. Lett. 102, 022601 (2013)

Additional information on Low Temp. Phys.
Journal Homepage: http://ltp.aip.org/
Journal Information: http://ltp.aip.org/about/about_the_journal
Top downloads: http://ltp.aip.org/features/most_downloaded
Information for Authors: http://ltp.aip.org/authors

Explore AIP’s new open-access journal
- Article-level metrics now available
- Join the conversation! Rate & comment on articles

Submit Now
Dendritic flux avalanches in superconducting films

V. V. Yurchenko

Department of Physics and Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway

T. H. Johansen

Department of Physics and Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway; Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, Australia

Y. M. Galperin

Department of Physics and Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway; A. F. Ioffe Physico-Technical Institute, St Petersburg 194021, Russia (Submitted February 13, 2009)

Thermomagnetic instability in general, and dendritic flux avalanches in particular, have attracted considerable attention of both scientists and engineers working on superconductor applications. Though being harmful for the performance of many superconducting devices, the avalanches provide a fruitful playground for experimental and theoretical studies of complex dynamics of the vortex matter. In this paper we report on the progress in understanding the mechanisms responsible for the development of the giant magnetic avalanches. We review recent results on magneto-optical imaging of the fingering instability in superconducting films and analyze them on the basis of recent theoretical model that establishes criteria for onset of the dendritic avalanches. © 2009 American Institute of Physics. [doi:10.1063/1.3224713]

I. INTRODUCTION

A. Vortex pinning and motion

One of the characteristic features of superconductors is perfect diamagnetism or expulsion of a weak external magnetic field H from their interior, the so-called Meissner-Ochsenfeld effect. In type-II superconductors, the perfect diamagnetism exists for applied fields below a lower critical field H_c1, and there is a broad domain of magnetic fields, $H_{c1} \leq H \leq H_{c2}$, where the field penetrates into the sample in the form of quantized flux lines. In a perfect sample these lines—vortices—form an Abrikosov lattice. Above the upper critical field H_{c2}, bulk superconductivity ceases to exist. An isolated vortex consists of a core where the superconducting order parameter is suppressed, while the magnetic field reaches a local maximum. The radius of the core is of the order of the coherence length ξ. The magnetic field outside the core decays exponentially over a distance of a magnetic penetration depth λ, where also electrical current circulates around the core. Each vortex carries one flux quantum $\Phi_0 = \hbar/2e = 2.07 \times 10^{-15}$ Wb. The magnetic field is supported by circular currents around the core. The flux lines repel each other, an interaction that can be understood applying the Ampère’s law to the circular currents. This repulsion leads to the formation of a flux-line lattice, most typically hexagonal and in some cases square. A number of phases and dynamic effects in the flux line lattice were reviewed in Refs. 2 and 3.

The vortices interact with a transport current via the Lorentz force per unit length $f = \Phi_0 (\mathbf{j} \times \mathbf{n})$, where \mathbf{j} is the current density and \mathbf{n} is the unit vector along the flux line. Since the vortex motion implies moving of normal cores it is accompanied by dissipation, which is proportional to the velocity. This dissipation can be described by an effective viscosity, and the velocity is determined by the balance between the Lorentz force and the viscous force. Therefore a free vortex lattice would move as a whole with a constant velocity, resulting in a finite resistance of the sample.

Fortunately, in all real superconductors the flux lines interact with material defects that act as pinning sites and hamper their motion. Besides the pinning barriers that arise from rather inevitable structural irregularities such as vacancies, dislocations, grain boundaries, etc., there exists a rich zoo of artificially introduced pinning sites like magnetic inclusions, phases of weaker (stronger) superconductivity, lithographically patterned “antidots,” magnetic dots, etc. According to the particular nature and dimensionality of the defects the pinning potential has different spatial extent, magnetic-field and temperature dependence; see Ref. 4 for a review. When a superconductor is exposed to an increasing magnetic field (or self-field of a transport current), vortices are formed at the edges and then propagate inwards. The presence of pinning leads to formation of an inhomogeneous distribution of the magnetic flux. According to the critical state model the stationary distribution can be found from Ampère’s law with the condition that the current density at each point is equal to its local critical value $j_c (B, T)$, i.e.,
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{j}, \quad |\mathbf{j}| = j_c(\mathbf{B}, T). \]

The case where \(j_c \) is independent of magnetic field is called the Bean model.\(^2\) The critical current density is in practice a key measure of the applicability of superconductors, since \(j_c \) is the maximum current density in a material for transport without energy loss. Microscopic evaluation of the critical current requires direct summation of vortex-vortex interactions and all elementary pinning forces, which all together is a rather unfeasible task. Therefore the critical state model has become a major paradigm in the studies of electromagnetic properties of type-II superconductors.

The critical state emerging from the balance between the Lorentz and the pinning forces is metastable. Even a slow increase in the external magnetic field may lead to total collapse of the critical state and sudden large-scale redistribution of the flux. Such dramatic events, observed experimentally as abrupt drops in the magnetization, are ascribed to a thermomagnetic instability, where the local heat dissipation associated with vortex motion reduces the pinning, which in turn facilitates further vortex motion. With this positive feedback, a small perturbation can quickly evolve into a flux avalanche.\(^3\)-\(^19\)

B. Experimental methods

Experimental techniques used to investigate the avalanches in the vortex matter are conventionally subdivided in two groups: integral and spatially resolved. The former one includes all types of magnetometry: inductive coils, vibrating sample magnetometry, SQUID magnetometry.\(^20\) These methods are sensitive to global redistributions of the flux, current flow, and the resulting change in the total magnetic moment caused by an avalanche in the sample. A drawback of the integral methods is a lack of detailed information about the jumps, their location in the sample, their morphology, etc. Moreover, the relatively low sampling rate in these methods prevents identification of jumps occurring with short time intervals. Obviously there is no chance to separate simultaneous avalanches.

Thus, measurement of the volume-averaged magnetization excludes the possibility of studying the detailed statistics of flux jumps. Yet another disadvantage is that it is impossible also to discriminate between small jumps and instrument noise. These problems are partly solved in locally resolved magnetometry; an overview of available methods can be found elsewhere.\(^21\) One of the most powerful tools is magneto-optical imaging (MOI), which combines high magneto-spatial resolution and short acquisition times (restrained only by the exposure time of the camera). This makes MOI the most suitable real-time technique for investigation of flux avalanches.

In our experiments we use MOI based on the Faraday effect, where the sensing element is an in-plane magnetized ferrite garnet film with strong Faraday rotation. The film, which is grown separately on a transparent gadolinium gallium garnet substrate, is placed directly on top of the sample under investigation. Stray fields from the magnetic flux pattern of the sample locally remagnetize the indicator, and when polarized light is shined through the film, the out-of-plane component of magnetization induces Faraday rotation.

The effect is doubled after the reflected light (either from a mirror layer or, rarely, from the sample surface) passes through the garnet film again. Figure 1 illustrates the principal experimental scheme. An analyzer set at 90° relative to the polarizer filters out the nonrotated light. The rotation angle \(\theta \) is a monotonic function of the local magnetic field \(B \).

The transmitted light is projected on the matrix of a CCD camera, its intensity \(I \) being related to the rotation angle according to Malus’ law

\[I = I_0 \sin^2[\theta(B) + \alpha]. \]

Here \(\alpha \) is an offset angle (equal to 0 when the polarizer and the analyzer are crossed). The dependence \(\theta(B) \) can be determined by a proper calibration of the indicator film. Using this dependence together with Malus’ law, one can calculate the distribution of the magnetic field in the sample from the intensity map of the projected light.

Since MOI was invented in the 1950s several materials have been used as indicator films.\(^22\) The MOI results reported in the present paper were obtained utilizing in-plane magnetized garnet films (Lu\(_2\)Bi\(_2\)(Fe\(_{1-x}\)Ga\(_x\))O\(_{12}\)), grown as a few-microns-thick epitaxial layer on gadolinium gallium garnet (transparent) substrates. One limitation of these indicator films is a relatively small magnetic field range: above \(\approx 100 \) mT the films reach saturation, i.e., they become totally magnetized out-of-plane.

II. DENDRITIC FLUX AVALANCHE

Thermomagnetic instabilities have been at the focus of many experimental and theoretical studies for decades.\(^11,23\) However, only with the use of MOI has it been discovered that in most superconducting films, such as MgB\(_2\), Nb, Pb, Nb\(_3\)Sn, NbN, YBa\(_2\)Cu\(_3\)O\(_7\), and YNi\(_2\)B\(_2\)C, the avalanches cre-
ate dendritic flux patterns (see Fig. 2). From the massive experimental data collected on the subject one can identify some common features of the dendritic instability:

(i) It occurs below a certain temperature T_{th} where $T_{th} < T_c$.
(ii) It occurs in a limited range of applied fields: $H_{1th} \leq H \leq H_{2th}$, where H_{1th} and H_{2th} are the so-called lower and upper threshold fields, respectively. Shown in Fig. 3 is a set of images recorded during a slow ramping up of the applied magnetic field in a thin film of NbN after the sample was initially zero-field cooled to $T=4$ K. In the image taken at $H=8$ Oe, there is only a shallow penetration, with a flux front that gradually advanced during the field increase. This smooth mode of penetration ended abruptly on reaching $H=12$ Oe, where a flux avalanche suddenly occurred. As the applied field increased further, more and more avalanches took place, creating a complex pattern of flux dendrites covering most of the sample area; Fig. 3 ($H=42.5$ Oe). Then, as the field reached $H=357$ Oe, the avalanche activity stopped entirely although the field continued to increase. The advancing flux front now erased the previously formed dendritic structures (see images taken at $H=400$ and 425 Oe), and the critical state mode of flux penetration was restored. The bright fan-like features in the lower part of the images are due to tiny film defects and are not related to the flux instability.

(iii) The formation of the dendritic instability is a stochastic process. Usually indentations on the sample edges serve as the most probable origins of the avalanches, as they give a significant local magnetic field enhancement and increase in the electric field. Nevertheless, the exact nucleation site of the next dendrite, the field interval between two consecutive events, and the final shape of the dendritic structure are nonreproducible. To illustrate this, Fig. 4 shows three magneto-optical images of flux penetration in a MgB$_2$ film taken after three repeated experimental runs with initial zero-field cooling of the sample to 9.2 K and application of a field of 20 mT. Image (b) was obtained by superimposing the three original images colored red, green, and blue, respectively. In those parts of the final image where they overlap, i.e., where the flux front’s behavior is reproducible, one observes a gradation of white. Different colors show the places where there is no overlap, or the overlap is only partial. Strong irre-

FIG. 2. Dendritic flux avalanche observed in MgB$_2$ film by MOI. From Ref. 6.

FIG. 3. Magneto-optical images of a NbN film at 4 K in increasing applied field, illustrating development of the dendritic flux avalanches. From Ref. 24.

FIG. 4. MOI demonstrating irreproduciability of the flux distribution that results from the dendritic avalanches. (a) The three images were taken under identical experimental conditions. (b) Image obtained by superimposing the three images above. Repeatable parts of the flux front appear as gradations of white. From Ref. 25.
produceibility is seen in the dendrite shapes, while the penetration near the edge and along static defects is repeatable. Randomness in the behavior of the vortex matter also explains a large statistical variation of the measured H^0_{c2} values, which will be discussed later.

(iv) The degree of branching of the dendrites, sometimes represented by their fractal dimensionality, and size vary with temperature and the field.

Figure 5 illustrates typical behaviors of the dendrites in a NbN film at different temperatures. At $T=4$ K the number of the dendritic avalanches per interval of the field was higher compared to $T=6$ K. The size of the dendrites shows the opposite trend—it increases when the temperature approaches T_0. Regarding the dependence on magnetic field, at lower (slowly increasing) fields the avalanches are smaller in size, but appear in larger numbers per field interval. At higher fields, the dendrites are less frequent, but larger in size. The images in Fig. 3 taken at $H=12$ and 357 Oe illustrate this property.

III. THEORY OF THE DENDRITIC FLUX JUMPS

There exist numerous experimental indications that the instability is a rather unavoidable generic feature of the vortex matter in superconductor thin films. The conventional theory of the thermomagnetic instability considers only "uniform" flux jumps, where the flux front is smooth and essentially straight.25,27 The problem of the flux pattern formation has been examined in the slab geometry28 and more recently in thin films placed in perpendicular magnetic field.29,30 The criteria for the instability onset were obtained from the linear analysis of small coordinate-dependent perturbations in the electric field E and temperature T.25,31 The problem was solved for a thin (of thickness d much less than the width $2w$) superconducting strip infinite in the y direction, placed in a transverse magnetic field H and thermally coupled to the substrate (Fig. 6).

A. Model and basic equations

The thermomagnetic instability can be described by the set including the Maxwell equations and the equation for thermal conduction:

$$\text{curl } B = \mu_0 j,$$

$$\text{curl } E = - \frac{\partial B}{\partial t},$$

$$C \frac{dT}{dt} = \kappa \nabla^2 T + jE.$$

In the above equations, j is the current density, E is the electric field, B is the magnetic induction, $B=\mu_0 H$; C is the specific heat, and κ is the thermal conductivity. The heat release into the substrate is taken into account by applying the boundary condition

$$\kappa \nabla_j T = - h_0 (T - T_0)$$

to both film surfaces. Here T_0 is the temperature of the substrate, while h_0 characterizes heat transfer through the interface between the sample and the substrate. The above set should be supplemented by a relation between the current density and the electric field, $j=j(E,B,T)$. This relation is chosen as

$$j = j_c(T) g(E)/E.$$

Here $g(E)$ represents a very steep $E(j)$ curve having large logarithmic derivative,

$$n(E) = \frac{\partial \ln j}{\partial \ln E} = \frac{j_c(E)}{\sigma E} \gg 1,$$

where σ is the differential electrical conductivity, $\sigma(E) = \partial j / \partial E$. The parameter n stands for the exponent in the frequently used power-law relation $E \propto j^n$. A strong nonlinearity of the function $g(E)$ leads to a formation of a quasi-static critical state with $j \approx j_c(T)$, where j_c is the critical current density. Note that in this model the B dependence of j_c is neglected, as in the Bean model.7 We will come back to this assumption later.
The key dimensionless parameter of the model is the ratio of the thermal and magnetic diffusion coefficients, \(\tau = \mu_0 \kappa \alpha / C \).

\[
\tau = \mu_0 \kappa \alpha / C. \tag{7}
\]

The smaller is \(\tau \), the slower the diffusion of heat from the perturbation region into the surrounding medium. Hence, one can expect that for smaller \(\tau \) the superconductor is more unstable, and the formation of instability-induced nonuniform structures is more likely. Solutions of Eqs. (1)–(5) were sought within a linear perturbation analysis in the form

\[
T + \delta T(x,y,z,t), \quad E + \delta E(x,y,z,t), \quad j + \delta j(x,y,z,t)
\]

with perturbations \(\delta T \), \(\delta E \), and \(\delta j \), determined via corresponding dimensionless Fourier amplitudes \(\theta, e, \) and \(i \):

\[
\delta T = T^* \theta \exp(\lambda t/\ell_0 + ik_x \xi + ik_y \eta),
\]

\[
\delta E_{xy} = E_{0} \exp(\lambda t/\ell_0 + ik_x \xi + ik_y \eta),
\]

\[
\delta j_{k} = j_{c0} \exp(\lambda t/\ell_0 + ik_x \xi + ik_y \eta). \tag{8}
\]

These components can be regarded as \(z \) independent for a thick slab. For the case of a thin film they should be properly averaged over \(z \); see Ref. 31 for details.

B. Criteria for dendritic instability in thin films

Here we will focus on the analysis of the main results of Ref. 31. Provided there exists a set of parameters that satisfies \(\Re \lambda(k_x, k_y) > 0 \), the superconductor becomes unstable. The wave vectors \(k_x \) and \(k_y \) characterize the extent of the flux front perturbations in the corresponding directions. Instability would develop to a fingering pattern if \(k_x \approx k_y \neq 0 \). The critical \(k_x^* \) and \(k_y^* \) for the fingering instability can be found from the requirement \(\max(\Re \lambda(k_x)) = 0 \) for \(k_x \neq 0 \) in the limit \(\ell / 2l \ll 1 \) (the notation follows from Fig. 6):

\[
k_{x}^{n} = \frac{\sqrt{n + 1} - \sqrt{n} \tau}{n \sqrt{n}},
\]

\[
k_{y}^{n} = \frac{(n \tau + 1)^{1/2}\left(\sqrt{n + 1} - n \kappa \tau + 1\right)^{1/2}}{\sqrt{n} \tau},
\]

\[
h = \frac{2 \ell h_0 C}{\mu_0 \kappa \alpha / \ln(j_c/d)}, \tag{9}
\]

Since the front penetration depth \(\ell \) is related to the applied field according to Ref. 32, the quantity \(k_{x}^{n} \approx 1/\ell \) determines the applied magnetic field at which the instability first takes place. The quantity \(k_{y}^{n} \) determines the spatial scale of the fingers. Dispersion relations \(\Re \lambda(k_x, k_y) \) for arbitrary \(k_y \) are presented in Fig. 7. For small \(\tau \) and large \(k_x \), i.e., small magnetic field, \(\Re \lambda \) is negative for all \(k_x \) (Fig. 7a), meaning the superconductor is stable. At small \(k_x \), \(\Re \lambda \) becomes positive in some finite range of \(k_y \), which implies that perturbations with finger patterns of elevated \(T \) and \(E \) will start growing perpendicular to the flux front, giving rise to the dendritic instability. For large \(\tau \), i.e., large heat diffusion, at small \(k_x \) the maximum of \(\Re \lambda \) corresponds to \(k_y = 0 \), and the uniform perturbation will be dominant (Fig. 7b).

One of the most important results that can be directly tested in experiments is the threshold flux penetration depth \(\ell^\ast \), when the superconductor becomes unstable. Putting \(\ell = \ell h \) in Eqs. (9), one obtains:

\[
\ell^\ast = \frac{\pi}{2} \sqrt{\frac{\kappa}{j_c E}} \left(1 - \sqrt{\frac{2 h_0}{n \ell h} \left(\ln \frac{j_c d}{j_c \ell} \right)^{-1}} \right). \tag{10}
\]

Here \(j_c \) is the temperature derivative of the critical current density. By combining Eq. (10) with the Bean model expression for the flux penetration depth of a thin superconducting strip in transverse field, \(\frac{\ell^\ast}{h} \) one immediately arrives at the expression for the threshold field:

\[
H_0 = \frac{j_c d}{\pi} \arccosh \left(\frac{w}{w - \ell^\ast} \right). \tag{11}
\]

Equations (10) and (11) set the most practically important relations between the external parameters, such as the field and temperature, on one hand, and the sample properties \((\kappa, h_0, j_c, w) \) on the other. In order to check the validity of the model, the threshold field was measured first in a series of MgB2 samples of different width. A set of eight thin film samples was deposited in one run to allow for a direct comparative analysis and shaped later by photolithography into 3-mm-long rectangles having different widths ranging from 0.2 to 1.6 mm. In Fig. 8 presenting the results of MOI experiments, the dendrites pronouncedly invade the wider strips, while there are fewer of them in the samples with...
smaller widths, and no dendrites at all in the one with \(w = 0.2 \) mm. The quantitative results for \(H_{\text{th}}/H_{\text{20849}} \) are summarized in Fig. 9. The fitted data reproduce the experimentally observed tendency of the threshold field to diverge as the strip becomes narrower. Rephrasing the latter statement, the narrower the superconductor, the more thermomagnetically stable it is.

Good agreement between the theory and experiment was also obtained for the threshold field as a function of temperature. To fit the \(H_{\text{th}}/T \) data obtained in Nb and MgB\(_2\) thin films (Fig. 10), some assumptions for the temperature-dependent model parameters had to be made. The cubic dependence assumed for the thermal conductivity, \(\kappa = \kappa(T/T_c)^3 \), and the heat transfer coefficient, \(h_0 = h_0(T/T_c)^3 \), was based on the low-temperature data\(^\text{33}\) for MgB\(_2\) and the acoustic mismatch model\(^\text{34}\), respectively. The critical current density was assumed to depend linearly on temperature: \(j_c = j_{c0}(1-T/T_c) \). For a pinning potential \(U \propto (1-T/T_c) \), the exponent \(n \sim U/kT \) becomes \(T \) dependent, \(n = \frac{\kappa(T_c/T-1)}{\kappa_0} \). The model clearly reproduces the property (i) mentioned above—the existence of a threshold temperature \(T_{\text{th}} \) such that for \(T > T_{\text{th}} \) the instability is absent, and a steep increase of the threshold field \(H_{\text{th}} \) when \(T \) approaches \(T_{\text{th}} \).

IV. REENTRANT STABILITY OF SUPERCONDUCTING FILMS

Although the existence of the lower threshold magnetic field, \(H_{\text{th}}^\text{th} \), was explained in Sec. III, the origin of the upper threshold field, \(H_{\text{th}}^\text{2} \), above which the flux distributions are stable, was not discussed. Recently we managed to put the existence of an upper threshold into the framework of the model described in the previous Section\(^\text{24}\).

As follows from Eqs. (10) and (11), the threshold field depends nonmonotonically on the critical current density, as shown in Fig. 11. For intermediate \(j_c \) the threshold field is nearly constant, and it increases slowly as \(j_c \) becomes larger, giving eventually a sublinear asymptotic dependence, \(H_{\text{th}} \sim j_c^{3/4} \). More importantly, when \(j_c \) decreases, the threshold field diverges at some finite \(j_c \), corresponding to \(H_{\text{th}} \) approaching \(w \). Taking into account that the critical current density most commonly decreases with the field, it follows...
that the field range with unstable behavior can indeed have both a lower and upper limit, \(H_1^{\text{th}} \) and \(H_2^{\text{th}} \), as indicated in the figure. Evidently, the essential thing is how fast \(j_c \) is decreasing with field. In particular, for the Bean model (constant \(j_c \)), or with \(j_c \) having only a weak field dependence, the condition for having an upper threshold will never be met. Note also that if \(j_c \) is sufficiently small, e.g., because of a higher temperature, the thermomagnetic avalanches will not occur at any magnetic field.

This idea was supported by MOI experiments on a NbN superconductor thin film. To measure both \(j_c \) and the upper and lower instability threshold fields the sample was field-cooled to 4 K in various constant magnetic fields \(H_{fc} \). The field-dependent critical current density \(j_c(H_{fc}) \) was determined from the depth of the penetration front in the middle section of the rectangular sample.\(^{32,35}\) A nearly exponential decay was found, with \(j_c \) decreasing from \(7.6 \times 10^{10} \text{ A/m}^2 \) at zero field to nearly half at \(H_{fc}=300 \text{ Oe} \), which agrees well with the results obtained earlier from ac susceptibility measurements\(^{36}\) on the same type of films. The threshold fields were determined by slowly ramping up the additional field after an initial field-cooling in an external field \(H_{fc} \).

Figures 12 and 13 present the experimentally obtained functions \(j_c(H_{fc}) \) and \(H_{fc}(H_{fc}) \), which were used to make the parametric plot of the instability onset field \(\Delta H=H_1^{\text{th}}-H_{fc} \) shown in Fig. 14. Note that under field cooling the vortices are distributed homogeneously inside this superconductor, where pinning is fairly strong.

Application of additional field leads to a buildup of the critical state, which collapses due to the thermomagnetic instability as soon as the flux front advances over the threshold length \(l^* \) corresponding to applying the additional field \(\Delta H \). Figure 14 demonstrates excellent quantitative agreement between the experimental data for NbN (symbols) and the theoretical curve obtained from Eqs. (10) and (11), using only two fitting parameters, \(\kappa T_0/E=500 \text{ mA} \) and \(h_0 T_0/nE = 5700 \text{ A/m} \) (these parameter values can be achieved, e.g., with the combination \(\kappa=25 \text{ mW/(K·m)} \), \(h_0 = 1424 \text{ W/(K·m}^2) \), \(n=5 \), \(E=0.55 \text{ V/m} \), \(T_0=11 \text{ K} \)). As mentioned above, the dendrite formation process is stochastic, which is reflected in a noticeable dispersion of the measured

![FIG. 11. Schematic plot illustrating the existence of two threshold fields for the dendritic instability, adapted from Ref. 24. The two main curves represent the dependence of the threshold field on the critical current density \(H_{fc}(j_c) \) and a typical monotonic field dependence of \(j_c \). The intersection of the two curves defines the two thresholds \(H_1^{\text{th}} \) and \(H_2^{\text{th}} \) for the onset and vanishing of the instability.](image1)

![FIG. 12. Field dependence of the critical current density at \(T=4 \text{ K} \) measured using MOI in NbN thin film (Ref. 24).](image2)

![FIG. 13. Thermomagnetic instability diagram of NbN at \(T=4 \text{ K} \) (Ref. 24): the lower and upper threshold fields \(H_1^{\text{th}} \) and \(H_2^{\text{th}} \), measured at different \(H_{fc} \), limit the region where the dendritic avalanches were observed.](image3)

![FIG. 14. Instability onset field \(\Delta H \) as a function of the critical current at 4 K in NbN thin film. From Ref. 24.](image4)
threshold fields and the error bars in the figures, calculated as a standard deviation for repeated experiments.

V. SUMMARY AND CONCLUSIONS

In this work we have reviewed both the well-established facts and the results of very recent experiments on dendritic instabilities in superconductor films. The most common properties of the dendritic instability are summarized in Sec. II. In Sec. III we introduced a recent theoretical model allowing one to understand key features of the instability and link them to the sample parameters. These links are provided by Eqs. (10) and (11) for the threshold field H_{th} as a function of temperature, critical current density j_c, sample width w, and thermal conductivity κ. It was demonstrated that the model explains the observed reentrant behavior of the dendritic instability and allows one to quantify its upper and lower critical fields. The validity of the model is illustrated by several experiments confirming its predictions.

This work was supported by the Norwegian Research Council through the grant 176740/I30. One of the authors, YMKG, is thankful to Ben-Gurion University of Negev, Israel, and to the University of Lancaster, UK, for hospitality, and THJ acknowledges support from the Australian Research Council. We are thankful to E. I. Il’yashenko and A. Solovyev for their help in producing magneto-optical indicators.

Email: Vitaliy.Yurchenko@smn.uio.no

1A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
35A more precise way to determine $j_c(B)$ should be based on the self-consistent relation between the depth of the flux front and the $j_c(B)$ law derived in J. McDonald and J. R. Clem, Phys. Rev. B 53, 8643 (1996).

This article was published in English in the original Russian journal. Reproduced here with stylistic changes by AIP.