Molecular and morphological description of a hepatozoon species in reptiles and their ticks in the Northern Territory, Australia

Inger-Marie E. Vilcins
Macquarie University

Beata Ujvari
University of Wollongong, beatau@uow.edu.au

Julie M. Old
University of Western Sydney

Elizabeth Deane
Australian National University

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

Vilcins, Inger-Marie E.; Ujvari, Beata; Old, Julie M.; and Deane, Elizabeth: Molecular and morphological description of a hepatozoon species in reptiles and their ticks in the Northern Territory, Australia 2009, 434-442.
https://ro.uow.edu.au/scipapers/3040

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Molecular and morphological description of a hepatozoon species in reptiles and their ticks in the Northern Territory, Australia

Abstract
Ticks, representing 3 species of Amblyomma, were collected from the water python (Liasis fuscus) and 3 additional reptile species in the Northern Territory, Australia, and tested for the presence of Hepatozoon sp., the most common blood parasites of snakes. In addition, blood smears were collected from 5 reptiles, including the water python, and examined for the presence of the parasite. Hepatozoon sp. DNA was detected in all tick and reptile species, with 57.7% of tick samples (n = 187) and 35.6% of blood smears (n = 35) showing evidence of infection. Phylogenetic analysis of the 18S rRNA gene demonstrated that half of the sequences obtained from positive tick samples matched closest with a Hepatozoon species previously identified in the water python population. The remaining sequences were found to be more closely related to mammalian and amphibian Hepatozoon species. This study confirms that species of Amblyomma harbor DNA of the same Hepatozoon species detected in the water pythons. The detection of an additional genotype suggests the ticks may be exposed to 2 Hepatozoon species, providing further opportunity to study multiple host-vector-parasite relationships. 2009 American Society of Parasitologists.

Keywords
Molecular, morphological, description, hepatozoon, species, reptiles, their, ticks, Northern, Territory, Australia

Disciplines
Life Sciences | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/3040
MOLECULAR AND MORPHOLOGICAL DESCRIPTION OF A HEPATOZOOZ SPECIES IN REPTILES AND THEIR TICKS IN THE NORTHERN TERRITORY, AUSTRALIA

Inger-Marie E. Vilcins, Beata Ujvari*, Julie M. Old†, and Elizabeth Deane‡§
Department of Biological Sciences, Division of Environmental and Life Sciences, EBA, Macquarie University, North Ryde, New South Wales, 2109, Australia. E-mail: elizabeth.deane@anu.edu.au

ABSTRACT: Ticks, representing 3 species of Amblyomma, were collected from the water python (Liasis fuscus) and 3 additional reptile species in the Northern Territory, Australia, and tested for the presence of Hepatozoon sp., the most common blood parasites of snakes. In addition, blood smears were collected from 5 reptiles, including the water python, and examined for the presence of the parasite. Hepatozoon sp. DNA was detected in all tick and reptile species, with 57.7% of tick samples (n = 187) and 35.6% of blood smears (n = 35) showing evidence of infection. Phylogenetic analysis of the 18S RNA gene demonstrated that half of the sequences obtained from positive tick samples matched closely with Hepatozoon species previously identified in the water python population. The remaining sequences were found to be more closely related to mammalian and amphibian Hepatozoon species. This study confirms that species of Amblyomma harbor DNA of the same Hepatozoon species detected in the water python. The detection of an additional genotype suggests the ticks may be exposed to 2 Hepatozoon species, providing further opportunity to study multiple host–vector–parasite relationships.

Species of Hepatozoon (Miller, 1908), belonging to the Hepatozoaidae (Barta, 1989), are intraerythrocytic and intraleukoeytic apicomplexan parasites, and they are the most common intracellular protozoa found in reptiles (Telford, 1984; Wozniak et al., 1996). Members of the genus have a heteroxenous life cycle, with sporogony taking place within an invertebrate vector in which they form large oocysts, each capable of containing hundreds of sporozoite-filled sporocysts (Telford, 1984; Wozniak et al., 1996; Kim et al., 1998). Transmission of Hepatozoon spp. occurs via the ingestion of the infected invertebrate, liberating sporozoites and enabling merogonic and gamogonic development to take place in the hepatocytes, endothelial cells, and visceral organs of a wide range of vertebrate hosts (Telford, 1984; Wozniak et al., 1996; Kim et al., 1998). Secondary transmission, via the predation of infected vertebrate prey, as well as congenital transmission, has also been recorded (Telford, 1984; Lowrichik and Yaeger, 1987; Wozniak et al., 1996). Invertebrate vectors recorded for Hepatozoon species are broad in nature and include ectoparasites, biting flies, mosquitoes, and leeches (Smith, 1996). Members of the genus have also been described as infecting a range of mammalian, avian, reptilian, and amphibian species (Levine, 1988; Smith, 1996). Little is known about Australian Hepatozoon species, with all blood-borne parasites described in native reptiles being placed within Haemogregarina and they are yet to be adequately classified (Mackerras, 1959; O'Donnoghue and Adlard, 2000). Only 2 Australian species have been described in any detail, i.e., H. breindi, known for its preference for infecting varanid lizards and vectored by a culicine mosquito (O'Donnoghue and Adlard, 2000), and H. peramelis, prevalent in approximately 25% of its hosts, the bandicoots (Perameles and Isodon spp.) (Wicks et al., 2006). However, because many Hepatozoon species are virtually indistinguishable morphologically and are capable of infecting several unrelated hosts and vectors, the true number of species in existence is unknown, although it has been estimated at being in excess of 300 (Telford, 1984; Smith, 1996). This estimate is itself questionable given the similar morphologies and frequent practice of naming new species for new geographic locations (Telford, 1984; Smith, 1996). Most recently, molecular techniques, particularly targeting the 18S ribosomal RNA gene, have greatly enhanced the ability to characterize and detect new species, and to identify suspected vectors (Mathew et al., 2000).

The impact of Hepatozoon spp. infection in vertebrates varies greatly. In mammalian hosts, severe pathology and death have been recorded, such as with the H. americanum infection of canids, where cysts formed in bone marrow and muscle cause significant morbidity and mortality (Baneth et al., 2003; Ewing and Panciera, 2003). In reptiles, pathology associated with Hepatozoon spp. infection is increasingly recognized (Wozniak et al., 1996). Although many reptiles are capable of tolerating the presence of infection and suffer little pathogenic affect (Nadler and Miller, 1984; Wozniak et al., 1996), in some species, heavy parasitism can lead to anemia and blood cell abnormalities, resulting in immunosuppression (Telford, 1984). The first records of Hepatozoon spp. infections resulting in clinical disease in reptiles came from laboratory experiments, including studies on captive snakes (Griner, 1983; Wozniak et al., 1996) and in 3 lizard species, infected with H. mocassini, normally a parasite of cottonmouth snakes (Agkistrodon piscivorus), in which hepatozoolar necrosis was seen (Wozniak et al., 1996). In the Northern Territory, several studies on the water python (Liasis fuscus) and other reptiles have recorded both a high prevalence of Hepatozoon sp. infection (Ujvari et al., 2004), as well as negative impacts associated with long-term parasitism (Madsen et al., 2005; Ujvari and Madsen, 2005). Snakes with heavy parasitism were found to have impaired growth, body condition, reproductive output, and juvenile survival, with only those exhibiting low levels of infection reaching old age (Madsen et al., 2005; Ujvari and Madsen, 2005). As is the case with many Hepatozoon species, the vectors responsible for the transmission of the species infecting these reptiles remain unknown.

The present study sought to identify a possible ectoparasite vector for Hepatozoon species in the water python and other reptiles in the Northern Territory, using molecular polymerase

Received 30 May 2008; revised 2 August 2008; accepted 7 August 2008.
* School of Biological Sciences, Institute of Conservation Biology, University of Wollongong, New South Wales, 2522, Australia.
† School of Natural Sciences, Building K2, Hawkesbury campus, University of Western Sydney, Locked bag 1797, Penrith South DC, 1797, New South Wales, 1797, Australia.
‡ The Chancery, Australian National University, Canberra, Australian Capital Territory, 0200, Australia.
§ To whom correspondence should be addressed.
TABLE I. Host animals and ticks collected in this study.

<table>
<thead>
<tr>
<th>Host animal</th>
<th>No. of ticks (%)</th>
<th>Tick species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow-spotted monitor (Varanus panoptes) n = 33</td>
<td>149 (79.7)</td>
<td>A. fimbriatum 137 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. limbatum 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. moreliae 1 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nymph 0</td>
</tr>
<tr>
<td>Water python (Lialis fuscus) n = 8</td>
<td>25 (13.4)</td>
<td>A. fimbriatum 10 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. limbatum 1 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. moreliae 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nymph 2</td>
</tr>
<tr>
<td>Frilled-neck lizard (Chlamydosaurus kingii) n = 6</td>
<td>6 (3.2)</td>
<td>A. fimbriatum 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. limbatum 0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. moreliae 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nymph 3</td>
</tr>
<tr>
<td>Green tree snake (Dendrelaphis punctulatus) n = 4</td>
<td>7 (3.7)</td>
<td>A. fimbriatum 1 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. limbatum 1 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. moreliae 0 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nymph 1</td>
</tr>
<tr>
<td>Total</td>
<td>187 (100)</td>
<td>152 29</td>
</tr>
</tbody>
</table>

Chain reaction (PCR) protocols targeting the 18S ribosomal RNA gene.

MATERIALS AND METHODS

Sample site, tick, and blood collection

In October 2005 and January 2006, 252 adult and nymphal ticks, representing 3 Amblyomma species, were collected from 4 Squamata taxa at the Djuubing National Park and Fogg Dam Nature Reserve, near Humpty Doo, Northern Territory, Australia. The ticks were collected randomly during routine reptile trapping and placed immediately into 70% ethanol. Ticks were pooled according to sex and host animal (Table I). The reptile hosts sampled included 33 yellow-spotted monitors (Varanus panoptes), 8 water pythons, 6 frilled-neck lizards (Chlamydosaurus kingii), and 4 green tree snakes (Dendrelaphis punctulatus). Pooling for molecular analysis resulted in 187 samples consisting of 1–5 ticks (Table I).

In addition, at the time of trapping, blood smears were collected for microscopic examination from 45 individual reptiles, representing 5 species, including 4 green tree snakes, 31 yellow-spotted monitors, 4 water pythons, 1 blue-tongued lizard (Tiliqua scincoides), and 5 frilled-neck lizards. Blood smears were stained using routine May-Grünwald-Giemsa protocols and examined for the presence or absence of intracytoplasmic parasites and free gametocytes using a compound microscope. Ticks were identified morphologically with the key of Roberts (1970).

DNA extraction

Before DNA extraction, ticks were repeatedly washed with 70% ethanol and allowed to air dry for 10 min on sterile paper. Each tick was finely diced with a new sterile scalpel blade and processed using the DNeasy tissue kit (Qiagen, Germantown, Maryland) according to the manufacturer’s protocol. During the digestion period, which was extended to 24 h, samples were frequently crushed with separate sterile plastic homogenizers to aid DNA extraction.

PCR and sequencing methods

Initial detection of the presence of Hepatozoon species was undertaken using PCR with primers (HepF300, GTT TCT GAC CTA TCA GCT TTC TTC GAC G; HepR900, C AAA TCT AAG AAT TTC ACC TCT GAC) targeting the 18S ribosomal RNA gene described by Ujvari et al. (2004), generating a 600-bp fragment. Selected positives were used to amplify larger portions of the 18S RNA gene using the following primer sets: 455BF; GCT AAT ACA TGA GCA AAA TCT CAA; 2773R, CGG AAT TAA CCA GAC AAG AAT (Matheu et al., 2000) and HAM-1F, GCC AGT AGT CAT ATG CTT GTC; HPF-2r, GAC TTC TCC TTC GTC TAA G (Ciando-Fornello et al., 2006). The PCR reaction mix involved the use of 1 µl of extracted tick DNA amplified in a 25-µl reaction mix containing 10 pmol of each primer; 10 mM each of dGTP, dATP, dTTP, and dCTP; 10X buffer A (Promega, Madison, Wisconsin); 25 mM MgCl₂, 1 U of Tag DNA polymerase (Promega); and autoclaved sterile Milli-Q water (Millipore, Billerica, Massachusetts). Amplification was performed in an Eppendorf Mastercycler Personal (Eppendorf, Hamburg, Germany). A negative control consisting of autoclaved Milli-Q water in place of the template was included, and to demonstrate that the primers did not amplify host DNA and thus gave rise to false-positive results, negative controls consisting of known Hepatozoon sp.-free tick DNA were run with each set of reactions. All other reagent concentrations remained the same. A positive control was included and consisted of Hepatozoon sp. DNA collected in the previous study (Ujvari et al., 2004). Resultant PCR products were separated on a 1% agarose gel run in Tris borate-EDTA buffer and stained with ethidium bromide for examination with UV transillumination. PCR products were purified for sequencing using a QiAmp purification kit (Qiagen). A 12-µl sequencing mix, containing between 30 and 90 pmol of DNA, Milli-Q water, and 3.2 pmol of either forward or reverse primer was prepared for each positive sample selected. The PCR products were purified, and sequenced from both directions on an ABI 3130xl Genetic Analyzer using BigDye Terminator V3.1 kit (Applied Biosystems, Foster City, California).

Phylogenetic analysis

Consensus sequences were created with manual alignments of the forward and reverse sequences and submitted to GenBank (NCBI, BLAST) to identify similar Hepatozoon species and related taxon sequences. Sequences available for members of the genus and related Apicomplexa were selected for phylogenetic comparison. The sequences were aligned using the Clustal algorithm available in the Mega 3.1 program (Kumar et al., 2004). Phylogenetic relationships were determined using distance matrices under the assumption of Jukes-Cantor, P-distance, Tamura-Nei, and Kimura-2. Each matrix was used as a basis for the formation of dendrograms using the neighbor-joining, unweighted pair group method with arithmetic mean, minimum evolution, and maximum parsimony methods. The reliability of each tree branch node was estimated via the performance of 1,000 bootstrap replicates.

RESULTS

Tick infection

In total, 252 adult (n = 246) and nymphal (n = 6) ticks were collected from 4 reptile taxa. The observed ticks belonged to 3 different species of Amblyomma and are well known parasites of reptiles, i.e., Amblyomma fimbriatum and Amblyomma moreliae are distributed across Australia, Papua New Guinea, and the Philippines, whereas Amblyomma limbatum and Amblyomma moreliae are only found in Australia (Roberts, 1970). Pooling of the 252 ticks into same sex/host yielded a total of 187 samples for PCR analysis. From the 33 yellow-spotted monitored samples, 149 tick samples were collected; 25 samples were obtained from the 8 water pythons; 6 tick samples originated from each of the 6 frilled-neck lizards; and 7 samples were hosted by the 4 green tree snakes (Table I). Of the 187 samples for molecular analysis, 166 were A. fimbriatum ticks (88.8% of the entire tick collection), 12 (6.4%) were A. limbatum ticks, 3 (1.6%) were A. moreliae, and 6 (3.2%) were Amblyomma nymphs that were not identified to species level (Table I).

Ticks sampled from the monitor lizards were primarily female A. fimbriatum (n = 137, and 11 males), and 1 female A. moreliae. All 3 species of Amblyomma parasitized the water
TABLE II. *Hepatozoon* detection in tick samples.

<table>
<thead>
<tr>
<th>Tick species</th>
<th>No. of ticks collected</th>
<th>Hepatozoon DNA positive ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fimбриatum</td>
<td>166 148</td>
<td>18 95 93</td>
</tr>
<tr>
<td>A. limbatum</td>
<td>12 29</td>
<td>10 7 1 6</td>
</tr>
<tr>
<td>A. moreliae</td>
<td>3 29</td>
<td>13 3 2 1</td>
</tr>
<tr>
<td>Nymphs</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>187 152</td>
<td>29 108 96 9</td>
</tr>
</tbody>
</table>

pythons, with the majority being *A. fimбриatum* ticks (n = 15), followed by *A. limbatum* (n = 6) and *A. moreliae* (n = 2) ticks. An additional 2 water python tick samples contained *Amblyomma* sp. nymphs. Of the 6 samples collected from frilled-neck lizards, half were nymphs and half were male *A. limbatum*. Green tree snakes generated 7 samples, of which 1 was an *Amblyomma* sp. nymph (14.3%) and the remaining 6 were equally divided between *A. fimбриatum* and *A. limbatum*.

18S ribosomal RNA gene amplification

PCR screening targeting the 18S ribosomal RNA gene detected *Hepatozoon* sp. positivity in 57.7% (n = 108) of tick samples, from all 3 tick species (Table II). The majority of the *Hepatozoon* sp. positive tick samples were composed of *A. fimбриatum* 87.9% (n = 95). Seven (6.5%) of the positive samples originated from the *A. limbatum* ticks, of which 6 were male and 1 was female. All of the *A. moreliae* ticks (n = 3) and half of the 6 nymphal tick samples (n = 3) harbored the *Hepatozoon* sp. protozoa (Table II).

In terms of the host origin of positive ticks, 27 (81.8%) of the 33 monitors were infested with 1, or more, samples; 88 (81.5%) of the 108 total positive samples originating from this reptile. Five of the 8 (62.5%) water pythons sampled had 1, or more, positive samples, representing 13 (12%) of the total samples testing positive. Only 3 (2.8%) positive samples originated from frilled-neck lizards; however, this represented 75% of the 4 animals sampled. Of the 6 green tree snakes, 4 (66.7%) had positive tick samples representing 3.7% of the total.

Hepatozoon sp. sequence analysis

Six DNA samples extracted from ticks (1 *A. moreliae* from a water python, 1 *A. fimбриatum* from another water python, and 4 *A. fimбриatum* from monitors) were successfully sequenced using forward and reverse primers. The resultant sequences were aligned and then truncated where necessary to form consensus sequences and used in phylogenetic analysis. The sequences were submitted to NCBI GenBank, with accession numbers as follows: EU430231, *A. fimбриatum* from *V. panoptes* (577 bp); EU430232, *A. fimбриatum* from *V. panoptes* (574 bp); EU430233, *A. moreliae* from *L. fuscus* (523 bp); EU430234, *A. fimбриatum* from *V. panoptes* (924 bp); EU430235, *A. fimбриatum* from *V. panoptes* (570 bp); and EU430236, *A. fimбриatum* from *L. fuscus* (945 bp). BLAST analysis of each sequence varied. Two of the 4 sequences from *A. fimбриatum* ticks collected from a monitor host (EU430231 and EU430232) shared highest sequence identity to *Hepatozoon ayorgbor (>98%) and Hepatozoon felis* Spain 1 and 2 (>97%). The remaining 2 (EU430234 and EU430235) were most closely matched to the *Hepatozoon* species previously identified in reptiles (>99%), followed by *H. ayorgbor (>98%). The *A. fimбриatum* sample collected from the water python host (EU430236) also matched closest with *H. felis* Spain 1 and 2 (>97%) and *H. ayorgbor (>96%). The *A. moreliae* sample taken from a water python host (EU430233) shared closest sequence identity to a *Hepatozoon* species previously identified in reptiles (>99%), followed by *H. ayorgbor (>98%). Three of the samples that matched closest to the Northern Territory *Hepatozoon* species detected in reptiles all shared high sequence identity with one another, as did the remaining 3 that matched with *H. ayorgbor* and *H. felis* Spain 1 and 2, indicating that 2 distinct *Hepatozoon* species or genotypes were present within these ticks.

The phylogenetic tree for the sequences using all distance matrices and parsimony methods showed similar scenario (Figs. 1, 2). Comparisons between published 18S rRNA gene sequences of *Hepatozoon* sp. and related protozoan species confirm that the sequences belonged to *Hepatozoon* (Fig. 1). In the tree generated for the 18S rRNA gene comparing the 6 reptile tick genotypes with other *Hepatozoon* and protozoan species, the 3 genotypes matched most closely to *H. ayorgbor* and *H. felis* Spain 1 and 2, forming a monophyletic lineage in between a monophyletic sister group containing the 2 *H. felis* sequences and another composed of *H. americanum* and the Cupiria strain 2 of *H. canis* (Fig. 1). The remaining 3 sequences that shared close sequence identity to the Northern Territory reptile *Hepatozoon* species were present within 2 sister lineages composed entirely of the reptile *Hepatozoon* genotypes (Fig. 1). Two of the sequences originating from *A. moreliae* and *A. fimбриatum* ticks collected from a monitor and water python (EU430233 and EU430234) were grouped in 1 phylectic line and the other, from *A. fimбриatum* collected from a water python (EU430235), was grouped with the remaining sequences available for the Northern Territory reptile *Hepatozoon* species (Fig. 1).

When comparing the *Hepatozoon* sp. 18S RNA sequences obtained from the reptile ticks with members of the genus only, the topology of the tree was similar, but with some variations (Fig. 2). Once again the first genotype group matching closest to *H. ayorgbor* and the Spain 1 and 2 *H. felis* species formed a distinct monophyletic lineage group with high bootstrap support (Fig. 2). The location of this phylectic line did not vary and was positioned between the same monophyletic groups containing the frog species *H. catesbianae* in one, the *H. americanum* and the related *H. canis* Cupiria 2 strain in another (Fig. 2). The genotypes matching closest to the Northern Territory reptile *Hepatozoon* genotypes (EU430233–EU430235) differed in their placement, compared with the previous tree containing both *Hepatozoon* species and other protozoa (Figs. 1, 2). Another genotype (*A. fimбриatum*/V. panoptes, EU430234) formed a monophyletic group with *H. ayorgbor* and a species identified in the cotton rat (*Sigmodon hispidus*) (Fig. 2). Another genotype (*A. moreliae*/L. fuscus, EU430233) was grouped in a sister lineage to the first described, branching off at the base, with 1 of the Northern Territory reptile *Hepatozoon* sequences and 2 identified in bank voles (*Clethrionomys glareolus*) (Fig. 2). The last of the reptile-related genotypes (*A. fimбриatum*/V. panoptes, EU430235) was positioned in a monophyletic group containing only Northern Territory reptile sequences (Fig. 2).
Figure 1. Phylogenetic tree showing the classification of the Hepatozoon species detected in Amblyomma spp. ticks, collected from reptile hosts, among published Hepatozoon and protistan species. The closest relatives to the Hepatozoon sp. were used to confirm the placement of the species identified in this study within the genus (GenBank accession numbers shown). 18S ribosomal RNA gene sequences were aligned before analysis using neighbor-joining algorithm under the assumption of Kimura-2. All bootstrap values from 1,000 replications are shown on interior branch nodes.
Morphological analysis

Of the blood smears from 45 different reptile specimens, 16 had intraerythrocytic parasites (35.6%). The majority of the blood smears originated from the yellow-spotted monitors (n = 31), and, of these, 11 (35.5%) had erythrocytic parasites. The parasites were observed occupying the longitudinal length of the infected erythrocytes. In all 5 reptile species, only 1 parasite was visible per infected cell (Fig. 3A, B). In monitors, the erythrocyte morphology was altered and often distended longitudinally by parasite presence. The nuclei of the parasites were circular in shape and took up their entire width (Table III). Four blood smears originated from water pythons, of which 2 contained intraerythrocytic parasites. In the latter cases, the parasites were also observed occupying the longitudinal length of the infected erythrocytes and, in some cases, distorting the cell size (Table III). Three of 4 green tree snake blood smears exhibited parasite infection (Fig. 3A, B). The longitudinal length of infected cells was also affected by the parasites, often pushing the red cell nucleus to one side (Table I; Fig. 3A, B). The
infecting parasites were also observed distorting the size of the erythrocytes, but, unlike infections in the other 2 reptiles, the nuclei did not occupy the width of the observed parasites. Gametocytes were at no stage observed emerging, or free, from erythrocytes (exoerythrocytic) in any of the blood smears.

DISCUSSION

The present study reports the presence of *Hepatozoon* sp. DNA in ticks collected from 4 reptile hosts in the Northern Territory, Australia. Sequence analysis demonstrated high levels of identity (>99%) with that previously reported for a *Hepatozoon* species found infecting the same reptile population in the same region (Ujvari et al., 2004). Species of *Hepatozoon* are considered to be the most frequent hemoparasites of reptiles (Smith, 1996), and transmission is believed to occur via either a hematophagous vector or ingestion of an infected host (Smith, 1996). However, host specificity and method of transmission has been greatly debated (Telford et al., 2001) and has been plagued by morphological inconsistencies and absence of genetic information (Mathew et al., 2000; Sloboda et al., 2007). The only confirmed case of tick-associated *Hepatozoon* sp. transmission has been that of *H. kisrae*, which infects *Agama stellio*, and is transmitted by the tick *Hyalomma cf. aegyptium* (Paperna et al., 2002). Mosquitoes are considered to be the pri-
TABLE III. Measurements (micrometers) of gametocytes observed in 3 reptile species.

<table>
<thead>
<tr>
<th>Host</th>
<th>Yellow-spotted monitor (Varanus panoptes)</th>
<th>Water python (Liaisia fuscus)</th>
<th>Green tree snake (Dendrelaphis punctulatus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected cell</td>
<td>Erythrocyte</td>
<td>Erythrocyte</td>
<td>Erythrocyte</td>
</tr>
<tr>
<td>Gametocyte length</td>
<td>10.0–10.6</td>
<td>9.4–10.6</td>
<td>10.0–11.2</td>
</tr>
<tr>
<td>Gametocyte width</td>
<td>2.5–3.7</td>
<td>1.2–1.9</td>
<td>3.2–3.7</td>
</tr>
<tr>
<td>Nucleus length</td>
<td>2.8</td>
<td>2.5–2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Nucleus width</td>
<td>2.5</td>
<td>2.5</td>
<td>2.4–2.5</td>
</tr>
</tbody>
</table>

Primary vectors for Hepatosezon species in ophidian hosts, with low specificity being observed for a range of mosquito genera via experimental transmission (Sloboda et al., 2007).

The detection of Hepatosezon sp. DNA in 57.7% of the 3 Amblyomma species sampled in this study, coupled with close sequence identity (>99%) with the Hepatosezon species previously found infecting the Northern Territory reptiles (Ujvari et al., 2004; Ujvari and Madsen, 2005; Madsen et al., 2005), suggests the source of the reptile infection needs to be clarified to assess whether it originated from the ticks (either through tick feeding or ingestion), or other invertebrates, or via the ingestion of intermediate prey items (such as frogs, lizards, or small mammals). Both females and males of the 3 Amblyomma tick species in this study were found to be harboring Hepatosezon sp., with 81.8% of monitors (n = 33), 75% of frilled-neck lizards (n = 6), 66.7% of green tree snakes (n = 4), and 62.5% of water pythons (n = 8) hosts sampled infested with 1, or more, positive tick samples. The lowest prevalence of Hepatosezon sp. detection in the tick samples were collected from the 8 water pythons, although still high at 62.5%. Establishing cyst formation in the ticks screened in this study and Hepatosezon sp. detection in other invertebrates would assist in establishing the source of water python infection. Screening of the dusky rat (Rattus collettii), the preferred mammalian prey item composing up to 95% of the water python diet (Shine and Madsen, 1997), would assist in establishing secondary transmission.

Blood smears confirmed parasitic infection in the 4 reptiles from which the ticks were collected for this study, as well as in an additional species, the blue-tongued lizard. Although the observed level of parasitemia (35.6%) was lower than the 66.0% infection of Hepatosezon hinhinae observed in the large Australian skink (Eulaemus quoyii) in central Queensland, Australia (Salkeld and Schwarzkopf, 2005). Previously, molecular screening by Madsen et al. (2005) and Ujvari et al. (2004) in the same animals sampled in this study confirmed the parasite responsible for observed parasitemia as being a species of Hepatosezon.

Although not proven that the Hepatosezon sp. observed in the reptiles originated from the ticks, it is of note that the highest detection of Hepatosezon sp. in the ticks and parasitemia in the host, was observed in the green tree snakes, with 66.7% (n = 4/6) of the snakes harboring positive ticks and 75% (n = 3/4) of snakes possessing observable intraerythrocytic gametocytes (Fig. 3A, B). In the water python, 62.5% of the snakes had Hepatosezon sp. positive ticks and 50% possessed intraerythrocytic parasites. One of 4 blood smears originated from a python from which ticks had also been collected, and in this case Hepatosezon sp. was detected in both the ticks and blood.

Genetic information for the 18S rRNA gene of Hepatosezon sp. is available for very few species, making phylogenetic comparison difficult (Mathew et al., 2000; Sloboda et al., 2007). Six positive sequences obtained in this study represented 2 distinct genotypes, with 3 sequences in each. The first 3 in group 1, shared greatest sequence similarity to Hepatosezon sequences obtained from the same reptile population described by Ujvari et al. (2004) (Figs. 1, 2). The second closest match was to H. ayorgbor (>98%), a recently identified parasite, detected in 78.2% (n = 53) of blood smears from Python regius from Ghana, Africa (Sloboda et al., 2007). In contrast to H. ayorgbor, the Northern Territorian reptile Hepatosezon species was characterized by the presence of only 1 gamont in infected erythrocytes, with a much longer gametocyte in all infected cells (Sloboda et al., 2007).

The effect of the Hepatosezon species in water pythons, although considered to be a rare phenomenon in snakes (Santos et al., 2005), is similar to that seen in accidental infections in reptile hosts kept in captivity (Wozniak et al., 1996). Because prevalence is so high in the water python population (Ujvari et al., 2004; Ujvari and Madsen, 2005; Madsen et al., 2005), it is unlikely that water pythons are accidental hosts. Rather, the infection is most likely the result of a recent introduction, explaining the observed virulence. Future molecular analysis could resolve the origin of this Hepatosezon species and shed light on the level and timeframe of the infection in water pythons. Phylogenetic comparison of the 3 genotypes within group 1 to one another, and with the sequences in GenBank, firmly group them with the previously detected Northern Territory reptile Hepatosezon species, followed by H. ayorgbor and rodent Hepatosezon species (Figs. 1, 2). The grouping of rodent Hepatosezon species with these reptile species has a valid explanation, as small mammals, including rodents, are often preferred prey items for large reptile predators. Although sequence identity was very high (99.8% by pairwise comparison), all 3 genotypes in the group showed small sequence polymorphisms compared to one another and the 18S rRNA Hepatosezon sp. sequences obtained in the earlier study by Ujvari et al. (2004) from the reptile hosts. Despite the slight polymorphisms observed between the sequences from the hosts' blood and from the vector ticks, they were much more similar to one another compared with the 2 second closest matches, and this may be a reflection of the low host specificity observed for the Hepatosezon species.

The other 3 sequences in group 2 showed a much greater level of identity (>99.9 or 100%) to each other and compared with group 1 genotypes, they differed considerably, indicating the presence of 2 Hepatosezon sp. in the A. fimbriatum ticks collected from the reptiles. These genotypes shared greatest sequence identity with H. ayorgbor and H. felis Spain 1 and 2, found in domestic cats (Criad-Fornelio et al., 2006). Hepatosezon felis has been morphologically identified as infecting a wide range of domestic and wild felids worldwide, but it is rarely associated with severe pathology (Perez et al., 2004). However, very little is known of H. felis hosts, its life cycle, or which vectors and/or intermediate hosts may be involved in its transmission (Perez et al., 2004). The phylogenetic trees generated, comparing group 2 with species of Hepatosezon and oth-
er protozoans (Fig. 1), as well as within the genus itself (Fig. 2), partly agrees with the BLAST analysis. In both cases, the trees grouped the second genotype with the 2 H. helis strains with high bootstrap support (Figs. 1, 2), as well as with H. americanum and H. canis Curupira 2, a pair of well studied pathogens of canids, both capable of causing fatal disease (Shaw et al., 2001; Ewing et al., 2002). These analyses support the suggestion that the members of group 2 are a different species than those capable of infecting the reptile hosts. Furthermore, it is possible that these parasites infect prey species of the larger reptiles, such as small mammals (rodents or marsupials) and amphibians. This is further supported by the absence of these genotypes in the previous study, which directly screened the reptile blood (Uyari et al., 2004). The lack of overall genetic material available for most of the Haplotozoa species makes it difficult to undertake a comprehensive comparison and characterization of the 2 genotypes identified in this study; additional genes need to be targeted and sequenced to allow the relationships between species within the genus to be clarified.

The origin of the reptile infection identified in the present study is an interesting question. As identified here, Haplotozoa sp. was detected in all 3 ticks species, including 50% of nymph samples tested. The high prevalence of infection in the reptiles in the Northern Territory observed here and in previous research (Uyari et al., 2004) provides an opportunity to investigate the host suitability of these tick species. The infection of so many different reptiles with the same Haplotozoa species strengthens the hypothesis that some members of the genus are capable of exhibiting low host specificity, inhibited only by host geographic distribution and access, rather than host genetic relation (Sloboda et al., 2007). The findings of the present study highlight the opportunities that exist in the Northern Territory environment to research the interaction of 3 Amblyomma tick species with a range of Haplotozoa sp.-infected reptilian hosts. These interactions also allow for the study of differing host responses to Haplotozoa sp. infection, including those associated with pathology (Uyari et al., 2004; Madsen et al., 2005) and whether the ticks involved are capable of developing an infection and playing a role in the parasite's life cycle.

LITERATURE CITED

UYARI, B., T. MAIDEN, and M. OLSSON. 2004. High prevalence of Haplotozoa spp. (Apicomplexa, Haplotozoidae) infection in water py-
ths (Liasis fuscus) from tropical Australia. Journal of Parasitology 90: 670–672.