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“I don’t pretend we have all the answers. But the questions are certainly worth

thinking about.”
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Abstract

Reading the Waves: Volatility Analysis and the Hilbert-Huang Transform

by Carson Drummond

Countless processes, both natural and man made are driven by seemingly random pro-

cesses. Measuring the randomness which dominates everything from the movements of

stock market prices to the recordings on a seismograph is the first step towards un-

derstanding it. This thesis focused on measuring the volatility of financial time series,

however the potential applications of the techniques developed herein are not limited to

the financial realm.

The Hilbert-Huang Transform (HHT) is a powerful new tool which is well suited for

the analysis of non-stationary and nonlinear time series. The literature exploring its po-

tential applications to the analysis of financial data is surprisingly sparse considering its

apparent suitability. This thesis developed and tested several techniques for estimating

time series volatility, all of which use the HHT to break down financial data into simple

wave like structures which facilitate analysis.

The estimation techniques developed were tested on low frequency data, namely ten

years worth daily data for the NASDAQ and All Ords Indices. A simulated study to

emulate high frequency data was also carried out to study volatility estimation in the

presence of microstructure noise. Finally, several estimation techniques were used to give

one step ahead predictions on the AUD/USD, GBP/USD and EUR/USD exchanges, a

simulated options market was then set up in which differing predictions compete against

one another.

The HHT based estimators were found to be competitive with the alternatives tested

in the low frequency realm, with the added advantage that the technique is intuitive

and can handle unevenly spaced data with ease. The HHT procedure was used as a low

pass filter in order to sift off market microstructure and effectively measure volatility

when the true price was obfuscated by market frictions. Finally, the construction of a

simulated options market operating on real high frequency foreign exchange data showed

that this filtering approach was also effective when real data was used.

. . .
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Chapter 1

Introduction

Our lives are governed by random processes, whether it’s the stock market, weather pat-

terns or quantum behaviour we are surrounded by uncertainty at all times. This thesis

seeks to shed some light on the nature of randomness, with a focus on financial time

series volatility, through the lens of a powerful new tool, the Hilbert-Huang Transform

(HHT) developed by Huang et al. [1].

A system contains randomness if not all parts of it are fully deterministic, i.e. ex-

actly how a random process will behave can not be fully described in advance. Not fully

described —luckily this still leaves much room for some particularly useful descriptions.

The descriptive which most concerns the topic of this thesis is the volatility, best thought

of as the magnitude of the uncertainty. At this point it is important to distinguish be-

tween uncertainty and risk. While risk may be more concerned with a negative outcome,

i.e. a large loss made on an investment, the volatility is akin to the uncertainty and is

more closely related to the magnitude of the movement, not its direction. A measure

of risk that focuses more closely on negative returns was proposed by Markowitz [2]

however it has not been widely adopted. Although conceptually distinct, volatility and

risk are inextricably linked, thus to manage risk one must also understand volatility.

Following the stock market crash of 1987 the first Basel Accord made understanding

volatility a matter of policy for many financial institutions which were henceforth re-

quired to manage their exposure to risk in terms of volatility. Unfortunately, recent

1



Chapter 1. Introduction 2

events in stock markets around the world show that even the experts still have a thing

or two to learn about the nature of volatility.

One reason why there is so much interest in understanding volatility is because the

volatility of a stochastic system impedes on our ability to give accurate forecasts. The

more volatile a system, the more rapidly a forecast becomes addled by uncertainty. It

quickly becomes apparent that the confidence placed in any such forecast is closely linked

to an accurate measure of volatility. This is true for all manner of stochastic systems,

it is why long term weather forecasts are notoriously unreliable and economists’ predic-

tions are often taken as opinions rather than facts.

The type of stochastic system that is investigated over the course of this thesis is a

time series, this is simply a sequence of points or data which come in some order. Ex-

amples of a time series include the temperature of your city measured daily, the position

of a seismograph needle during an earthquake or the current and voltage output of your

computer’s power supply over the course of a few seconds. Thus, any useful insights

into the nature of time series volatility will not be restricted to financial mathematics,

but to a broad swath of scientific disciplines.

To examine volatility in a practical setting, a focus is placed on financial time series.

This is partly because there is a wealth of available data in the area, but also because it is

a place where forecasts on stochastic systems are tested and refined on a daily basis and

any contributions to this field are likely to have a maximal impact. Volatility estimates

are also very important in option pricing, where the price of the financial instrument

is directly affected by the perceived variability of an underlying stock. Nowhere is this

more evident than the VIX Index, which trades in perceived uncertainty itself.

Methods for determining local volatility fall into two categories, time series meth-

ods which base their estimate on the underlying historical data and implied volatility

methods, which calculate the theoretical volatility needed to account for the price of an
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option under a particular choice of pricing model. The time series approach to volatility

modelling assumes that some important characteristics of the volatility can be extracted

from the underlying historical data and as Poon and Granger [3] put it, these charac-

teristics can provide some insight into forward or future volatility. Thus any accurate

means of measuring past volatility also has a place in volatility forecasting.

1.1 Defining and Measuring Volatility

Firstly, it is important to clarify that our objective is to measure the volatility of the

log returns of a financial time series. It is standard practice in much of the financial

literature to use the log returns and then treat them as normally distributed. The log

return at time t is given by:

rt = log(Pt)− log(Pt−1), (1.1)

where Pt is the price or value of some underlying asset at time t. For notational con-

venience, log(Pt) is denoted pt henceforth, so the log returns can also be expressed as:

rt = pt − pt−1.

If one is to assume that the volatility is constant over time, estimating the volatility

from N return observations would be a simple matter of finding the Sample Variance

SV σ̃2, which is given by:

SV σ̃2 =
1

N − 1

N∑
t=1

(rt − r̂)2 , (1.2)

where r̂ is the arithmetic mean of the returns. Note that r̂ is assumed to be zero for many

financial time series sampled daily or at higher frequencies. However, the assumption

of constant volatility is rarely justified and there has been much work towards finding

an accurate and meaningful measure of a time varying variance σ̃2
t . It is worth noting

at this point that σ̃2 only represents the second moment of the data and that it is of
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limited usefulness without considering the probability density function that it is asso-

ciated with. The assumption of a log-normal return distribution is also questioned in

much of the literature as the log returns are often observed to be fat tailed or leptokurtic.

To understand the continuous time analogue of Equation (1.2) we let the log of the

frictionless price follow

dpt = σtdW
(1)
t , (1.3)

where W
(1)
t is a standard Brownian motion, the superscript is merely to distinguish this

Brownian motion from those used to drive a stochastic volatility model described in

Chapter 4. The instantaneous or spot volatility, denoted σt, has a continuous sample

path. It is assumed that the σt and W
(1)
t processes are uncorrelated. One period (often

one trading day for convenience) of Integrated Volatility (IV) is defined as:

IVt ≡
∫ t

t−1
σ2
τdτ. (1.4)

This definition of IVt is sometimes referred to as the quadratic return variation. If

the discretely sampled returns are serially uncorrelated and the sample path for σt is

continuous, it follows from the theory of quadratic variation described by Merton [4] &

Karatzas and Shreve [5], that

lim
1/h→∞

∫ t

t−1
σ2
τdτ −

∑
i=1,...,1/h

r2
t−1+ih(h)

 = 0, (1.5)

where h is the increment size between samples, i.e. a period of length 1 has 1/h many

return observations. The key result from this is that a variable volatility is theoretically

observable at a time t provided that the sampling frequency is high enough. Andersen

et al. [6, 7] have shown that even though the spot volatility is not a directly observable

variable, estimations of the integrated volatility can be closely estimated by the easily

calculable Realized Volatility (RV), which is covered in more detail in Chapter 2. Thus,

the goal of much of this thesis and much literature is to reconstruct the path of σ2
t for a

better understanding of market dynamics, to improve volatility forecasts, manage risk
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more effectively and price options with higher accuracy.

1.2 Low and High Frequency Volatility Dynamics and Mea-

surement

This thesis can roughly be split into two sections, volatility estimation in the low fre-

quency domain and volatility estimation in the high frequency domain. The reason for

this division is that the problems faced at each time scale differ, as do the approaches

needed to overcome them. The low frequency domain is largely restricted to data col-

lected on the daily scale, like the closing price and opening price of an index, stock or

currency etc. The high frequency realm on the other hand involves orders of magnitude

more data and usually includes samples anywhere from one every fifteen minutes to only

milliseconds apart.

1.2.1 Low Frequency Volatility Dynamics

There is an escalating struggle between those that discover interesting new market dy-

namics and those that try to model them. Like lepidopterists collecting butterflies,

financial practitioners delight in naming new market phenomena and challenging aca-

demics to accurately describe them before pinning them down in a useful model. The

first to understand any new market dynamic will often have an edge over their compe-

tition, this has led to considerable research into all manner of market dynamics and an

arms race between algorithmic trading strategies that is evolving daily.

As previously stated, volatility appears to change over time in financial markets,

rendering the standard deviation of past returns of limited use. One of the simplest

tools to overcome this is simply to take the standard deviation over a shorter period of

time and trade off an increase in sample error (due to a smaller sample size) against an
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increase in contemporariness. This approach yields the simple moving average estimate

of volatility described in Chapter 2.

Many financial returns series also appear to have the property of long memories which

results in the autocorrelations of variances staying positive for a long time, i.e. shocks

in the volatility process tend to persist. Methods to deal with this phenomenon include

the popular Exponentially Weighted Moving Average (EWMA) model (see Chou et al.

[8], Ding and Meade [9], Wilmott [10]) and the more general form of Auto Regressive

Conditional Heteroskedasticity (ARCH) models, first described by Engle [11].

The phenomenon of volatility clustering, described by Mandelbrot [12] as “large

changes tend to be followed by large changes, of either sign, and small changes tend to

be followed by small changes” can be described by ARCH models with large lags but

is more parsimoniously described by the Generalized Auto Regressive Conditional Het-

eroskedasticity or GARCH model, see Bollerslev [13] for more on the origins of GARCH.

Another advantage of the GARCH model is that it easily extends to accommodate even

more interesting phenomena.

The leverage effect is a phenomenon described by Black [14] as the negative corre-

lation that exists between recent returns and volatility. Typically, increases in asset

prices lead to decreasing levels of volatility and vice versa. The effect is also usually

asymmetric, i.e. a drop in an asset price would lead to larger change in volatility than

a corresponding increase in asset price. Models built to take this into account include

the GJR-GARCH model by Glosten et al. [15] and the EGARCH model by Nelson [16].

There is also the ARCH-in-Mean type modification by Engle et al. [17] to take into

account a similar phenomenon known as the volatility feedback effect. Note that the

volatility feedback effect leads to the same observed correlation between asset prices and

volatility as the leverage effect, however as Ait-Sahalia et al. [18] put it, “[the] effect is

consistent with the same correlation but reverses the causality: increases in volatility

lead to future negative returns”. Indeed the catalogue of volatility dynamics and their
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corresponding ARCH / GARCH formulations seem to be endless, for more information

see two excellent review articles on the subject by Poon and Granger [3] & Andersen

et al. [19].

For financial forecasters, one aspect that must be considered is not just the accuracy

of a volatility estimate but also its time scale, what might be an accurate account of daily

volatility levels might be of less use to a long term forecaster than a less accurate record

of monthly volatility estimates. This leads to an interesting property of financial time

series; what is considered noise and what is considered a genuine movement in volatility is

often just a matter of scale. This phenomenon is caused by volatility structures not being

preserved after intertemporal aggregation, i.e. volatility tends to lose its self similarity

when viewed at different time scales. This property’s effect on volatility forecasts using

daily vs monthly data was described by Figlewski [20] however it is a more dominant

phenomenon when dealing with high frequency returns and will be revisited in this

context during Chapters 4 & 5. This raises a perplexing question; at any particular

scale, which changes in volatility can be described as noise and which are legitimate

changes in variance?

While there are techniques available to determine volatility in the low frequency

realm, none of them are perfect. The main drawback of many existing and popular

techniques is that assumptions made on the underlying behaviour of the time series may

introduce artefacts which can artificially inflate or retard volatility estimates. Further-

more, many of the models described so far need large amounts of in-sample data for the

purposes of parameter fitting. There is room for more non-parametric methods which

require no lead in data for parameter fitting and make no assumptions on the underlying

process.

To address the points made above, one of the aims of this thesis is to construct a

parameter free volatility estimate which is less susceptible to the kinds of artefacts which

can result in misleading volatility estimates.
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1.2.2 High Frequency Volatility Dynamics

High frequency volatility estimation is also an increasingly interesting topic for re-

searchers and of growing practical importance for market participants. Recent increases

in the availability of high frequency financial tick data has inexorably led to the high

frequency trading strategies that take advantage of it. There is an inherent risk in most

trading strategies, even if the exposure is for a matter of seconds. Some of the trading

strategies which expose themselves to short term risk include asset pricing, statistical ar-

bitrage, market making, trading signal generation and a growing plethora of autonomous

trading strategies. Of paramount importance to the successful implementation of these

strategies is a very recent and reliable measure of volatility.

Unfortunately in the high frequency realm, measuring volatility doesn’t necessar-

ily become easier as the frequency of the available data increases. For many kinds of

financial markets, e.g. stock indices and Foreign eXchange (FX) rates, as the sample fre-

quency increases the nature of the random process appears to change. This breakdown

of self similarity is due to price movements after long time intervals being driven by a

perceived change in the true price (or frictionless price) of the asset, while price move-

ments after short intervals are dominated by microstructure effects (market frictions).

These microstructure effects, or market frictions include:

• price discretisation; e.g. when asset prices are only being traded to the nearest

cent,

• bid ask bounce; anyone wanting to initiate a buy or sell order of an asset must

cross the ‘spread’ which is the difference between the lowest sell quote and the

highest buy quote,

• heterogeneous beliefs; traders acting on different, often opposite beliefs may cause

prices to swing rapidly,

• simultaneous quotations & trades occurring on different networks or markets; in-

formation collected on asset prices over different trading networks can show the

one asset with two prices simultaneously.
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Typically, the whole collection of microstructure effects are accounted for in the literature

by adding the Independent and Identically Distributed (IID) noise term ut in (1.6), where

pt represents the unobservable frictionless log price and p̃t the noisy logarithmic price.

p̃t = pt + ut (1.6)

Up until this point no distinction has been made between the observable and the

frictionless price because at low frequencies market frictions contribute little towards

the observed returns and so pt ≈ p̃t under these circumstances. However, as the time

between observations gets smaller, market microstructure effects make up a larger pro-

portion of any observed change in price. Thus, the frictionless returns are increasingly

obfuscated under the observed returns at high frequencies. Hence, we are presented

with a dichotomy. Ideally, more observations would correspond to a lower stochastic

error within a volatility measurement; on the other hand, a higher sampling rate can

introduce biases due to microstructure effects.

Much progress has been made in the attempt to overcome the difficulties in high

frequency volatility estimation. Most significantly, quadratic variation theory allows us

to measure the integrated volatility using squared daily returns, see Andersen et al. [6].

While empirical analysis by Martens [21] has shown that this approach does yield better

estimates than that obtained by methods that use daily data, it does have a tendency

to break down when microstructure noise becomes significant, see Andersen et al. [22],

Bandi and Russell [23], Zhang et al. [24]. Corsi et al. [25] found that this breakdown in

the realized volatility measure at high frequencies can be explained by the autocorrela-

tion structure of the returns data. This phenomenon is most commonly observed in the

negative autocorrelation of high frequency returns which results in positive anomalous

scaling for volatility estimates in FX markets. Conversely, positive autocorrelation in

returns leads to negative anomalous scaling of volatility estimates in many stocks and

indices.
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Several suggestions have been put forward to solve the problem of microstructure

noise, firstly Andersen et al. [6], [26] put forward the idea of sparse sampling, which ef-

fectively decreases the proportion of the return volatility which is due to noise. However,

it was shown by Zhang et al. [24] that this is not an adequate solution to the problem.

This led to the development of the Two Scale Realized Volatility (TSRV) estimator,

which was put forward by Zhang and later refined by Ait-Sahalia et al. [27]. There have

also been several proposals for consistent Kernel based estimators, most notable are the

contributions made by Barndorff-Nielsen et al. [28] whose kernel estimators were shown

to be robust to endogenous and dependent noise as well as endogenously spaced data.

The method of applying filters has also been applied to the quandary of microstructure

noise, in particular Hansen et al. [29] were able to produce a consistent estimator of the

integrated volatility using the Moving Average (MA(1)) structure outlined by Ander-

sen et al. [26] and Ebens [30]. Finally, a conceptually similar approach to the method

developed in this thesis was taken by Curci and Corsi [31] in which their Discrete Sine

Transform (DST) diagonalised a moving average process into an orthonormal basis, from

which the microstructure and actual price could be separated.

The HHT based volatility estimates proposed in this thesis are also useful in the

realm of high frequency volatility estimation. It is shown that the empirical mode de-

composition process which forms a key component of the HHT, is capable of filtering

out a proxy for the ‘true’ or frictionless price from the noisy observable price which

has been obfuscated by the effects of market microstructure. The proposed approach

is also capable of delivering spot volatility estimates as opposed to the estimations of

integrated volatility that RV based techniques provide, with further improvements this

feature may be of great interest to those with an interest in ultra high frequency volatility.
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1.3 A New Tool in the Toolbox

The Hilbert-Huang transform is a powerful new tool for the analysis of non-stationary

and nonlinear time series. Its adaptive and data driven nature make it highly flexible,

this has driven its use in a growing number of fields. The HHT is comprised of two parts,

first the Empirical Mode Decomposition (EMD) breaks a signal down into simple wave

like components that are sorted by frequency and then the Hilbert transform is applied,

yielding instantaneous amplitudes and frequencies of the simple waves. One of the main

advantages of using this transform is the ease with which the information from the HHT

can be interpreted. Due to the nature of the frequency and amplitude information the

process extracts, it is natural to make a comparison to Fourier methods, as indeed many

have, Huang et al. [1], Donnelly [32] to name a few. While Fourier techniques are ex-

tremely useful and are perfect for transforming signals from the time-amplitude domain

into the amplitude-frequency domain, they suffer from the drawback that this transform

is done at the expense of the time domain. Thus, where the Fourier transform is lacking,

is in the identification of changes in frequency with respect to time.

While Fourier techniques transform a signal from the time domain into a frequency

domain signal they cannot transform back into the amplitude-time domain without as-

suming that the signal is periodic and stationary. Thus, the main advantage of the HHT

is that the time domain is preserved, allowing for not only the identification of different

frequencies in a signal, but also their temporal location. This property is particularly

attractive when analysing non-stationary time series which, by definition change their

properties over time. There are also Fourier methods which analyse only a small sliding

window of data at a time, this procedure can maintain the time domain to an extent,

however there is a costly trade off between frequency and temporal resolution which is

difficult to overcome.

Wavelet transforms are another tool which can yield frequency information without
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compromising the time domain however they are described by Huang et al. [1] as suf-

fering from uniformly poor resolution at different time scales because it is restricted

by essentially the same dichotomy as windowed Fourier transforms, i.e. one may have

high temporal resolution or high frequency resolution but not both simultaneously. This

being said, the literature on wavelets is growing rapidly and new wavelet decomposition

techniques are challenging this unfortunate dichotomy regularly. Comparisons between

the HHT, or more strictly the EMD which underpins it and wavelet transforms seem

more apt, indeed Flandrin et al. [33, 34] has made a strong case for the the EMD be-

having like a diadic filter bank, resembling some wavelet decompositions.

One of the more appealing attributes of the HHT is its seemingly natural ability to

extract periodic signals even when they are hidden by high levels of noise, see Li and

Meng [35]. This ability to perform hidden feature extraction was given more weight by

the work of Wu and Huang [36] who were able to assign a statistical significance to the

these extracted trends.

Flandrin et al. [33, 34] & Wu and Huang [37] further explored the properties of the

EMD when applied to noisy and stochastic signals and much of their methodology is

employed over the course of this thesis to examine the spectral properties of the wave

like structures that are produced by the EMD process, Chapter 2 elaborates further on

these developments.

The HHT and the EMD process which underpins it, have found many and varied

applications in a number of fields. In mechanical engineering the HHT has been used by

Liu et al. [38] to identify faults in gearboxes by analysing the telltale changes in vibration

which may indicate a cracked tooth or a some other gearbox related malady. In electrical

engineering the HHT is becoming an increasingly popular method for monitoring power

quality, see Senroy et al. [39], Yalcin et al. [40]. Due to the adroit manner in which the

EMD process handles seasonal data it is has found use as an analytical tool in the area

of climate science, see Molla et al. [41], ocean waves Rao and Hsu [42], Hwang et al.
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[43] and pathology Cummings et al. [44]. The EMD and HHT processes are also slowly

gaining in popularity as tools in the financial world due to the complex, occasionally

seasonal, and reliably chaotic nature of financial data. The first and most natural appli-

cation of these new tools is seasonality analysis, Zhang et al. [45], Crowley [46], Huang

et al. [47], all used these techniques to break down financial time series data into seasonal

components for easier analysis.

The HHT has even been used as a financial volatility indicator in the past, in par-

ticular by Rao and Hsu [42], Huang et al. [47]. These approaches are often referred to

as variability or fluctuation measures as they do not give a volatility measure which

can be interpreted in terms of the variance. Thus the volatility estimates they produce,

while being useful volatility indicators, are harder to fit into existing financial models

and so there exists an enticing gap in the literature where a usable HHT based volatility

estimator should be.

The HHT specialises in analysing nonlinear and non-stationary time series, two prop-

erties which make it an ideal candidate for the backbone of a volatility estimator. In this

thesis the HHT is used as an actual measure of financial time series variance for the first

time. The only HHT based volatility measure conceptually similar to the one introduced

in this thesis was created by Wen and Gu [48] for earthquake simulation and modelling,

however its full potential as a volatility estimator was left largely unexplored. In this

thesis the HHT is shown to be capable of extracting the spot volatility σ2
t which is easily

interpreted, rather than the less tractable volatility indicators it had hitherto produced.

Since the HHT procedure has not been used in this context before, the goal of this thesis

is not to necessarily create the best volatility estimator possible, but rather to evaluate

the viability of the HHT procedure as a spot volatility estimator and to examine the

nature of financial time series dynamics through a new and powerful analytical tool.
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1.4 Thesis Outline

• Chapter 2

This chapter goes into more detail regarding a selection of popular volatility es-

timation procedures which were mentioned in the introduction. The essential

background information needed to understand the Hilbert-Huang transform as

well as the volatility estimator derived from it are also discussed in detail. The

components of the HHT procedure are also used to perform some analysis on de-

terministic and stochastic time series in order to familiarise the reader with some

of the properties of the HHT procedure. This chapter also covers some of the

testing and comparison procedures and some of the difficulties faced therein.

• Chapter 3

This chapter introduces an intuitive means of estimating the low frequency (daily)

historical volatility using the HHT. The HHT procedure is used to generate volatil-

ity estimates which are then compared against estimates given by a handful of con-

temporary spot volatility estimators as well as the realized volatility which is used

as a proxy for the true volatility. The proposed procedure is applied to ten years

worth of data from the All Ordinaries (All Ords) and the National Association of

Securities Dealers Automated Quotations (NASDAQ) Indices.

• Chapter 4

This chapter contributes to both low and high frequency volatility measurement

by first proposing and testing an improved HHT based method of measuring the

volatility of a time series. Firstly a test is proposed in order to examine and

quantify the trade off between temporal resolution long term accuracy. The HHT

based volatility estimate is then adapted to handle time series with microstructure

noise and its effectiveness is thoroughly tested using both simulated and data in

this chapter. Monte Carlo techniques are employed to simulate three different

kinds of time varying volatility for different levels of market microstructure noise.

• Chapter 5

This chapter tests a variant of the procedure developed in Chapter 4, using real
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high frequency FX data. The inherent difficulty of assessing the estimation of

a latent variable is overcome by setting up a simulated options market, which

enabled an effective comparison based evaluation under real market conditions.

• Chapter 6

This chapter concludes the thesis. There is a summary of progress made and a

some thoughts are shared on the possible directions of future work.



Chapter 2

Background

This chapter is split up into three sections, the first section covers some of the most

widely practiced methods for calculating volatility at both low and high frequencies.

The second section describes the Hilbert-Huang transform and some analysis is into

its properties is provided. Finally, section three discusses some of the problems faced

when analysing a latent variable such as volatility and presents some of the measures

commonly used to evaluate model accuracy.

2.1 Volatility Measures

This section introduces some of the problems faced when measuring historical volatility

and clarifies which variants of each model have been used in this study. A descrip-

tion of the Moving Average (MA), Exponentially Weighted Moving Average (EWMA),

Generalized Autoregressive Conditional Heteroskedasticity (GARCH(1,1)) and Realized

Volatility (RV) models are given.

2.1.1 The Moving Average Volatility Model

The MA volatility estimate is calculated by sliding a window of interest along a time

series and calculating the sample variance of points within this moving window. When

this technique is applied a sliding window length must be chosen, this parameter can

16
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greatly alter the volatility observed at any point. While the MA method may be suit-

able for describing the volatility of some time series, it suffers from the drawback that

one may only increase long term accuracy with a decrease in temporal resolution. This

drawback gives rise to artefacts such as ghosting and plateauing, in which a short term

spike or trough in volatility will be equally represented along an entire window length.

Overly inflated or retarded volatility estimates persist until the short term disturbance

is no longer included within the sliding window. This plateauing effect is clearly visible

in Figure 2.1, where short term fluctuations in price are followed by a long period of

overly high volatility estimates. The issue with poor temporal resolution and plateauing

renders the MA method of limited use, Wilmott [10] suggests that its use is confined

to cases with slowly varying volatility. The MA variance of the log returns r, usually

calculated on market closing prices is given by:

MAσ̃2
n(N) =

1

N − 1

N−1∑
j=0

(rn−j − r̂)2, (2.1)

where r̂ is the expected (or mean) return which is usually assumed to be zero when the

sampling rate is daily or shorter and MAσ̃2
n(N) should be understood as the variance

on the nth day where N is the sliding window length . Note that the ∼ symbol above

a character is often used to denote estimates throughout this thesis and that the MA

standard deviation is simply the square root of (2.1).

2.1.2 The Exponentially Weighted Moving Average Model

EWMA is a popular and effective technique for calculating daily variances, it largely

overcomes the plateauing effects of the MA model by weighting the importance of returns

based on their time of arrival, with the most recent returns given higher weights. The
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Figure 2.1: All Ords Index prices from 1st Jan 2000 to 31st Dec 2004 (bold) and a
simple MA volatility estimate with a window length of 50 days (dashed).

EWMA procedure for estimating volatility is given by:

EWMAσ̃2
n(λ) = (1− λ)

∞∑
j=0

λjr2
n−j ,

or, written recursively:

EWMAσ̃2
n(λ) = λEWMAσ̃2

n−1(λ) + (1− λ)r2
n. (2.2)

where EWMAσ̃2
n−1(λ) is the last variance estimate, r2

n the most recent squared return and

λ the decay rate. For daily returns it is common to let λ = 0.94 and for monthly returns

it is common practice to let λ = 0.97 because these values were found to minimise mean

square errors when performing one step ahead volatility forecasts, this is often referred

to as the RiskMetrics model for volatility modelling, see Longerstaey and Spencer [49].

The EWMA approach does indeed decrease the persistence of volatility spikes how-

ever they are still observed to decay exponentially at a rate proportional to λ. This

brings one to the inevitable question, what is a suitable choice for λ? Whatever our

choice for the decay rate it is still a balancing act between a noisy volatility estimate
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with high temporal resolution and a smooth estimate with better long term accuracy.

This in turn begs the question of just what is noise and what is a legitimate short term

change in volatility. Suppose you had a time series with rapidly changing volatility fluc-

tuating around a long term mean; when determining parameters such as the decay rate,

a choice must be made as to which property of the time series your volatility estimate is

designed to extract, i.e. the long term average or the short term fluctuations. Figure 2.2

shows how two different choices for λ result in one noisy but highly responsive measure

and one that is smooth and better suited to picking up long term trends. The latter of

these two parameter choices is more susceptible to a plateauing like effect, in which the

volatility gradually decays down to its new level, rather than producing the tabletop

like artefact the MA procedure generates. This effect is particularly evident after sharp

declines in volatility as seen around mid 2000 and late 2001 in Figure 2.2. The impact

of different choices for λ are explored further in Chapter 4.
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Figure 2.2: EWMA volatility estimates with decay rates λ = 0.94 & λ = 0.7 for the
All Ords data set covering 1st Jan 2000 - 31st Dec 2004.
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2.1.3 The GARCH(1,1) Model

The GARCH(1,1) model given by Equation (2.5) is widely used to model volatility

because of its relative simplicity and flexibility. It was designed to capture the volatil-

ity clustering behaviour, a phenomenon involving periods of high and low volatility that

have a tendency to group together, see Ruppert [50] for a more in depth look at volatility

clustering in financial markets. The GARCH(1,1) model is similar to the EWMA model

because it too depends on the last variance estimate the model returned (GARCH σ̃2
n−1)

and the most recent squared return r2
n, however in addition to this there is also the long

term average term average variance form, represented in its weighted form as ω below.

The disadvantage involved with using a GARCH(1,1) model is that it can require

a large amount of data in order to determine its three parameters, also like EWMA

methods GARCH(1,1) still shows some evidence of plateauing which can be observed

most prominently after a sharp decrease in volatility. The GARCH(1,1) model is usually

written in the following recursive form when used as a variance estimate:

rn = r̂ + εn (2.3)

εn | Φn−1 ∼ N(0,GARCH σ̃2
n) (2.4)

GARCH σ̃2
n = ω + αε2n + βGARCH σ̃2

n−1, (2.5)

where rn is the daily log return, r̂ is the mean return which is assumed to be zero for

sufficiently high frequency, Φn−1 contains all information up to day n-1, and the residu-

als εn follow a conditional normal distribution with mean zero and variance GARCH σ̃2
n.

Also ω, α and β are parameters to be determined, with ω > 0; α ≥ 0; and for long

term stability it is required that α+β < 1 so that the long term average volatility stays

positive. More specifically, α is the weighting of the dependence on the most recent

innovation, β is the weight assigned to the last volatility estimate and ω is a constant.

Note that the unconditional variance of is given by σ̄2 = ω
1−(α+β) .
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The GARCH(1,1) model behaves similarly to the EWMA model, with β taking

the place of λ and α that of (1 − λ). The more general GARCH model is given as

GARCH(p,q) which uses the p most recent values of the returns r and q most recent

estimates of GARCH σ̃2. For more information on the GARCH procedure and its imple-

mentation see Bollerslev [13], Posedel [51] and Reinhard Hansen and Lunde [52].

2.1.4 Basic Realized Volatility

The realized volatility measure is a non-parametric, model free indicator and is generally

considered to be a very accurate means of extracting the volatility of a time series for

which intraday data is available. This section formalises and expands upon the realized

volatility discussion given in the introduction.

For the purposes of the RV measures we assume a price model like that described in

Andersen et al. [53] and Barucci et al. [54], i.e. the log of the frictionless price follows

Equation (1.3). The goal of the RV method is to measure the Integrated Volatility (IV)

over a certain period, for convenience, the unit for the time interval is usually set as one

day. Recall that one period of integrated volatility is defined by Equation (1.4). This

definition of IVt is sometimes referred to as the quadratic return variation. Although the

integrated volatility is not a directly observable variable it has been shown by Andersen

et al. [7] and Barndorff-Nielsen and Shephard [55] to be closely estimated by the realized

volatility, which is defined in Equation (2.7). First, we recall that the log return at time

t for step size h is defined as:

rt(h) = pt − pt−h. (2.6)

Then the realized volatility can be defined as:

BasicR̃V t(h) ≡
1/h∑
i=1

(rt−1+ih(h))2, (2.7)

which should be understood as the RV on day t for sample interval h, where 1/h is a

positive integer and corresponds to the daily sampling frequency. Note that when h is

at the smallest increment available, i.e. every sample point is used, the resulting RV
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measure is denoted in this thesis as AllR̃V t.

Theoretically, without the presence of microstructure noise the realized volatility

estimate given by Equation (2.7) converges towards the integrated volatility given by

Equation (1.4) as h → 0 because the sample error approaches zero. In practice, when

microstructure noise is included into the observed log price, as in Equation (1.6), the

RV estimate can be greatly distorted as the the time between samples decreases. For

this reason, RV estimates usually use returns separated by intervals of between 5 and

15 minutes.

2.1.5 Overnight Returns

While many FX markets are open and trading frequently for 24 hours a day, it is typical

of most stock markets to only operate for a fraction of the day, usually between the

hours of 10am and 4pm local time. This cessation of trading usually results in a jump

(up or down) in asset prices when the market is reopened which leads to something

of a disconnect between the volatility measures that use strictly intraday trading data

and those which use daily data. Since this overnight change can be quite large, usually

following some important event, any volatility estimate that uses strictly intraday data

risks becoming a poor proxy to the daily volatility. To take into account this change

in overnight prices, a number of approaches are considered here, see Hol and Koopman

[56] or Tsay [57] for alternative approaches.

Since the more formal definitions of the RV model defined in Section 2.1.4 do not

easily lend themselves to the discussion of overnight returns, some simple notation is

introduced. Let the log prices on day t be defined as pt(k), with intraday values denoted

by k = 0 . . . 1/h. A value of k = 0 gives the opening price on day t and k = 1/h gives

the closing price on day t. Hence, a simple “close to open” log return is defined as

cort = pt(0)− pt−1(1/h).
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One simple approach to to calculate the RV for a whole day is simply to add any

overnight return square to the RV estimated for that day, i.e.:

WDR̃V t(h) =co r2
t +Basic R̃V t(h), (2.8)

where the superscript WD simply denotes that the estimate covers a whole day. The

problem with this approach is the noisy nature of cort which has a variance far greater

than that of BasicR̃V t(h), leading to an estimate of volatility for the whole day that is

relatively noisy.

When overnight return data is available, even if it is sparsely sampled then the

overnight volatility can be calculated by including the overnight returns at intervals h́

and combined with the intraday RV to give:

ContR̃V
2
t (h, h́) ≈

1/h́∑
j=1

(rt−1+jh́(h́))2 +

1/h∑
i=1

(rt−1+ih(h))2, (2.9)

where the superscript Cont denotes continuous trading, 1/h́ is an integer, the summation∑1/h́
j=1 covers the sparsely sampled overnight (close to open) period and the summation∑1/h
i=1 covers the (open to close) trading hours. Naturally, this reduces to Equation (2.8)

when the overnight sample period is very low. Conversely, when the sampling rate is

consistently high, this approach is equivalent to Equation (2.7) with a 24 hour period.

An alternative approach was developed by Martens [21] & Koopman et al. [58], it is

defined as follows:

WDR̃V
2
t (h) = (1 + c)BasicR̃V t(h), (2.10)

where WD simply denotes that the estimate covers a whole day and c is a positive

constant, i.e. taking into account overnight returns will only increase a variance estimate

that has only used data collected while the market was open. The scaling factor (1 + c)

is defined as:

1 + c =
σ̃2
oc + σ̃2

co

σ̃2
oc

, (2.11)
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where σ̃2
oc and σ̃2

oc are variance estimates of the “open to close” and “close to open”

data, i.e.:

σ̃2
oc =

1

N

N∑
t=1

(ocrt)
2, (2.12)

σ̃2
co =

1

N

N∑
t=1

(cort)
2, (2.13)

where a simple “open to close” log return is defined as ocrt = pt(1/h) − pt(0) and cort

was defied earlier.

The observation that σ̃2
oc is inherently noisier than R̃V oc led Hansen and Lunde

[59, 60] to develop their own whole day volatility estimate. Their approach proposes

that the adjustment factor of Equation (2.10) follows:

1 + c =

∑N
t=1(ccrt − r̄)2∑N

t=1
BasicR̃V t(h)

, (2.14)

where ccrt denotes the “close to close” return on day t, i.e. ccrt = rt(1/h) − rt−1(1/h)

and r̄ = 1
N

∑N
t=1

ccrt. Equations (2.10) & (2.14) are used to calculate the daily returns

for the data examined in Chapter 3 of this thesis.

2.1.6 Sparse Realized Volatility and the Averaged or Subsampled Re-

alized Volatility

Consider a model with microstructure noise as given by Equation (1.6) with ut being

IID noise and the observed log returns given by:

r̃t(h) ≡ p̃t − p̃t−h, (2.15)

the noise is linked to the contaminated (noisy) observable returns r̃t(h) by:

r̃t(h) = rt(h) + et(h), (2.16)
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where

et(h) = ut − ut−h. (2.17)

The sparse RV estimate is essentially the same as the basic RV measure however it

is not sampled at the highest available frequency, but rather at spacings h which are

some multiple (denoted nh) of the minimum sample interval, e.g. h = nhh where 1/h is

a positive integer. The sparse volatility estimator sparseR̃V is then defined as:

sparseR̃V t(h) ≡
1/h∑
i=1

(r̃t−1+ih(h))2. (2.18)

The advantage of this method is that it is less susceptible to the microstructure noise

that plagues higher frequency measurements. This is where an important compromise

must be made, one must choose between a low sample error and high microstructure

interference or high sample error and less microstructure effects.

Motivated by the desire to keep sample error at a minimum, while still retaining the

more robust nature of sparse sampling, the method of averaged or subsampled RV was

born. Firstly, an offset version of the subsampled method described above is given as:

OffsetR̃V t(h, k) ≡
Nk∑
i=1

(r̃t−1+ih+kh(h))2, (2.19)

with k = 0, . . . , nh − 1 and Nk = 1/h.

The AverageR̃V volatility estimator is then produced by taking the average of many

offset sparse RV estimates, i.e.

AverageR̃V t(h) =
1

nh

nh−1∑
k=0

OffsetR̃V t(h, k) (2.20)

The result of this procedure is a volatility estimator that can be resistant to market

microstructure noise when sampled sparsely and has a smaller sample error than the

standard sparse RV estimate.
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2.1.7 Two Sample Realized Volatility

Unfortunately the sparse estimator and the averaged sparse estimator can still suffer

from a bias, especially if the sample rate is not chosen carefully. Fortunately though,

the size of this bias can be estimated and taken into account. This is achieved by the

Two Scale Realized Volatility (TSRV) procedure, which first uses an average sparse

estimator and then subtracts the theoretical bias.

˜TSRV t(h) =Average R̃V t(h)− (h/h)AllR̃V (h). (2.21)

A simple adjustment can be made to the above formula to account for the finite-sample

size of the two summands in Equation (2.21), this adjusted variant is given by:

Adjusted ˜TSRV = (1− h/h)−1 ˜TSRV t(h) (2.22)

While the family of RV methods are extremely useful, they may not be perfect for

every scenario. For example, Figlewski [20] showed that using daily volatility estimates

can lead to poorer long term forecasts than those produced from lower frequency data.

Realized volatility also requires a large amount of high frequency intraday data, this is

somewhat of a drawback since such high frequency data may not be available or may be

costly. Still, when high frequency data is available the Adjusted-TSRV method forms a

good benchmark and is widely used.

2.2 The Hilbert-Huang Transform

The HHT algorithm includes two separate procedures, firstly the EMD process breaks up

a signal into different frequency components known as Intrinsic Mode Functions (IMFs)

denoted by Ψ and secondly the Hilbert transform is used to calculate the instantaneous

amplitude and frequency for each separate IMF component. The IMFs are naturally

sorted from the highest to the lowest frequency, i.e. the first IMF is a time series con-

taining the rapidly changing components of a signal while later IMFs extract features
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Figure 3.7: Amplitudes of the first 5 IMFs scaled by the data for 10 years of the
NASDAQ Index data set.

they have a tendency to effect the lower frequency IMF components which are discarded

in the proxy fitting procedure.

The HHT also yields the frequencies of the IMF components which allows us to look

for any underlying periodic dynamics like weekly, fortnightly and monthly trends. Figure

3.8 displays the frequencies extracted from the same five IMFs covering two years worth

of NASDAQ Index data. The mean frequency in cycles per year of the IMFs in Figure

3.8 were found to be 83.0, 43.5, 24.6, 14.7, 8.7 and 4.3 cycles per year respectively.

The EMD procedure was applied to two years of the NASDAQ Index data from 1st

Jan 2000 - 31st Dec 2001 resulting in nine IMFs and one residue, the first six IMFs are

given in Figure 3.9. From the figure it is evident that the EMD procedure is working

as intended for the financial data, separating it into intrinsic modes with periods of

increasing length as the IMF number increases. Note that the period is increasing by

just under a factor of 2, deviations from this trend or the appearance of a mode with an

unusually high amplitude may indicate the presence of seasonality in the modes. The

fifth IMF in Figure 3.9 may show some signs of seasonality as it has a comparatively
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Figure 3.8: Frequency information given by the Hilbert transform of the first 6 IMFs
for two years of the NASDAQ Index data set.

high amplitude and a fairly steady quarterly period. Research carried out by Wu and

Huang [36] has put a quantitative measure on the statistical significant of IMFs gener-

ated from Gaussian white noise so that effects attributable to seasonal trends may be

distinguishable from stochastic noise with some confidence. Such research could give an

indication of the statistical significance of any apparent seasonality in financial systems,

such the apparent trends visible in Figure 3.9, however the application of such a measure

is out of the scope of this thesis.

The HHT volatility estimate also has a tendency to capture the distribution of the

realized volatility using only daily data more closely than the alternatives tested. As the

top Quartile-Quartile plots and cumulative frequency diagrams in Figure 3.10 demon-

strate, the distribution of the HHT volatility matches that of the realized more closely

than the EWMA and GARCH procedures. All three estimators shown are light or skinny

tailed when compared to the distribution of the realized volatility, this is expected as
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Figure 3.9: First six IMFs for the log of the NASDAQ Index from 1st Jan 2000 -
31st Dec 2001. The average period of each IMF is given in calendar days as opposed to

trading days.

the lower frequency methods under comparison appear as less noisy than the RV method.

This apparent noise can be deceptive, the RV procedure is by all accounts more accu-

rate than the lower frequency procedures however this high accuracy on one time scale

can appear as noise on another. Therefore, the term ‘noise’ should be used with care

and one must be careful not to confuse apparent noise with a lack of smoothing. Note

that due to issues of readability, the log of the volatility was taken for Figure 3.10. The

cumulative frequency diagrams given in Figure 3.11 also indicate how the GARCH and

EWMA estimates deviate from the realized distribution and the close fit of the HHT

procedure for this data set. Note that the EWMA procedure can be tuned to capture

the distribution more accurately by decreasing λ which gives more weight to recent data

and less weight to past volatility estimates.
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Figure 3.10: QQ plots of the volatility distribution for the HHT method (top),
EWMA (middle) and GARCH (bottom) for the NASDAQ Index covering the period

1st Jan 2000 - 31st Dec 2004.
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Figure 3.11: CDF plots of volatility distribution for the HHT method (top), EWMA
(middle) and GARCH (bottom) for the NASDAQ Index covering 1st Jan 2000 - 31st

Dec 2004.
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3.2.4 Numerical Results

The volatility estimators under comparison were evaluated using a number of error mea-

sures which were described in Chapter 2. Since each measure is itself imperfect, each

measure only indicates the performance of a volatility estimator. The error measures

for several volatility measures are summarised in the Tables 3.1-3.4. For the data con-

sidered in Tables 3.1 -3.4 it appears as though the HHT based volatility estimates are

competitive with the EWMA and GARCH(1,1) volatility estimators. The 95% con-

fidence intervals are also given for most error measures in the tables. Note that the

method labelled Fast-HHT is a fully parameter free version of the HHT volatility esti-

mator which is described in Section 4.1. Its results have been included here for later

comparison.

The high accuracy of the RV method at one scale appears as noise against the more

slowly varying methods which use only daily closing prices. This apparent noise in the

more accurate measure which was used as the basis for comparison has led to high

MAPE errors and is a source of noise in the ME, MSE and MAE measures.

The numerical evidence provided by the K-S fit results in Tables 3.2, 3.3 support a

previous claim that for some data sets, the HHT procedure was capable of fitting the

realized volatility distribution more accurately than the GARCH(1,1) or popularly used

EWMA procedure in two of the four data sets that were examined.

3.3 Chapter Conclusion

This chapter has introduced a new and novel method for calculating local historical

volatility which is highly adaptable and likely to seed a variety of new HHT based

volatility measures. Previous attempts at using the HHT for a volatility estimator have

resulted in either volatility indicators like that developed by Huang et al. [47] which are
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difficult to interpret as they are not in terms of variance or in the case of Wen and Gu

[48] were not fully explored.

For the first time the HHT has been used to give volatility estimates in terms of

the local variance which is easily understood and, as the the tables in Section 3.2.4

show, the degree of accuracy is favorably comparable to the popularly used EWMA and

GARCH(1,1) methods.

As Section 3.2.2 shows, for the data set considered, the HHT volatility estimate does

not appear to suffer from the same kinds of artefacts which can render GARCH and

EWMA unreliable after sharp increases or decreases in volatility. The reason for this

apparent advantage of the HHT volatility estimate is the high temporal resolution of

the HHT procedure which underpins it.

From the numerical evidence provided here there is no clear winner in terms of

overall performance. All three methods are fitting the RV to a similar degree of success.

What makes an assessment of performance difficult is the absence of a “true” account of

volatility, with only the RV standing in as a proxy. In comparison to methods which rely

on daily data, the RV volatility measure can be perceived as noisy, this brings one back

to a question posed in the introduction; which changes in volatility can be described as

noise and which can be attributed to legitimate changes in variance? There is no one

answer, what is considered the best volatility estimate appears to be dependent on the

the intended use of the estimator. This apparent noise of the RV method has led to

relatively large standard errors and consequently quite broad 95% confidence intervals.

Thus, care must be exercised when judging the performance of volatility estimators that

have access to only daily data against the those measure which uses intraday data. This

is again a matter of scale, while the former estimators might be suitable for weekly

forecasts, the latter is better suited to daily forecasts

.



Chapter 3. Low Frequency Volatility 65

Note that while there are many different possible implementations of the GARCH,

EWMA or RV procedures, there is also a growing number of ways to implement the

HHT process. One such variant of the HHT process proposed by Hu [70] forces IMFs

into being completely orthogonal by a process known as the Orthogonal Hilbert-Huang

Transform (OHHT). This OHHT process was implemented and tested over the course

of this chapter but results varied so little from those obtained by the standard HHT

procedure that they were omitted from the results and further discussion. This close

resemblance between the HHT and the OHHT are not surprising since, as previously

described the IMFs may be considered orthogonal for all practical purposes.

The volatility estimator proposed in this chapter also has much scope for development

as it is based on the highly flexible HHT procedure. Applications of this method also

include the analysis of unevenly spaced time series data as the HHT has no requirement

for evenly spaced data. As briefly explored in Section 3.2.3, the EMD procedure also

gives information which may be used for seasonality analysis and MACD style technical

analysis. Further work has also been done towards making the HHT volatility procedure

completely parameter free for greater simplicity and computational efficiency. The first

such method which was seeded by the work first undertaken in this chapter is denoted

Fast-HHT in Tables 3.1-3.4, this method is parameter free and therefore much faster, it

forms a core component in the analysis which is to follow.



Chapter 4

High Frequency Simulated Data

and Microstructure Noise

In this chapter an improved version of the HHT volatility estimator is proposed and

evaluated. Its simpler and parameter free nature make it computationally more efficient

than the variant proposed in Chapter 3. This faster, simpler approach has enabled a

Monte Carlo study and allowed for further refinements which can even handle market

microstructure noise. In this chapter, two simulated studies are carried out, the first

compares the improved HHT volatility estimator against the EWMA procedure and the

second tests a variant of the HHT procedure in the presence of market microstructure.

4.1 Improved HHT Volatility Estimator

In this section the wave like nature of the IMFs is exploited to yield a simple estimate of

the volatility. Its main advantage over the procedure which was outlined in Chapter 3,

is that it requires no parameter fitting at all, making it substantially faster and able to

be investigated more thoroughly through detailed Monte Carlo simulations. The main

difference is that there is no need to create a proxy to the returns as the procedure is

applied directly to the log returns.

The HHT procedure can be used to give the Hilbert spectral representation of the

66
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log returns as:

r(t,∆t) = Re

 n∑
j=1

Aj(t,∆t)e
iϕj(t,∆t)

 , (4.1)

where ∆t is the period between returns. Note that IMFs Ψj(t) are actually continuous

because of the splining nature of the EMD algorithm and that discrete returns can be

seen as a subset of these continuous functions. Also, the zero centered nature of the

IMFs implies that all of them satisfy Et (Ψj(t)) = 0, however this does not hold true for

the final residue Ωn(t).

Now the concept a random phase is introduced in order to extract the volatility of

the system at any point. This is akin to considering each IMF at each point as just

one possibility within a virtual ensemble consisting of waves with similar amplitudes

and frequency but differing phases. A similar approach was taken by Wen and Gu [48]

in order to simulate earthquake data, however the focus was on simulating different

volatility levels rather than estimating them. The uniformly distributed random phase

is given by φ, so we have:

ř(t,∆t, φ) = Re

 n∑
j=1

Aj(t,∆t)e
i(ϕj(t,∆t)+φ)

 , (4.2)

where ř(t,∆t, φ) represents a whole ensemble of waves. The instantaneous variance of

ř(t,∆t, φ) is given by:

σ̃2(t,∆t) =
1

∆t
Eφ

(
(ř(t,∆t)− Eφ (ř(t,∆t)))2

)
. (4.3)

Note that when IMFs are constructed using log return data, the IMF volatility drops

off exponentially with the IMF number, so any long term trends contained in the last

residue can be safely ignored for the purposes of this volatility analysis. Now we have:

σ̃2(t,∆t) =
1

∆t
Eφ

Re
 n∑
j=1

Aj(t,∆t)e
i(ϕj(t,∆t)+φ)

2
=

1

∆t
Eφ

 n∑
j=1

Aj(t,∆t) cos (ϕj(t,∆t) + φ)

2 . (4.4)
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Note that the IMFs have been described as “orthogonal for all practical purposes” by

Huang et al. [1] due to the frequency sorting nature of the EMD process, so any cross

products in the above equation are zero, resulting in the simpler expression:

σ̃2(t,∆t) =
1

∆t
Eφ

 n∑
j=1

A2
j (t,∆t) cos2 (ϕj(t,∆t) + φ)

 . (4.5)

Now, taking the expectation with respect to the uniform random phase between 0 and

2π gives:

σ̃2(t,∆t) =
1

∆t

∫ 2π

0

 n∑
j=1

A2
j (t,∆t) cos2 (ϕj(t,∆t) + φ)

1

2π
dφ


=

1

2∆t

n∑
j=1

A2
j (t,∆t), (4.6)

which is our instantaneous and parameter free volatility estimate for the log returns.

Note that in a similar fashion to the way in which sparse and average RV estimates

were described in Chapter 2, the sparse HHT estimator is described as Equation (4.6)

with sample spacing being some integer multiple of the smallest available step size, i.e.

∆t = n∆t and for ease of notation let 1
∆t be a positive integer representing the number

of sparse subsamples in one period. The average HHT can then be described by a mean

of sparse estimates with different offsets, i.e. each offset is given by:

offsetHHTσ2(t,∆t, k) =
1

2∆t

n∑
j=1

A2
j (t+ k∆t,∆t). (4.7)

where k = 0, . . . , n − 1. Then the average HHT based estimator is given by a sum of

these sparse estimations as:

AverageHHTσ2(t,∆t) =
1

n

n−1∑
k=0

offsetHHTσ
2
(t,∆t, k) (4.8)

The estimate described by Equation (4.6) was used to give the values described as “Fast-

HHT” in Section 3.2.4. The numerical results given in Chapter 3 support the claim that

the algorithm described in this section is as accurate, if not more accurate than the
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procedure described in Chapter 3. The main advantage is the the method described by

Equation (4.6) requires no fitting of a proxy to the returns and is therefore completely

parameter free and therefore much faster to run. This advantage of speed has enabled

more specialised versions of the HHT estimator to be developed which are comprised

of multiple estimates such as that described by Equation (4.8) and later the Filtered-

HHT procedure which can deal with market microstructure. It should also be noted

that, while the Fast-HHT procedure is much faster than the proxy dependent variant

described in Chapter 3, it is still substantially more complex, and thus slower than a

simple realized volatility measure.

4.2 Volatility Comparison Test

The results given in Chapter 3, particularly the graphical volatility analysis of Figure

3.3 appear to show that the HHT is capable of maintaining low levels of noise while also

adapting to changes in volatility more rapidly than the popular EWMA and GARCH

volatility methods. In the absence of any test to verify these claims in a straightforward

manner, one has been developed specifically to quantify this kind of behaviour. As

discussed in Section 2.1.2, there is often a compromise that must be made between the

ability of a method to capture short term or long term trends. This test seeks to quantify

the previous statement by examining this tradeoff in more detail.

4.2.1 Test Design

The test consists of two main parts, the calculation of the Signal to Noise Ratio (SNR)

and the response time.

I Calculate the Signal to Noise Ratio

• A Geometric Brownian Motion (GBM) time series of length m is simulated

with constant volatility, i.e. σ2(t) = c for t = 1, . . . ,m.
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• Competing instantaneous volatility methods are used to approximate the volatil-

ity over the length of the time series. The estimates are denoted σ̃2(t) for

t = 1, . . . ,m.

• The SNR is then calculated using:

SNR =
σ2(t)

1
m

∑m
t=1 (|σ2(t)− σ̃2(t)|)

(4.9)

This should then be repeated many times for each variable parameter within

the estimation method, i.e. λ in the case of EWMA.

II Determine the Response Time

• Secondly, a GBM time series is simulated with a distinct step in volatility mid

way through the data, i.e. σ2(t) = c for t = 1, . . . ,m/2 which then switches to

σ2(t) = c/2 for t = m/2 + 1, . . . ,m. The time it takes for competing volatility

estimate to approach to within a threshold (within ±20% of c/2 was used for

this research) of the new volatility level is then recorded. As before, this step

should be repeated for different values of any parameters in the estimation

method.

III Compare the Signal to Noise Ratio to the Response Time.

• A useful comparison can be made by graphing the SNR vs response time results

across across each variable parameter, this procedure produced Figure 4.3.

Note that the EWMA estimator gives results which can vary over λ and so the

EWMA estimator yields a curve as its properties change with this parameter.

On the other hand, the HHT procedure is parameter free and so the SNR vs

response plot for this method yields only a single point for comparison.

4.2.2 Test Results

Figure 4.1 shows how the EWMA procedure adjusts to the sharp drop in volatility levels

for several values of the parameter λ. The estimator can be seen to approach the new

volatility level more slowly as the decay rate gets closer to one. Figure 4.2 selects one
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Figure 4.1: EWMA Response profiles for three values of λ.

of the EWMA estimates, corresponding to λ = 0.67 and compares it against the HHT

volatility estimator. The value of λ = 0.67 was chosen because it has a similar SNR

to the HHT method. The HHT volatility estimate descends towards the new volatility

level faster than the EWMA estimate. Note that the HHT volatility estimate actually

dips before the actual volatility drops, this is because the EMD process which underpins

the HHT procedure uses cubic splines and ex-post data, it is in fact an artefact and does

not indicate a hidden predictive ability.

Importantly, Figure 4.3 shows that this single point produced by the HHT procedure

is below the line formed by considering all of the parameter choices for the EWMA pro-

cedure. This implies that the HHT volatility estimator (4.6) is adapting to new volatility

levels faster, while maintaining a lower SNR than the EWMA procedure under test con-

ditions, which is the claim that this test was designed to investigate.
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Figure 4.2: Response profiles for HHT estimator & EWMA with λ = 0.67

4.3 The Filtered-HHT Volatility Estimator for Microstruc-

ture Noise

The HHT volatility estimate can also provide consistent estimates even in the presence

of market microstructure noise. This is achieved by effectively filtering off the higher

frequency components which constitute the unwanted noise. The main advantage of

the HHT procedure over any of the RV techniques is that it provides an instantaneous

volatility measure so that finer scale volatility characteristics are revealed. Note that

this method of filtering off excess noise is only suitable for the kind of microstructure

which results in positive anomalous scaling of volatility, such as the kind of noise found

in high frequency FX markets.
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Figure 4.3: SNR vs response time for EWMA with 0.1 ≤ λ ≤ 0.98 (curve) and the
HHT volatility estimate (circle).

4.3.1 Adapting the HHT Estimator to the High Frequency Realm

The procedure to calculate a consistent high frequency volatility estimator based on the

HHT method is as follows:

1. EMD Step:

Apply the EMD procedure to the observed log price series p̃, note that the pro-

cedure works equally well when applied to the regular price series. The IMFs are

then passed to the next step. Also, recall that in Chapter 3 the observed price

was given by p, however this was the low frequency case where market frictions

are negligible and the frictionless price is effectively observable. In this chapter

the observed log price which includes market microstructure is denoted as p̃, with

the frictionless p being unobservable.

2. Filtration Step:

If this is the first iteration of the filtration step, skip it and pass all IMFs through

to the next step. Otherwise, pass on the residue and all but the highest frequency
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IMF to the next step. This step is essentially using the EMD process a low pass

filter.

3. Volatility and Averaging Step:

Now, using the IMFs passed on from the previous step, the HHT volatility mea-

sure described by Equation (4.8) is used at various sampling rates. For exam-

ple, in this chapter the simulated time series was sub-sampled at ∆t(1, . . . , 12) =

[0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9] minute intervals and for convenience, the time

scale for one period is 24 hours, or 1440 minutes so that the daily sample rate

is given by: fs(j) = 1440
∆t(j) , j = 1, . . . , 12. The sample rates should be chosen so

that the they capture both high frequency inflationary noise as well as some sparse

samples which are relatively unaffected by market microstructure. Note that the

method proposed above gives the spot volatility at each sample point in time and

for each sample rate, which results in 12 volatility estimates spanning the length

of the simulation for each filtration. However in the comparisons to follow, we

wish to compare this instantaneous or spot volatility to a measure of integrated

volatility and so the mean of the spot volatility should be taken over a length

comparable to that in the integrated volatility procedure (one day). Let this mean

or integrated volatility at sample rate fs(j), day t and filtration step i be denoted

by HHTIV (t, fs(j), i).

4. Iteration Step:

Now, iterate the previous two steps until only the residual of the signal is left.

5. Optimisation Search Step:

• Calculate the mean volatility with respect to time at every sample rate and

filtration step. This mean volatility is given by:

meanHHTIV (fs(j), i) =
1

∆t(j)

1/∆t(j)∑
t=1

HHTIV (t, fs(j), i). (4.10)

This provides a good indication of overall inflation when compared to means

at other sample rates and filtration steps.
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• While one approach would be to simply determine which filtration step yields

the most consistent volatility estimates over multiple sample rates, experience

from Chapter 3 has taught that filtering by whole IMFs can be too coarse a

filter. One alternative to this coarse filter approach is a finer frequency filter,

such as the step function approach taken by chapter 3. An alternative, which

is used during this chapter, is to use a linear combination of under filtered

and over filtered volatility estimates to yield the final result.

More specifically, mean volatility measures at neighboring filtration steps

(i − 1 & i) are linearly combined in such a way as to maximise the flatness

of the combined volatility profile over all sample rates. Note that depar-

tures from flatness in the volatility profile are quantified by the gradient of

meanHHTIV (fs(j), i) with respect to changes in fs. Let the gradient at each

sample rate fs(j), j = 1, . . . , k and filtration step i, be defined using simple

numerical differentiation as:

Γ(fs(j), i) =


meanHHTIV (fs(j+1),i)−meanHHTIV (fs(j),i)

fs(j+1)−fs(j) for j = 1,

meanHHTIV (fs(j+1),i)−meanHHTIV (fs(j−1),i)
fs(j+1)−fs(j−1) for j = 2, . . . , k − 1,

meanHHTIV (fs(j−1),i)−meanHHTIV (fs(j),i)
fs(j)−fs(j−1) for j = k.

(4.11)

• The idea now is to search for a linear combination of neighboring filtration

steps which give the minimum absolute gradient sum, i.e. the cost function

f(C) is minimised by searching for an optimal C (for a proof of concept a

simple grid search was used).

f(C) =
k∑
j=1

|(C)Γ(fs(j), i) + (1− C)Γ(fs(j), i− 1)| , (4.12)

where 0 ≤ C ≤ 1 and k is the number of sample rates.

6. Calculation of Volatility Step:

Finally, once the pair of neighboring IMFs which lead to the flattest volatility

profile have been found, the filtered volatility estimate is given by a linear combi-

nation of these over filtered and under filtered estimates at various sampling rates
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as:

σ̃2(t, fs(j)) = (C)HHTIV (t, fs(j), i) + (1− C)HHTIV (t, fs(j), i− 1). (4.13)

This procedure is best understood with the aid of Figure 4.4, depicting the character-

istic volatility profile or volatility signature plot for the Two-Factor Affine model at

the γ = 0.1 microstructure level. This figure demonstrates how changes in sample rate

can effect volatility estimates. In this figure the flattening of the blue lines indicate

clear that successive applications of the filtration process are resulting in a reduction of

upwards bias at shorter sampling intervals. The relative flatness of the Filtered-HHT

volatility estimation is also evident in Figure 4.4. This demonstrates that the goal of

a consistent estimator across different sample rates is also being achieved. Since the

proposed estimate yields volatility estimates across several different sampling rates, the

best result is obtained by averaging across several of these estimates. Further, the figure

also shows why this procedure can be considered as a combination of under and over

filtered components.

Ideally, taking the average over every sample rate would be optimal, however due to

occasional over filtering at the fastest sample rates it was found that averaging over the

flattest region of the volatility signature plot provided the most consistent results. This

was found to be around the last 5 sampling rates and this is the procedure that was

used in Section 4.4.2.

4.4 Monte Carlo Analysis

In this section, Monte Carlo analysis is used to test the performance of the Filtered-HHT

volatility estimation procedure proposed above. Following the models used by Andersen

et al. [53] and Barucci et al. [54] in similar investigations of market microstructure, a

log price with frictions is considered. Specifically, the underlying price model follows

Equation (1.3): dpt = σtdW
(1)
t with additive microstructure noise given by Equation
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Figure 4.4: Volatility estimates for various sample rates across different levels of
filtration. The ‘o’ symbol denotes the estimate provided by Equation (4.13).

(1.6): p̃t = pt + ut, where ut is IID noise with mean zero and the variance is propor-

tional to the expected volatility for the frictionless log price, i.e. V ar[u(t)] = γE[IVt]

with γ = 0%, 0.1%, 0.5%. The observable price is then given by Equation (2.15):

r̃t(h) ≡ p̃t − p̃t−h.

The volatility, σt in Equation (1.3) is then set to one of three models:

• Model I: GARCH

dσ2
t = k(θ − σ2

t )dt+ cGσ
2
t dW

(2)
t , (4.14)

with k = 0.6, θ = 0.636 and cG = 0.1439, noting that E[IVt] = θ. Note that this

model has a strong mean reversion for this choice of parameters.
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• Model II: Two-Factor Affine

σ2
t = σ2

1,t + σ2
2,t (4.15)

dσ2
i,t = ki(θi − σ2

i,t)dt+ ciσ
2
i,tdW

(i,2)
t , (4.16)

with k1 = 0.5708, k2 = 0.0757, θ1 = 0.3257, θ2 = 0.1786, c1 = 0.2286, c2 = 0.1096,

noting that E[IVt] = θ1 + θ2. This model has a very volatile first factor with

strong mean reversion, and a less volatile component which is only weakly mean

reverting.

• Model III: Log-Normal Diffusion

d log σ2
t = k(θ − log σ2

t )dt+ cLNdW
(2)
t , (4.17)

with k = 0.0136, θ = −0.8382 and cLN = 0.1148, noting that E[IVt] = eθ+cLN/4k.

All three of these models are Ornstein-Uhlenbeck process, they are widely used in the

literature to simulate market microstructure noise.

4.4.1 Spectral Analysis and Hurst Parameter Estimation

Before we delve into volatility analysis, some of the tools that were outlined in Chapter

2 are revisited, specifically, the spectral structures and Hurst exponents are examined

for the three stochastic volatility models described above.

One of the most powerful tools available in spectral analysis is the Fast Fourier Trans-

form (FFT). Using the FFT it is possible to transform a signal from the time-amplitude

domain into the frequency-power domain. When the EMD procedure is performed first,

a FFT can be applied to each of the IMFs separately, this procedure was undertaken for

the three models described above. The simulation ran for 250 virtual trading days with

one trade every 10 seconds for six hours giving 2160 trades each day and was repeated

at three microstructure noise level, namely 0%, 0.1% and 0.5%. The resulting spectra
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are shown in Figure 4.5. The first thing to notice is that with zero noise, the spectra are

flat. This is consistent with a Gaussian white noise process with stochastic volatility.

When a small amount of microstructure noise of γ = 0.1% is introduced, it becomes

evident that there is an increase in the power of the IMFs with higher frequencies. This

effect becomes more pronounced as the noise is increased to γ = 0.5%, where the high

frequency IMFs are of considerably higher power in all three models.

One can not help but notice that the IMF power spectra plots of Figure 4.5 bear a

striking similarity to those produced by the examination of a fractional Gaussian noise

process as seen in Figure 2.9, namely the ones withH < 0.5. This link has been examined

in more detail by applying the EMD procedure for calculating the Hurst exponent for

all three models at the same noise levels as above, the results are given in Table 4.1.

As hinted by the spectral information in Figure 4.5, the Hurst exponents do indeed fall

below H = 0.5 and as the noise parameter γ increases the H estimates decrease.

Table 4.1: Hurst exponent estimates from the EMD procedure and their associated
standard deviations for the three models at three noise levels.

γ = 0% Std γ = 0.1% Std γ = 0.5% Std

H GARCH 0.5186 0.0518 0.3428 0.0473 0.2980 0.0477

H Two-Factor Affine 0.5242 0.0505 0.4011 0.0508 0.3217 0.0517

H Log Normal Diffusion 0.5210 0.0543 0.3497 0.0499 0.3096 0.0498

4.4.2 Results and Comparisons

In this section the Monte Carlo models described above are used to generate 250 sim-

ulated trading days, each of duration 6 hours with one trade every second. Firstly, to

show the effects of even low levels of market microstructure on a volatility estimate,

the RV was calculated at different levels of daily sampling rates 1/h (available in Table

4.2) and the result is displayed in the volatility signature profile Figure 4.6. From this

one can observe that even a small amount of market microstructure noise can dominate

volatility estimates at high sampling rates. This emphasises the importance of using a

volatility estimator that is specifically designed to handle such inflationary noise.
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Figure 4.5: Spectral analysis of IMFs from GARCH, Affine and Log volatility models.
Top row: no microstructure noise. Middle row: 0.1% noise. Bottom row: 0.5% noise.

Note that the vertical axis is in terms of the Power Density Spectra (PDS)
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Table 4.2: Sampling rate and equivalent sampling intervals in seconds.

1/h 2160 1440 720 360 288 96 48 24 12 6
Seconds 10 15 30 60 75 225 450 900 1800 3600
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Figure 4.6: Volatility signature plot at 0.1% noise. M1 M2 M3 refers to the three
volatility models, GARCH, Two-Factor Affine and Log-Normal diffusion respectively.

One of the benefits of using simulated data is that the actual frictionless volatility

of each process is known throughout the simulation and so a simple error analysis using

the procedures outlined by Equations 2.39- 2.41 in Chapter 2 is all that is needed to

determine the accuracy of each volatility measure. One year of simulated data at the

high frequency rate of one point per second is generated for three models at two noise

levels, γ = 0.1% and γ = 0.5%. From this the mean error, mean square error and mean

absolute errors are calculated for each volatility measure over the course of the simulated

year and the results are given in Tables 4.3 − 4.8. Several RV-based volatility estimation

methods were included in this study to give a good basis of comparison to the proposed

HHT method. As a guide to understand what variant of each method was implemented,

a short description of each follows:

• RV all

This will serve as a baseline for a poor measure in the presence of microstructure
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noise. It is defined as the RV given by Equation (2.7) when the highest available

frequency of data is used. This procedure is not designed to be used under the

conditions of market microstructure.

• RV averaged

As described by Equation (2.18), this volatility estimate is simply a sparsely sam-

pled RV measure which has been averaged over many offsets. The sparse sampling

was done at a rate of one sample every 5 minutes. This procedure should have

some resistance to market microstructure.

• TSRV

This is the first real measure designed specifically to deal with market microstruc-

ture, defined by Equation (2.21)

• TSRV adj

Short for Adjusted−TSRV . A slight improvement on TSRV that adjusts for sam-

ple size difference which make up the two components in the summands, defined

by Equation (2.21)

• HHT averaged

This is the HHT equivalent of RV averaged and is the average of many offset HHT

volatility estimates sampled 5 minutes apart, defined by Equation (4.8)

• HHT filtered

This is the volatility estimate proposed in Section 4.3.1 and is defined therein.

The mean error results given in Tables 4.3 & 4.6 show that the Filtered-HHT method

is yielding similar results to the Adjusted-TSRV procedure, with each achieving the low-

est mean error 3 of 6 times. The good performance of the Filtered-HHT procedure in

this test is most likely due to the averaging process over several sample rates, since

the average of several unbiased estimators is likely to have a lower bias than each es-

timate individually. A variant of the TSRV procedure that does use an average over

many sample rates is known as the MSRV and was proposed by Zhang [71], this proce-

dure is likely to have a very low bias for the kind of simulated data tested in this chapter.
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The mean square error and mean absolute error information given in Tables 4.4, 4.5,

4.7 & 4.8 show that the Filtered-HHT procedure is a great improvement over the RV and

unfiltered HHT processes, however it appears to slightly under performing in this area

compared to the TSRV and its adjusted variant. It is worth pointing out though, while

the errors are larger than the TSRV-based methods they are still relatively small, they

are of the same magnitude and usually only slightly larger. This suggests that while

the Filtered-HHT method is non biased, it does vary further from the true volatility

more often than its counterparts, although it does so almost equally both above and

below the true volatility. This can be seen in Figure 4.7 and Figure 4.8 which show the

volatility estimates and the true model volatility for all three models and the two noise

levels of γ = 0.1% and γ = 0.5%. Also Figures 4.7 & 4.8 provide a clearer perspective of

how closely the Filtered-HHT procedure and the Adjusted-TSRV procedures are to one

another as well as the model’s true volatility. While there is a small difference between

the two estimates, both methods are capturing much of the model volatility with some

accuracy.

The errors in Tables 4.3 - 4.5 indicate the 95% confidence intervals for each measure.

A larger simulation could have been performed to reduce the uncertainty around these

errors, however due to the high computational load involved in repeatedly performing

the the EMD algorithm for each Filtered-HHT estimate, the simulation was kept to one

simulated year, with trades occurring every 10 seconds. The Filtered-HHT procedure

is not currently optimised for computational efficiency however in its current form it is

sufficient for a proof of concept, as was the size of the simulation carried out.

Such results are promising, as the TSRV and Adjusted-TSRV methods were designed

to deal with the specific kind of additive microstructure noise which was examined in

this section. The Filtered-HHT procedure on the other hand, made no assumptions on

the kind of microstructure which was present and the filtering algorithm successfully

yielded a consistent estimator. Not being tied to a specific kind of microstructure noise
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Figure 4.7: Volatility vs Time plots for the GARCH (top), Two-Factor Affine (middle)
and Log-Normal Diffusion (bottom) models at 0.1% noise. Each plot shows model

volatility, the Adjusted-TSRV estimate and the Filtered-HHT volatility estimate.
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Figure 4.8: Volatility vs Time plots for the GARCH (top), Two-Factor Affine (middle)
and Log-Normal Diffusion (bottom) models at 0.5% noise. Each plot shows model

volatility, the Adjusted-TSRV estimate and the Filtered-HHT volatility estimate.

may lead to the Filtered-HHT procedure being a more flexible estimator of HF volatil-

ity than those which are designed to account for a particular type of microstructure noise.
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4.5 Chapter Conclusion

While no direct comparison is made between the improved HHT volatility measure pro-

posed in Section 4.1 with its predecessor proposed in Section 3.1, the improved estimator

effectively supplants the older one. It is theoretically more accurate since it’s using the

log returns directly and doesn’t have to create a proxy for them, furthermore it’s entirely

parameter free, making it much faster and enabling the Monte Carlo analysis carried

out in this chapter.

In Section 4.2 a test was designed specifically to test the claim that the HHT volatility

estimate was able to pick up on changes in volatility faster than EWMA methods while

maintaining a lower signal to noise ratio. The test results have shown that under certain

conditions this is indeed the case, namely the HHT estimates were able to respond to

changes volatility faster. The real price paid by the HHT based method is that it is best

suited to ex-post data, while no such requirement is placed on the EWMA procedure.

This early uptake of changes to volatility is likely due to the two sided ex-post nature

of the EMD process in which the cubic splining procedures at the heart of the EMD

procedure fitting data based on past and future information relative to each point. This

two sided nature of the EMD process can lead to a short lived artefact in which volatility

spikes can effect neighboring data on either side of the spike. An interesting investiga-

tion that may shed some light on how rapid changes or spikes propagate through the

EMD procedure was carried out by Rilling et al. [63].

Spectral analysis of the three simulated models performed in Section 4.4.1 showed

that when microstructure noise was introduced, there was an increase in the power level

of high frequency components and a simultaneous decrease in the Hurst exponents ex-

tracted from the data. This shares many parallels with the spectral analysis of the

fractional Gaussian noise conducted in Chapter 2. In effect, increasing the microstruc-

ture noise is leading to a rougher time series, with negative autocorrelations at the high

frequencies. Also, we have shown that the procedure proposed by Rilling et al. [63] to



Chapter 4. HF Simulated Data and Microstructure 89

estimate the Hurst exponent using the EMD process may be a useful means to analyse

inflationary market microstructure in high frequency data.

The Filtered-HHT method proposed in this chapter to deal with market microstruc-

ture noise appears to be functioning as intended. Figure 4.4 and Tables 4.3 − 4.8

clearly show that the EMD filtering approach taken clearly reduces the effect of market

microstructure on variance estimates. The low mean error results given by the tables

indicate that the Filtered-HHT approach has a comparably low bias with the TSRV-

based procedures which are also designed to handle market microstructure noise. The

Filtered-HHT procedure gave slightly higher mean square errors and mean absolute er-

rors than the TSRV and Adjusted-TSRV methods, however it is worth reiterating that

these procedures were specifically designed to handle the kind of uncorrelated additive

microstructure noise which was present in the simulation. Conversely, the Filtered-HHT

approach made no assumptions on the structure of the microstructure noise, other than

the fact that it was inflationary at higher frequencies. Although it is not made clear in

this chapter, the greater generality arising from a lack of assumptions on the underlying

structure can be a strength, just how much of an advantage it may be is more evident

in the following chapter.



Chapter 5

Simulated Options Market &

Real FX Data

In this chapter, a simulated options market in created in order to assess the performance

of several volatility estimators using real high frequency FX data for three currencies.

This approach of a simulated options market was developed by Engle et al. [67] to evalu-

ate the performance of volatility forecasting algorithms (ARMA, GARCH(1,1) etc.) for

low frequency financial data. More recently this approach was implemented by Bandi

et al. [68] to evaluate different volatility estimates (RV, TSRV, etc) at high frequencies.

The key feature of this approach is that it allows for the direct comparison of different

volatility estimates in the absence of the ‘true’ volatility.

ARMA(1,1) models are used to generate short term, one step ahead volatility fore-

casts for several different volatility estimating techniques. These different forecasts are

each represented by a virtual agent which buys and sells straddle options on $1 US of

the underlying (the currency) to other virtual agents which have differing volatility fore-

casts. These straddle options are then held to maturity and the profits and losses are

calculated. This chapter also presents a slightly modified version of the Filtered-HHT

procedure which reduces computational load.

90
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5.1 The Simulated Options Market and Clarification of

Methods

In this section the proposed volatility measure for dealing with HF microstructure noise

is tested with real FX data, namely the: AUD/USD, EUR/USD & GBP/USD exchange

rates. Volatility is a latent variable, therefore there is no true volatility measure one

can use as a basis for comparison as there would be in simulated data, thus we turn

to a competitive simulated options market and compare outcomes. The details of this

approach follow.

5.1.1 Simulated Option Market Construction

In this section we specify the simulated options market where one step ahead volatility

forecasts are pitted against one another. Every volatility estimator is considered to have

its own virtual trading agent that buys and sells straddle options to other agents on a

pairwise basis, based on whether or not they view the straddle as being over or under

priced by their pairwise partner. For simplicity, each option is priced on a $1 US share in

the underlying, or the exchange in our case with a strike price of $1 and a risk free rate

of zero. Note that over such short time intervals this zero expected return is entirely

plausible for stocks and even more so for FX markets. Under these assumptions the

Black-Scholes European call price (and also the put price) is given by:

Ct = 2Φ

(
1

2
σ̃(t)∆t0.5

)
− 1, (5.1)

where Φ is the cumulative normal distribution and σ̃(t) is the specific volatility forecast

in terms of daily standard deviation at time t and ∆t = 1
24 since the option expires in

one hour. Note that a straddle is made up of a call and a put option purchased at the

same spot price and at the same strike price. A straddle will increase in value if the

underlying asset (or rate) either increases or decreases, thus trading straddles is akin to

trading in volatility.
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The following procedure outlines the virtual market trading place.

1. Estimate past volatility

Historical volatility estimates (σ̃(t)) are calculated using a number of methods.

All volatility estimates are constructed from high frequency intra-day data in one

hour chunks.

2. Forecast future volatility

The one step ahead out of sample forecasts were computed using an ARMA(1,1)

model with parameters computed over a 500 hour sliding window on the log of the

historical volatility. Parameter fitting was performed on the log volatility because

the leptokurtic nature of the raw volatility distribution led to inflated volatility

forecasts, this in turn was due to the least squares parameter fitting procedure

that was used to find the ARMA(1,1) model parameters. The exponential of the

forecasted log volatility was then used to price the option.

3. Price a straddle option

For a given pair of volatility forecasts, each method computes their perceived fair

price for a one hour straddle option using Equation (5.1).

4. Trade with partner

Trades then take place between each pair at a price calculated using the midpoint

of the two volatility estimates. Note this differs from the literature slightly where

the trade is executed at the midpoint of the two perceived fair prices. The agent

with the higher volatility forecast of the two will perceive the option as being

under priced and take a long position in the straddle option (buy). Conversely,

the agent with the lower volatility forecast will perceive the option as being over

priced and take a short position (sell). If the two agents have the exact same

volatility estimate at any point then no trade is made.

5. Hedge

Finally, the two positions are hedged to minimise exposure to risk. Since a straddle

consists of a call and a put option, with corresponding hedge ratios of Φ
(

1
2σt∆t

0.5
)

short and 1−Φ
(

1
2σt∆t

0.5
)

long, the total hedge ratio is 1−2Φ
(

1
2σt∆t

0.5
)
. Hence,
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the hourly profit for the agent who buys a straddle is given by:

|RFXratet |−2Ct +RFXratet

(
1− Φ

(
1

2
σt∆t

0.5

))
(5.2)

where RFXratet is the return on the $1 US spent on the currency at time t − 1.

Conversely, the seller of the straddle makes the hourly profit given by:

2Ct − |RFXratet |−RFXratet

(
1− Φ

(
1

2
σt∆t

0.5

))
. (5.3)

When it comes to assessing the performance of each forecaster, the most obvious, but

not the only useful metric, is the total profits or losses incurred after engaging in com-

petitive trading against virtual agents representing other volatility forecasts. This test

metric is described throughout this chapter as the pairwise competitive trading test.

There is also much to be learned by a parallel market in which each agent buys or

sells the straddle to the other party at what they consider to be their own fair price, i.e.

no midpoint is agreed on and each trader enters into the trade almost independently of

the other, with only their position determined by the others price. In this case the profit

from one will no longer be equal in magnitude to the corresponding loss of its trading

counterpart. Also, it is significant to note that the the most successful trader according

to this test, is not the one with the highest profit, but rather the one with the smallest

magnitude of profit or loss. This change in the assessment metric is due to the fact that

each agent is effectively trading at its own perceived fair price, thus only the agents with

the fairest price will result in a profit or loss that is small in magnitude. This test metric

is described throughout this chapter as the fair price trading test.

5.1.2 Data Specification and Clarification of Methods

The FX rate used for analysis was at the midpoint of the bid rate and the ask rate.

Actual time was used as opposed to tick or business time and the data was of suffi-

ciently high frequency that there were always points sufficiently close to the desired
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sampling point. For the AUD/USD exchange rates there were 1565 total high frequency

trading hours considered between the 1st March 2014 and 31st May 2014, 1576 for the

EUR/USD exchange and 1552 for the GBP/USD exchange. Each of these hours was

considered high frequency if it had at least one trade very ten seconds, although most

hours had substantially more than this.

The FX quotes are provided around the clock throughout weekdays so there is no

consideration taken for overnight effects. Weekends were handled simply by closing all

trading positions before a weekend starts so that no options or stocks are held over the

weekend.

Nine distinct methods were used to provide historical volatility estimates as well as

three supplementary estimates of Min, Max and Average which are useful diagnostic

tools. The historical volatility estimation methods used were:

1. The RV method with a sample interval of one minute given by Equation (2.18)

and denoted here as ‘RV 1min’

2. The RV method with a sample interval of five minutes given by Equation (2.18)

and denoted here as ‘RV 5min’

3. The Averaged-RV method with a sample interval of one minute given by Equation

(2.20) and denoted here as ‘Av RV 1 min’

4. The Averaged-RV method with a sample interval of five minutes given by Equation

(2.20) and denoted here as ‘Av RV 1 min’

5. The Adjusted-TSRV method with a sample interval of one minute given by Equa-

tion (2.22) and denoted here as ‘Adj TSRV 1 min’

6. The Adjusted-TSRV method with a sample interval of five minutes given by Equa-

tion (2.22) and denoted here as ‘Adj TSRV 5 min’

7. The Average-HHT method with a sample interval of one minute given by Equation

(4.8) and denoted here as ‘HHT 1 min’
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8. The Average-HHT method with a sample interval of five minutes given by Equation

(4.8) and denoted here as ‘HHT 5 min’

9. The Filtered-HHT method, described in Section 5.1.3 and denoted here as ‘HHT

Filtered’.

Finally, the minimum, maximum and mean of all of the above methods was taken at

each point as a diagnostic tool. These supplementary estimates are given as:

10. Average: Constructed by taking the arithmetic mean of the above forecasts on a

point-by-point basis

11. Max: Constructed by taking the highest volatility forecast from the above methods

on a point-by-point basis

12. Min: Constructed by taking the lowest volatility forecast from the above methods

on a point-by-point basis.

5.1.3 Modified HHT Estimator With Market Microstructure

This version of the HHT volatility estimator differs slightly from that outlined in Chap-

ter 4. Due to differences in the data and overall computational load, a slightly more

efficient procedure was used. The main difference is a change in the stopping criteria for

the iterative filtration process. The subsample times were also changed to capture the

dynamics of the underlying FX market more succinctly. As a guide, the range of sam-

ple intervals should include enough high frequency points to capture some inflationary

behaviour, as well as some relatively sparse samples which have not been significantly

effected by market microstucture. A step by step outline of the modified volatility

estimation procedure follows.

1. EMD Step:

Apply the EMD procedure to the observed raw price series P̃ (t,∆t), where ∆t is

the highest available sample rate and the observed raw price with market frictions
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is given by P̃ . Note that this differs from the low frequency realm, where the ob-

served price was essentially the same as the frictionless price, which was denoted

P . Also, recall that the observed price can be reconstructed by a summation of

all IMFs, i.e. P̃ (t,∆t) =
∑n

l=1 Ψl(t,∆t) + Ωn(t,∆t).

2. Filtration Step:

Next, filter the observed price using the EMD procedure to give the filtered price

Fi(t,∆t), defined by:

Fi(t,∆t) =

n∑
l=1+i

Ψl(t,∆t) + Ωn(t,∆t), (5.4)

for i = 0, . . . , n, where i is the number of IMFs filtered off, so that when i = 0,

F0(t,∆t) is simply the observed price. Note that the ith filtered signal is actually

equivalent to the ith residual, i.e.

Ωi(t,∆t) = P̃ (t,∆t)−
i∑
l=0

Ψl(t,∆t) =

n∑
l=i+1

Ψl(t,∆t) + Ωn(t,∆t). (5.5)

This observation is consistent provided that Ω0 is the considered original observed

price and Ψ0 is empty.

3. Subsampling Step:

Subsample Fi(t,∆t) at various time intervals to give Fi(t,∆t), where ∆t = n∆t.

For example, the numerical results given in this chapter used ∆t(1, . . . , 6) =

[0.25, 0.5, 1, 1.5, 2, 3] minute intervals. The daily sample rate is then given as

fs(j) = 1440
∆t(j) , for j = 1, . . . , 6.

4. Volatility and Averaging Step:

Now, starting at the 0th filtration step, the procedure outlined in Section 4.1 is

used to estimate the volatility of Fi(t,∆t) for each ∆t. The the level of filtration

is increased with each successive iteration until the stopping criteria is met. Note

that this procedure gives the spot volatility, and for the purposes of comparison,

we wish to convert this into integrated volatility to make hourly estimates. The
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mean of each of the resulting volatility measures is equivalent to the integrated

volatility over the period the mean was taken, which is one hour in this case. Let

this mean or integrated volatility at sample rate fs, hour t and filtration step i be

given by HHTIV (t, fs(j), i), defined by Equation (4.10).

5. Iteration and Stopping Criteria Step:

Iterate the previous step until the characteristic volatility curve changes the sign

of its gradient at the highest sample rates (fs(1)), i.e. the characteristic volatility

curve changes from decreasing as the sample interval increases, to increasing as

the sample interval increases. This can also be defined in terms of the gradient

changing with respect to changes in sample rate, i.e. Γ(fs(1), i− 1)) > 0 changes

to Γ(fs(1), i) < 0 (note that fs(j) decreases as j increases) where Γ is defined in

Section 4.11, with k = 6.

6. Optimisation Search & Calculation of Volatility Steps:

Once the stopping criteria is met, the last two filtrations of the volatility measure

are linearly combined in such a way as to maximise the flatness of the combined

volatility profile over all sample rates. This is achieved by minimising the cost

function described by Equation (4.12) in Chapter 4. Finally, Equation (4.13) is

used to calculate the Filtered-HHT volatility estimate.

The procedure is best illustrated through Figure 5.1, where it evident that successive

filtrations have removed much of the market microstructure. In Figure 5.1 it is also

possible to see that a change of gradient has occurred at the highest sampling rates in

the last filtration. This is the condition which triggered the stopping criteria, as the

change in gradient signals the point at which the filtered signal has changed from being

under filtered to over filtered.

The end result of this is a volatility measure which should be roughly the same

whether it was sampled at 0.5 minutes or 3 minute intervals, thus any of the values can

be chosen or better still, a mean over the different sample rates can be chosen as the

final integrated volatility estimate. A mean of all sample rates what the procedure used
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Figure 5.1: Volatility estimates with sample intervals of ∆t(1, . . . , 8) =
[0.2, 0.25, 0.5, 1, 1.5, 2, 3, 4], calculated across different levels of filtration using FX data.
The ‘o’ symbol denotes the estimate provided by the procedure outlined in this chapter.

in this chapter.

Importantly, once the optimal choice for the parameter C is known, the volatility

estimates which used the highest frequency data can be used to describe the instan-

taneous volatility down to the smallest time scales. Figure 5.2 shows this in practice.

This spot volatility estimate makes it possible to see how volatility is evolving over the

course of a minute, making daily volatility estimates seem low frequency by comparison.

Unfortunately, the results from the previous chapter also suggest that the Filtered-HHT

procedure can be quite noisy, rendering volatility estimates at the tick scale of limited

use at the current time, however with further refinements this approach could lead to

better short term forecasts.
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Figure 5.2: Instantaneous or spot volatility estimates for 24 hours of high frequency
AUD/USD data.

Furthermore, by effectively de-noising a signal in order to create a consistent volatility

measure there is an added bonus of being able to either examine the frictionless price or

the noise separately. Figure 5.3 depicts AUD/USD FX data riddled with microstructure

noise as well as the frictionless price, which can easily be extracted once the optimal

multiplier C is known. It was also observed during the course of this research that once

this frictionless price is extracted, inconsistent integrated volatility estimates such as RV

also become consistent when applied to the filtered price. Figure 5.3 also shows how the

EMD process has been used as a smoother and a low pass filter, as the jagged move-

ments and jumps which are apparent at the highest frequencies have been smoothed out.

5.1.4 Results

The aim of this section is to see how the volatility estimates proposed above compare

against the commonly used RV and Adjusted-TSRV methods. Note that the return
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Figure 5.3: The ‘frictionless’ price (red), as extracted from 24 hours of high frequency
AUD/USD data (blue).

profits were annualised assuming 252 trading days in a year, each day consisting of 24

trading hours.

For the competitive option market in which the highest profits is the metric of suc-

cess, Tables 5.1-5.3 show that the proposed Filtered-HHT method provides the best

volatility estimates for the EUR/USD and GBP/USD exchanges and achieves a rank

of second place for the AUD/USD exchange. Conversely, the realized volatility formed

by averaging multiple five minute estimates earns itself first place in the AUD/USD

exchange and second in both the EUR/USD and GBP/USD exchanges. Surprisingly

the Adjusted-TSRV method, which is designed specifically to handle high frequency

noise appears to be over adjusting for the inflationary noise and under estimating the

volatility. Unsurprisingly all of the volatility estimates which make no adjustment for

the presence of high frequency noise perform very poorly at higher sampling rates when

the effect of high frequency noise is at its greatest.

In the second performance test, straddle options were valued and bought or sold at
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each virtual trader’s opinion of a fair price. Thus, the object under this measure is not

to have the largest profit, but the smallest magnitude profit or loss, since it implies the

fairest pricing. The results for this test are given in Tables 5.4-5.6 . Under this test the

rankings are dominated by the same two methods that performed well in the pairwise

trading test. The Filtered-HHT procedure achieving first place for the AUD/USD and

GBP/USD exchanges and second for the EUR/USD exchange. Conversely, the realized

volatility formed by averaging multiple five minute estimates earns itself first place in

the EUR/USD exchange and second in both the AUD/USD and GBP/USD exchanges.

As expected the methods that make no adjustment for noise are performing the worst

at the highest sampling rate when the inflationary bias is at its worst. Again, the

Adjusted-TSRV method appears to be biased below, resulting in poorer than expected

performance.

The annualised standard deviation for the percentage returns is also given in Tables

5.1-5.3 for the pairwise competitive test and in Tables 5.4-5.6 for the fair price trading

test. Similar annualised standard deviations are observed within each market because

of the way each estimator interacts with each other estimator, the profit from one is the

loss of the same magnitude for another. This observation of only a small change in the

standard deviation of profits within a market is consistent with observations made by

Bandi et al. [68].

The Sharpe ratios are also given for each method during the competitive trading

test in each currency in Tables 5.7-5.9. It should be noted that values given for this

measure are not particularly informative, as so much of the result is based on the choice

of methods present in the simulation. The values given in Tables 5.7-5.9 have to be

considered in the right context, these Sharpe ratios are entirely dependent on the mod-

els that were chosen to compete in the simulated market, some of which were not well

suited to market microstructure. Thus, the results given by this metric may not be

representative of performance in a real market because of its dependence on the models

chosen for the simulated study. As expected, the ranking results of the Sharpe ratios
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follow the ranking of competitive trading test very closely because the standard devia-

tion of profits varies little across different methods. Sharpe ratios were omitted from the

test results in which each estimation procedure traded at its own perceived fair price be-

cause they could be misleading and are no more informative than the rankings provided.

Under both performance metrics it may be of some interest to examine the potential

profits if all trades were unhedged. However, the unhedged results were calculated but

are not displayed because the time interval was so short that there was no significant

difference between the hedged and unhedged results and no difference in the performance

rankings in this case. If the options were held for longer periods or were exposed to more

risk in some other way then the importance of hedging would become more apparent.

The estimates denoted as Min, Max and Average were used as diagnostic tools when

setting up the simulated market participants. Due to the inclusion of some volatility

estimation techniques which were not designed to handle market microstructure noise,

such as RV 1 min and HHT 1 min, it is reasonable to assume that there are going to

be some very inflated volatility estimates. The presence of these highly biased volatility

estimates has led to the Max volatility forecast being substantially worse than the Min

forecast. Such a result was expected as there is no mechanism present which was likely

to yield an extremely low volatility estimates, additionally the maximum volatility was

unbounded and thus had far greater room for error.

The presence of systematically biased estimates has also led to the Average forecaster

being biased above, however it is worth noting that if the competing set of forecasters

was made up of independent estimates without such a systematic bias, then the average

of these forecasts would be expected to perform quite well.

More detailed tables that describe how each method performed when trading against

every other method for both performance tests can be found in the appendix to this

chapter.
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Table 5.1: Pairwise competitive trading results for AUD/USD Straddles

Method Av Annual Return % Std of Return% Return Rank

RV 1 min -31.06 4.69 9

Adj TSRV 17.12 4.68 6

Av RV 1 min -37.34 4.71 10

RV 5 min 27.35 4.69 3

Adj TSRV 5 min 10.03 4.53 7

Av RV 5 min 34.44 4.70 1

HHT 1 min -37.92 4.62 11

HHT 5 min 25.71 4.67 4

HHT Filtered 32.16 4.70 2

Max -69.75 4.48 12

Min 4.44 4.45 8

Average 24.82 4.70 5

Table 5.2: Pairwise competitive trading results for EUR/USD Straddles

Method Av Annual Return % Std of Return% Return Rank

RV 1 min -31.47 3.25 10

Adj TSRV 8.86 3.25 7

Av RV 1 min -15.57 3.28 9

RV 5 min 20.66 3.28 3

Adj TSRV 5 min 12.26 3.21 6

Av RV 5 min 22.45 3.29 2

HHT 1 min -34.75 3.26 11

HHT 5 min 17.48 3.27 5

HHT Filtered 30.76 3.27 1

Max -55.59 3.13 12

Min 6.19 3.13 8

Average 18.73 3.29 4

5.2 Chapter Conclusion

Assessing the performance of estimations on an unobservable variable is inherently a

difficult task. Without resorting to simulated models, which are highly specification

dependent, we were successfully able to use a virtual option market to compare a new

procedure for high frequency estimation with several popular methods.

The volatility estimate proposed in this chapter is designed to overcome the prob-

lem of inflated volatility estimates caused by microstructure noise. The Filtered-HHT
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Table 5.3: Pairwise competitive trading results for GBP/USD Straddles

Method Av Annual Return % Std of Return% Return Rank

RV 1 min -9.79 3.13 10

Adj TSRV 11.18 3.14 7

Av RV 1 min -4.70 3.11 9

RV 5 min 18.65 3.13 3

Adj TSRV 5 min 13.02 3.05 6

Av RV 5 min 21.25 3.13 2

HHT 1 min -54.51 3.00 11

HHT 5 min 14.14 3.07 5

HHT Filtered 27.51 3.12 1

Max -62.00 2.96 12

Min 8.46 2.97 8

Average 16.81 3.13 4

Table 5.4: Fair price trading results for AUD/USD Straddles

Method Av Annual Return % Std of Return% Return Rank

RV 1 min -74.19 4.70 9

Adj TSRV -20.94 4.70 6

Av RV 1 min -81.29 4.72 10

RV 5 min -6.78 4.70 3

Adj TSRV 5 min -36.52 4.53 7

Av RV 5 min 0.71 4.70 2

HHT 1 min -82.70 4.63 11

HHT 5 min -13.99 4.68 5

HHT Filtered -0.50 4.71 1

Max -116.87 4.50 12

Min -45.62 4.46 8

Average -7.46 4.70 4

estimate proposed in this thesis achieved the best overall performance when considering

all three exchanges and both performance tests so there is strong evidence to suggest

that the aim of constructing a consistent volatility estimator using the HHT has been

achieved. The reduction in high frequency bias after successive filtrations as depicted

Figure 5.1 also provides some evidence supporting the argument that the proposed

method is acting as a consistent estimator. Also, the apparent dipping of the volatility

estimate with a sample interval of four minutes in Figure 5.1 is likely due to the higher

sample error of the more sparsely sampled estimates. This apparent dipping is specific to

this randomly selected profile and highlights why simply choosing a large sample width
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Table 5.5: Fair price trading results for EUR/USD Straddles

Method Av Annual Return % Std of Return% Return Rank

RV 1 min -62.92 3.26 10

Adj TSRV -21.03 3.28 6

Av RV 1 min -45.40 3.28 9

RV 5 min -5.48 3.30 4

Adj TSRV 5 min -23.50 3.22 7

Av RV 5 min -3.32 3.29 1

HHT 1 min -66.30 3.25 11

HHT 5 min -11.95 3.29 5

HHT Filtered 4.20 3.26 2

Max -89.82 3.14 12

Min -33.63 3.15 8

Average -4.97 3.29 3

Table 5.6: Fair price trading results for GBP/USD Straddles

Method Av Annual Return % Std of Return% Return Rank

RV 1 min -37.90 3.12 10

Adj TSRV -16.76 3.15 5

Av RV 1 min -32.43 3.11 9

RV 5 min -6.86 3.13 4

Adj TSRV 5 min -20.77 3.06 7

Av RV 5 min -4.91 3.13 2

HHT 1 min -93.02 3.02 11

HHT 5 min -17.04 3.08 6

HHT Filtered 2.39 3.11 1

Max -101.52 2.98 12

Min -28.77 2.97 8

Average -6.29 3.12 3

is an inadequate solution to the problem of market microstructure.

Perhaps the main advantage of the Filtered-HHT approach is that there are no un-

derlying assumptions on the structure of the microstructure noise, only that the noise

is causing inflationary effects at higher frequencies. The lack of assumptions, combined

with an algorithmic approach to achieve consistency over different time scales, appears

to have made the HHT based estimator flexible enough to handle real data effectively.
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Better volatility estimates aren’t the only useful outcome of the filtering procedure

outlined in Section 5.1.3. With filtering, the high frequency noise that usually obfus-

cates our view of the frictionless price can be stripped away one layer at a time until the

elusive true price is revealed. Furthermore, as Figure 5.2 demonstrates, the proposed

estimator is also capable of providing spot or instantaneous volatility estimates as op-

posed to just the integrated volatility over a period of time. This ultra high frequency

volatility estimate may led to better short term predictions as well as a more thorough

understanding of high frequency dynamics.

It is also worth noting that asymmetries in the Black-Scholes pricing formula would

also tend to penalise under estimates differently than over estimates, as the option

prices do not vary linearly with volatility due to the convexity of the Black-Scholes pric-

ing formula and the effect of Jensen’s Inequality. This raises an important point about

volatility assessment in general, using a more realistic and complicated cost function to

determine the superiority of one estimator over another may yield to completely different

conclusions than assessments of the ME, MSE, MAPE etc. This is due to asymmetries

in the cost function placing more weight on some characteristics than others, i.e. under

estimating volatility may be more costly than over estimating it or a low bias might be

more important to some cost functions than a low noise.

It should be noted that at such high frequencies, assumptions required for the Black-

Scholes equation start to break down, namely the requirements for log-normally dis-

tributed returns and continuous sample paths. At such high frequencies, market frictions

(microstructure effects) lead to a highly discretised return structure which may be more

suited to a binomial or trinomial option pricing model with variable volatility, such as

the one developed by Haahtela [72]. Although we can acknowledge that the B-S model

has its drawbacks, so long as results gained from it are put into their correct context,

there is still a lot of information that may be garnered from its use. Furthermore, the

wide adoption of the B-S model makes any new insights more accessible and relevant.

Alternative, perhaps more appropriate option pricing schemes may have a non-trivial
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impact on the evaluation of volatility estimators, however this line of research falls out-

side of the scope of this thesis and is an area of future research.

Chapter Appendix

The tables contained in this appendix give a more comprehensive account of how each

volatility estimator and its associated virtual trader fared against its competitors on

a pairwise basis. Note that the tables for the competitive trading results should be

symmetric about the diagonal in magnitude, but opposite in sign. For the competitive

trading case in Tables 5.7 – 5.9, the result in cell (i,j) should be seen as the profit or loss

resulting in a trade with its partner in cell position (j,i). For the fair trading tests in

Tables 5.10 – 5.12, the tables no longer have any symmetry as different virtual traders

are no longer in direct competition. Although they are no longer in competition, the are

not completely independent of one another, this is why results still vary among different

trading partners during the fair pricing test. What is driving the difference in results is

simply the fact that its position to buy or sell a straddle (at its own perceived fair price)

is still dependent on its trading partner.

From the full tables, the performance of individual methods becomes more apparent.

Some of the features which stand out the most in all of the tables is the fact that the

composite volatility estimate obtained by taking the maximum volatility forecast on

a point by point basis is clearly grossly over estimating the volatility, resulting in the

poorest overall performance. This is closely followed by the three volatility estimators

which are not designed to handle market microstructure, namely the “RV 1 min”, “Av

RV 1 min” and “HHT 1 min” procedures.

The composite volatility estimate generated by taking the minimum volatility fore-

cast at each point also has very poor performance across the board. While not quite as
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bad as the composite maximum or the three procedures which are particularly suscepti-

ble to market microstructure noise, the composite minimum was the next worst estimate

in every test. This should not come as a surprise, as the estimate should be biased below

the true volatility, unless every other forecaster is also biased above the true volatility.

The fact that all of the estimates which account for market microstructure in some way

are between the composite maximum and the composite minimum is a reassuring sign

for the validity of the test. It implies that the true volatility lies between these two

extreme estimates.

The composite “Average” volatility estimate is performing relatively well considering

that it is being biased above quite heavily by the three procedures which are known to

over estimate volatility in the presence of market microstructure. Note that this pro-

cedure is generated from the 9 different volatility estimates which does not include the

two composite methods of the minimum and maximum. With the removal of the three

procedures known to be heavily biased above, the Average estimate would actually be

expected to have the best performance, since an average of independent unbiased esti-

mates is often better than any individual estimate.

Surprisingly, the “Adj TSRV” and “Adj TSRV 5 min” procedures aren’t dominat-

ing the forecast performance tables, as the results from Chapter 4 would indicate they

should. The TSRV procedures appear to be under estimating the true volatility, as the

“RV 5 min” and “Av RV 5 min” have, by definition a higher volatility estimate than

the TSRV procedures and yet they have are performing better under this simulation.

What is left to discuss are the sparsely sampled RV and HHT estimates as well as

the Filtered-HHT procedure. The more sparsely sampled RV and HHT based estimates

are all performing relatively well in both the competitive trading and fair pricing tests.

Sampling at five minute intervals has largely reduced the effects of market microstruc-

ture, however not the sparse sampling didn’t quite meet the performance of the filtering

procedure which has the best overall performance.
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Chapter 6

Discussion & Conclusion

6.1 Discussion

The world is full of complex systems and processes that change their stochastic behaviour

over time. By restricting our attention to financial time series the implications of this

research have not been fettered or narrowed, the financial setting is merely a focal point

for the methodology developed herein.

The goal of this thesis was essentially to explore low and high frequency volatility

estimation in the light of a new tool, the HHT, which had hitherto been largely neglected

in this context. To that end, clear contributions have been made in the realms of low and

high frequency volatility estimation using the HHT procedure, which has again proved

its worth and demonstrated that its true value lies in its flexibility.

The HHT was successfully used to break down complicated financial time series infor-

mation into simpler wave like structures which were more amenable to intuitive analysis.

This ability to decompose complicated signals is demonstrated by the spectral analysis

components of Sections 2.2.3 & 4.4.1. In these sections, the EMD process at the heart of

the HHT procedure can be seen to act as an effective band-pass filter and the spacings

between frequencies clearly indicate that it performs as a dyadic filter, a result which can

112
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also be achieved with some wavelet transforms. This parallel with wavelets may lead

to further developments and a more complete mathematical description of the EMD

process which has so far proved an intractable problem for researchers due to the adap-

tive nature of the EMD algorithm. Furthermore, this filter bank structure allows for a

convenient method of estimating the Hurst exponent which can describe the autocorre-

lation structure of the data. In particular, a change in the Hurst exponent at different

sampling rates indicates that a change in autocorrelation structure has occurred and the

self similarity of the time series may not be preserved through intertemporal aggregation.

In Chapter 3, the filtering nature of the EMD process was also put to use as a means

to generate a proxy to the returns by subtracting a local mean (made up of low frequency

components) from the time series. Again, the filtration structure was used in Chapters

4 & 5 to effectively sift off high frequency noise from a return series. This generated an

approximation to the “true” or frictionless price as well as a volatility estimate which

was free from the inflationary effects of market microstructure.

A parametric HHT based procedure for estimating low frequency volatility is also

proposed and tested in Chapter 3. The procedure is further refined by the completely

non-parametric approach taken in Section 4.1. The later HHT based method needs

no in-sample data for parameter fitting and makes no assumptions on the stochastic

process driving the time series. Also, in the low frequency realm the HHT method is

able to extract key volatility features with a high temporal resolution while maintaining

relatively low levels of noise, a claim which is substantiated in Section 4.2. Furthermore,

perhaps the best feature of the methods developed over the course of this thesis is their

intuitive simplicity. This elegant simplicity comes from the ability of the HHT to rep-

resent seemingly chaotic signals in terms simpler wave like structures that combine to

form more complex ones.

In Chapter 4, a benchmark test was developed specifically to test this claim that

the HHT procedure could adapt quickly to changes in the level of volatility level, while
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maintaining a low signal to noise ratio. Simulated data and this benchmark were used

to test the claim against the EWMA procedure for many values of the decay parameter

λ. To some satisfaction, the results can all be summarised in one simple plot given by

Figure 4.3, which does indeed show the claim to be true under test conditions.

As an introduction to market microstructure and as an exercise in spectral analysis,

the HHT procedure was then used to estimate the Hurst exponent at different levels

of market microstructure for the three kinds of stochastic volatility processes used in

Chapter 4. A drop in the Hurst exponent would indicate an increasingly rough time

series with a short term memory, just like the fGn studied in Chapter 2. This is exactly

what was observed, with (H < 0.5) indicating the presence of inflationary market mi-

crostructure noise. Markets with alternative kinds of market microstructure noise have

also been considered over the course of this research, some of which have a retarding or

dampening effect on volatility estimates at higher frequencies. These are often associ-

ated with long term memory processes (H > 0.5). Typically this deflationary behaviour

is observed in index data, such as the All Ords Index covering 1st Jan 2000- 31st Dec

2009. The ability of the HHT to estimate the Hurst exponent opens the possibility for

it to be used to indicate the presence and extent of market microstructure noise.

Perhaps the largest contribution the HHT procedure has to make to the study of

volatility estimation is its inherent flexibility. There is no requirement for evenly spaced

data and the approach described by Equation (4.6) is completely parameter free, requir-

ing no lead in data or parameter fitting. The improved speed this approach has over its

predecessor developed in Chapter 3 has enabled more complex methods to be developed

which can deal with the problems of high frequency volatility estimation.

The Filtered-HHT method was then proposed to deal with market microstructure

noise, comparisons with TSRV based methods in a simulated study followed. Results

indicated that the the proposed Filtered-HHT procedure was capable of adjusting for

high levels of market microstructure noise. While most of the error metrics were slightly
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higher for the HHT based procedure, it is stipulated that this was largely due to the

fact that the TSRV methods were specifically designed to adjust for the kind of additive

noise used in the simulated data studied in Chapter 4, while the HHT based approach

remains more general.

In an effort to test the Filtered-HHT procedure with real high frequency data, a sim-

ulated options market was constructed in Chapter 5. This simulated market was based

on several competing volatility forecasts and used real high frequency exchange data.

This approach of using a simulated options market is a novel and effective way to assess

forecast performance on an unobservable variable. The purpose of this test was to see

how the different volatility estimates performed when real market microstructure was

encountered, microstructure which isn’t the simple additive noise used in the simulations

of Chapter 4. Another interesting aspect of this chapter is the more complex evaluation

criteria, while other chapters used measures like ME, MSE, MAPE, etc, this simulated

study involved a nonlinear pricing formula (the Black-Scholes equation), which added an

element of realism to the testing. The results for this chapter also indicate that the HHT

based approach combined with the frequency filtering capability of the EMD process

was able to accurately extract volatility levels in the presence of market microstructure.

Furthermore, this approach met with more success than its RV based competitors for

these simulations, perhaps owing to the lack of assumptions made by the HHT approach.

One possible drawback of the simulated options market approach is that the per-

formance indicators were entirely dependent on the methods that were chosen to be

included in the market. While the results obtained still provided an effective and infor-

mative rankings and pairwise comparisons, they are harder to quantify outside of the

context of this simulated market. For example, the average profits and losses for each

method are entirely dependent on the presence of the other eleven simulated market

participants, some of which (like the one denoted as RV 1 min) have no place in a high

frequency market and were only included to show how poorly they perform under such
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conditions.

6.2 Future Work

The global financial markets are experiencing a paradigm shift in the way trading is

conducted. The trend is shifting away from speculators calling their brokers to make

long term investments and towards automated systems which trade against one another

in an environment where mere nanoseconds matter. In such a marketplace, having the

most up to date volatility estimate is a clear advantage.

One of the key features of the HHT procedure is that it can yield instantaneous,

rather than integrated volatility estimates. For clarification, the term ‘instantaneous

volatility’ isn’t referring to its calculation time, rather that volatility estimates are given

for every point of a time series. Furthermore, due to the cubic splining procedure used

in the EMD phase of the HHT process, IMFs produced and hence volatility estimates

are actually continuous functions. While the procedures outlined in this thesis are ca-

pable of producing such a high frequency estimate, as demonstrated by Figure 5.2, it is

a goal of future work to improve upon these instantaneous measurements and test their

performance as short term forecasters. There are two approaches currently undergoing

development. The first approach is to rescale IMFs so that the power spectra produced

are of equal power, the second involves making assumptions on the underlying auto-

correlation structure of the noise and taking it into account in a similar manner to the

TSRV method.

At the high frequencies considered for the simulated options market of Chapter 5,

many of the assumptions underlying the Black-Scholes model become invalid. In particu-

lar, the assumption that prices come from a continuous distribution becomes particularly

strained at scales when market microstructure starts to dominate and returns become

highly discretised. To account for this, an option pricing formula based on more discrete
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stock movements such as a binomial or trinomial method could be used and the simu-

lated options market study could be redone under a more discretised framework which

may be better suited to the behaviour of markets at high frequency. The trinomial

model developed by Haahtela [72] would be particularly well suited to this as it allows

for changing volatility estimates over time.

There is also much interest in the relationship between volume, volatility and price.

A higher dimensional version of the EMD algorithm such as the one proposed by Sinclair

and Pegram [73] could be used to explore the relationship between volume, volatility

and price. This would allow for the creation of a three dimensional surface which, it

is hoped, will shed some light on how these variables interact with one another and

perhaps lead to better forecasting models.

Some research was also done into potential improvements in the way overnight re-

turns are handled with low frequency data. The research explored the idea of using the

opening and closing prices of a stock or index to split the information into two corre-

lated time series which could then be recombined to give a more accurate result. While

promising, further research into the idea was halted after the the work done by Bertram

[74] was found to cover the concept in sufficient depth.

Assessing the performance of the Filtered-HHT procedure on different kinds of mar-

ket microstructure noise is also an area of interest. Further work in this area would help

substantiate claims made on the flexibility of the methods developed herein. One line

of inquiry which was partially explored over the course of this thesis, are the random

processes generated by the Karhunen-Loève transform. There are many similarities be-

tween the way this transform constructs random walks and the way in which the HHT

procedure breaks them back down again and so this could be the starting point in

an investigation into long memory processes with microstructure noise that attenuates

volatility estimates rather than inflates them.
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6.3 Concluding Remarks

This thesis has provided an in depth look at the potential for the HHT procedure as a

volatility estimator. A procedure which has largely been ignored by financial practition-

ers has now been built up to the point where it could be considered an effective tool in

both the high and low frequency realms.

The results of several simulated experiments and two studies using real financial data

all indicate that the HHT based volatility estimators are competitively accurate with

popular alternatives and are worthy of further research. Furthermore, the interpretation

of volatility as a sum of wave amplitudes has a certain intuitive and elegant simplicity

which is appealing in its own right.
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