Contributions to cryptography with restricted conditions

Weiwei Liu
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Contributions to Cryptography with Restricted Conditions

Weiwei Liu

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy (Integrated)

The University of Wollongong
School of Computing and Information Technology

May 9, 2016
Declaration

I, Weiwei Liu, declare that this thesis submitted in partial fulfilment of the requirements for the conferral of the degree Doctor of Philosophy (Integrated), from the University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Weiwei Liu
May 9, 2016
Abstract

Cryptography with restricted conditions refers to cryptographic primitives with special requirements or conditions. For example, a proxy signature scheme only allows a proxy signer with valid delegation to issue signatures on behalf of the original signer, while for \(k \)-time anonymous authentication, a service provider can be ensured that a user can only have anonymous access to the services for up to \(k \)-times. Due to the different requirements in various types of security systems, more and more cryptographic primitives with new features are emerging. In this thesis, we study several cryptographic primitives with restricted conditions and their applications, including proxy signature and its variant in the attribute-based setting, oblivious transfer, \(k \)-time anonymous authentication and their applications in the e-coupon systems.

To address the problem that a proxy signer might abuse the delegated signing right from the original signer, in this thesis, we present a \(k \)-time proxy signature scheme that only permits a designated proxy signer to generate a pre-determined number of proxy signatures. In the subsequent work, we implement proxy signature in attribute-based setting, that is, an original signer with a set of attributes can delegate his signing right to a proxy signer with a normal public and private key pair. One interesting feature of the proposed scheme is that by verifying a proxy signature, the public can be convinced the signature is generated by the proxy signer with valid deletion from the original signer whose attributes satisfy a pre-claimed predicate. Then we identify one attack that has been neglected in many existing delegation-by-warrant proxy signature schemes. We present the details of this attack and propose a general solution that can efficiently thwart the attack.

In this thesis, we also construct several e-coupon systems with new properties. In the first e-coupon system, the user identity privacy would be revealed if a dishonest user requests more than pre-determined number of services specified in the coupon. Different from other e-cash and \(k \)-time anonymous authentication schemes, we achieve traceability without involvement of a trusted third party. Besides, for the first time, we formalize the concept of privacy of purchase, that is, the choices of the users when redeeming a coupon with the server is hidden. Moreover, we propose a new oblivious transfer (OT) scheme with retrievable receiver’s privacy and design another e-coupon system based on our new OT scheme. If a user remains honest, the user anonymity and privacy of purchase are both well protected. Otherwise, the identity and purchase privacy of the user can be revealed by the service provider.
Acknowledgments

I would like to express my sincere appreciation to my supervisors Prof. Yi Mu and Dr. Guomin Yang, for their excellent patience and guidance. They have been providing invaluable encouragement and suggestions to me. Without their continuous support, the completion of this thesis would be impossible. Besides my supervisors, I would like to thank Prof. Willy Susilo, Prof. Minjie Zhang, Dr. Man Ho Au, Dr. Yong Yu, Dr. Fuchun Guo, Dr. Jinguang Han and Dr. Xinyi Huang, for their insightful comments and valuable suggestions to my study and research.

I would like to thank all my colleagues and friends in Australia, a non-exhaustive list of whom includes: Vu Duc Nguyen, Yanguang Tian, Rongmao Chen, Nan Li, Jianchang Lai, Zhongyuan Yao, Shiwei Zhang, Shengmin Xu, Jiannan Wei and Xiaoyu Yu, for their accompany during my PhD study.

It is an honour for me to be a research student in the Centre for Computer and Information Security Research, School of Computer Science and Software Engineering, University of Wollongong. I also take this opportunity to thank the China Scholarship Council and University of Wollongong for their financial support to my study.

Last but not least, I am sincerely grateful to my parents, for everything.
Publications

This thesis is related to the following publications/manuscripts.

List of Notations

The following abbreviations are used throughout this thesis.

\(\kappa \) A security parameter

\(1^\kappa \) A string of length \(\kappa \)

\(\mathbb{G} \) A group

\(\mathbb{G}_q \) A group of order \(q \)

\(\mathbb{N} \) The nature number set

\(\mathbb{Z} \) The set of integers

\(\mathbb{Z}_p \) The set of integers modulo \(p \)

\(a \in_R \mathcal{A} \) \(a \) is randomly chosen from set \(\mathcal{A} \)

\(a \notin \mathcal{A} \) \(a \) is not in set \(\mathcal{A} \)

\(a || b \) The concatenation of strings \(a \) and \(b \)

\(\mathcal{A} \) An attribute universe

\(\Upsilon \) A predicate

\(\text{Pr}[A] \) The probability that event \(A \) happens
List of Abbreviations

The following abbreviations are used throughout this thesis. Some special abbreviations will be defined when they are first used.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Attribute-Based Signature</td>
</tr>
<tr>
<td>ABPS</td>
<td>Attribute-Based Proxy Signature</td>
</tr>
<tr>
<td>CMA</td>
<td>Chosen Message Attack</td>
</tr>
<tr>
<td>CPA</td>
<td>Chosen Plaintext Attack</td>
</tr>
<tr>
<td>CCA1</td>
<td>Non-Adaptive Chosen Ciphertext Attack</td>
</tr>
<tr>
<td>CCA2</td>
<td>Adaptive Chosen Ciphertext Attack</td>
</tr>
<tr>
<td>DS</td>
<td>Digital Signature</td>
</tr>
<tr>
<td>EUF</td>
<td>Existential Unforgery</td>
</tr>
<tr>
<td>IND</td>
<td>Indistinguishability</td>
</tr>
<tr>
<td>OT</td>
<td>Oblivious Transfer</td>
</tr>
<tr>
<td>OTRRP</td>
<td>Oblivious Transfer with Retrievable Receiver’s Privacy</td>
</tr>
<tr>
<td>PKC</td>
<td>Public Key Cryptography</td>
</tr>
<tr>
<td>PKE</td>
<td>Public Key Encryption</td>
</tr>
<tr>
<td>PPT</td>
<td>Probabilistic Polynomial Time</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>TTP</td>
<td>Trusted Third Party</td>
</tr>
</tbody>
</table>
Contents

Abstract iii

1 Introduction 1
 1.1 Background .. 1
 1.2 Motivations and Our Results 3
 1.3 Thesis Organization 6

2 Literature Review 8
 2.1 Proxy Signature ... 8
 2.2 Attribute-Based Signature 9
 2.3 Oblivious Transfer 10
 2.4 Privacy-Preserving E-Coupon Systems 12

3 Preliminaries 14
 3.1 Mathematical Background 14
 3.1.1 Finite Field ... 14
 3.1.2 Group ... 14
 3.1.3 Abelian Group .. 14
 3.1.4 Cyclic group ... 15
 3.1.5 Elliptic Curve .. 15
 3.1.6 Bilinear Pairing 15
 3.1.7 Lagrange Interpolation 15
 3.2 Complexity Assumptions 16
 3.2.1 Discrete Logarithm Assumption 16
 3.2.2 Computational Diffie-Hellman Assumption 16
 3.2.3 Decisional Diffie-Hellman Assumption 16
 3.2.4 One-More Discrete Logarithm Assumption 17
 3.2.5 One More Diffie-Hellman Assumption 17
 3.2.6 Knowledge of Exponent Assumption 18
 3.3 Cryptographic Primitives 18
 3.3.1 Public Key Encryption 18
 3.3.2 Digital Signature 19
 3.3.3 Proxy Signature 20
 3.3.4 Oblivious Transfer 21
CONTENTS

8.4.2 Security Analysis ... 82
8.5 Our Second Scheme and Security Analysis 84
 8.5.1 The Second Proposed OTRRP Scheme 85
 8.5.2 Security Analysis .. 86
8.6 Summary ... 88

9 Two E-Coupon Systems with Strong User Privacy 89
 9.1 Introduction ... 89
 9.2 Formal Definition ... 91
 9.3 Security Model .. 93
 9.4 Our First Privacy-preserving E-coupon System 94
 9.4.1 PPE-COUPON-I .. 94
 9.4.2 Security Analysis ... 96
 9.5 Our Second Privacy-Preserving E-coupon System 98
 9.5.1 PP-ECOUPON-II .. 98
 9.5.2 Security Analysis ... 100
 9.6 Efficiency Analysis .. 101
 9.7 Summary .. 102

10 Conclusion ... 103
 10.1 Summary of Contributions .. 103
 10.2 Future Work ... 105

Bibliography ... 106
List of Tables

8.1 Notations Used in The Proposed OTRRP Scheme 81

9.1 Comparison with Other E-Coupon Systems in terms of Security Prop-
erties . 101

9.2 Comparison with Other E-Coupon Systems in terms of Computation
Cost . 102
Chapter 1

Introduction

Cryptography plays a central role in ensuring the security of data in storage and transmission. Roughly speaking, cryptography is an inclusive field covering a wide range of topics from encryption, signature, authentication to zero-knowledge proof, which provide the vital security properties like confidentiality, integrity, non-reputation and authenticity. In many real-world applications such as e-cash [CFN88], e-coupon [CES+05], e-voting [Buc04] and trial browsing [TFS04], besides the security properties mentioned above, there are some special requirements and conditions such as restricting the number of times that a user can access to the services. In this thesis, we investigate some cryptography primitives with restricted conditions.

1.1 Background

A valid digital signature convinces a recipient that the message was sent by a claimed sender and the message was not altered in transit, while the sender cannot deny having sent the message later. Digital signature has been applied widely in software distribution, financial transactions, and in other cases where it is important to ensure the authenticity, integrity and non-reputation. Proxy signature is a special type of digital signature, where an original signer (or delegator) can delegate his/her signing right to a proxy signer. Thereafter, the proxy signer can sign documents on behalf of the original signer. Roughly speaking, a secure proxy signature scheme should satisfy the following requirements.

- **Verifiability**: Given a proxy signature, a verifier can be convinced that the proxy signature is indeed a valid signature generated by the proxy signer with proper delegation from an original signer on the signed message.

- **Identifiability**: Given a proxy signature, a verifier is able to determine the identities of the corresponding original signer and proxy signer.

- **Unforgeability**: No one, except the designated proxy signer, can create a valid proxy signature.

- **Undenability**: A proxy signer can not deny at a later time on a proxy signature that he has created before.

- **Prevention of misuse**: It is required in the first type of proxy signature schemes that the proxy signing key can not be used for purposes other than creating proxy
signatures. Once misused, the identity of the misbehaving proxy signer can be determined explicitly.

Proxy signature and its extended variants have been found very useful in many practical applications, such as distributed systems [Neu93], grid computing [FKTT98], and mobile agent applications [LKK01b].

Attribute-based signature (ABS) is another special type of digital signature that has been proposed recently. It can be treated as an extension of identity-based signature (IBS) but has better fine-grained control over the signer’s identification information. In an ABS, a signer with attribute set \mathcal{A} will first obtain a secret key from the central authority (or key generation center), and then can use the obtained secret key to sign any messages. The signature can be verified with regards to an attribute predicate Υ and the verification will be successful if and only if the signer’s attribute set \mathcal{A} satisfies Υ. However, the verifier cannot gain any information about the signer’s attributes except the fact that they satisfy the pre-claimed predicate.

ABS has been found useful in the circumstances where the capabilities of the users depend on certain combinations of their attributes. Attribute-based proxy signature (ABPS) is a nature extension of ABS. Compared with normal proxy signature (PKI-based setting), the users in ABPS are identified by attributes. ABPS has many potential applications, for example, attribute-based authentication [MPR11]. Consider a database whose access control is described in a policy such that only users who hold authorised attribute keys can access it. An authorised user can delegate his/her signing rights to another user so that the latter can also access the database and collect information when the former is not available.

Oblivious Transfer (OT) is one of the fundamental cryptographic primitives that has been used widely in various security applications such as exchange of secrets [Rab81], contract signing [EGL85], secure multiparty computation [Yao82] and private information retrieval [CKGS98]. An oblivious transfer scheme is an interactive protocol running between a sender with a set of messages $\{m_1, m_2, \ldots, m_n\}$ and a receiver with a set of choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$. After running the protocol, the receiver learns the intended messages $m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}$ but cannot learn anything about m_i for $i \notin \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$. Meanwhile, the receiver’s choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ are completely hidden from the sender.

An electronic coupon (or e-coupon) can be used by a user to obtain an electronic good or service from a service provider, which is usually a coupon issuer. E-coupon systems are similar but different from electronic cash (or e-cash) systems [CFN88, NMV97, Bra93, AWSM07]. One major difference is that an e-coupon system only involves two parties: the user and the coupon issuer, while in an e-cash system there is a third party which is the bank. An e-coupon system has less algorithms/protocols compared with e-cash. The coupon issuer can issue a coupon to a user through a
coupon issuing algorithm; then the user can redeem the coupon at a later time to obtain the good/service specified in the coupon. Similar to e-cash systems, e-coupon systems are very useful in e-commerce, especially when the shops don’t want to have the bank involved in the transactions.

1.2 Motivations and Our Results

In this thesis, we focus on certain cryptographic primitives with constrained conditions including proxy signature, oblivious transfer, k-time anonymous authentication and their applications. The main motivations and our results are summarized as follows.

1. **k-Time proxy signature**. In proxy signature, one practical issue is how to prevent the proxy signers from misusing the signing ability delegated by the original signer. One solution in existing certificate-based proxy signature schemes [LKK01b, XZF05, Wan05, HSMW06, YMS+12] is to specify the validity period of the delegation in the warrant (which is essentially a signature of the original signer). In this thesis, we propose a new k-time proxy signature scheme, in which a proxy signer is only able to generate a constant number of proxy signatures on behalf of the original signer. We provide a formal and complete treatment for multi-time (or k-time) proxy signature schemes. We first provide a formal security model for such schemes. Then we propose a new k-time proxy signature scheme based on the Schnorr signature scheme and verifiable secret sharing. In our scheme, the original signer can specify in the warrant the number of proxy signatures a proxy signer can produce. If the proxy signer produces more than predetermined number of proxy signatures, his/her private key can be computed by the public. We prove the security of the proposed scheme under the random oracle model.

2. **Attribute-based signing right delegation**. Attribute-based signature is a new primitive that has been found useful in many real-world applications [MPR11]. Attribute-based proxy signature is a natural extension of ABS. Consider the aforementioned attribute-based access control for a database where only users who hold certain attributes can access the data. An authorised user can delegate his/her signing right to another user so that the latter can also access the database and collect information when the former is not available. The delegated signer is called a proxy of the original signer. In our proposed scheme, the verifier can be convinced that a valid proxy signer holds the right delegation from an authorised original signer and therefore can access the
We define the security models for ABPS and propose a threshold ABPS scheme that is proven secure under the proposed security models.

3. **Improving the security of delegation-by-warrant proxy signature schemes.** Among all the constructions of proxy signature, the delegation-by-warrant method has gained the most popularity. A large number of delegation-by-warrant proxy signature schemes [Zha97, LKK01b, Wan05, HSMW06] have been proposed. These delegation-by-warrant proxy signature schemes can be further classified into two categories according to whether the proxy signature is generated by the proxy signer using his own private key or not. In the first type, the proxy signer generates a new proxy signing key using the delegation information and his own private key. The proxy signatures are generated under the new proxy signing key. The proxy signature schemes in [Zha97, LKK01b, Wan05, LYMW13] fall into the first type. In the second type, the proxy signer issues a proxy signature using his own private key. The proxy signatures are essentially combinations of the original signer’s signature on the warrant and the proxy signer’s signature on the message. Such proxy signature schemes could be found in [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a]. We show that an attack has been neglected by the second type of proxy signature schemes proposed in the literature. Our attack is based on a realistic assumption that an adversary has access to the original signer and the proxy signer’s standard signatures. We show that under such a circumstance, many proxy signature schemes [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a] that have been proven secure are in fact insecure.

We demonstrate the attack by launching it against an identity-based proxy signature scheme [WMS+07] that has been proven secure. We show that a malicious adversary can create a proxy signature on a message, if he has access to the standard signatures of the original signer and the proxy signer. Thus, these proxy signature schemes [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a], which we believe is not a complete list, are in fact insecure under the circumstance we consider. We then propose an efficient solution to modify the identity-based proxy signature scheme [WMS+07] in order to thwart this attack. It is worth noting that the same method can also be applied to other proxy signatures [HSMW06, LKZC07, SXYM11, LMY14a] to resist the attack.

4. **An efficient privacy-preserving e-coupon system.** There have been a number of e-coupon systems [CES+05, Ngu06b, CGH06] proposed in the literature. Although user anonymity has been considered in all the above e-coupon systems, none of them has considered traceability against dishonest users. That is, if a dishonest user redeems a multi-coupon more than the pre-
determined number of times, it is desirable to allow the coupon issuer to trace the identity of the user. On the other hand, for honest users, we should ensure that their identities will remain anonymous to the coupon issuer.

Another desirable feature of an e-coupon system is user privacy (privacy of purchase). Different from user anonymity, here we are concerning the privacy of the goods/services chosen by the users during the redemption process. In general, an e-coupon can contain a number of options that have the same value and a user can choose any one of them. If the shop can know the good/service chosen by the user in the redemption process, then it is possible for the shop to link two redemptions performed by the same customer (e.g., a customer may prefer to redeem the same item among several transactions). Therefore, it is also desirable to keep the buying behavior of a user secret from the coupon issuer. It is worth noting that user privacy is possible in the electronic world since we are considering electronic goods, so there is no physical reduction of the goods from the shop’s ‘warehouse’, while in the physical world, the shop can always trace the number of each good to find out the item redeemed by the user.

We propose a new e-coupon system, which can achieve all the desirable properties, namely unforgeability, anonymity for honest users, double redemption detection, traceability against dishonest users, and user privacy. It is worth noting that different from a fair e-cash system [SPC95], the traceability in our e-coupon system is performed by the merchant (i.e., coupon issuer) rather than the bank.

5. **Oblivious transfer with retrievable receiver’s privacy.** Oblivious transfer (OT) has served as a useful primitive in designing privacy-preserving systems in which the choices of the users should be hidden. All the previous research on OT aimed to design OT schemes with unconditional receiver and sender privacy. However, in real-world applications [AIR01, LMY14b], it is desirable for the sender to trace the choices of the receiver if they misbehave. Thus, the previous OT schemes are not suitable in these scenarios. We propose a new OT scheme with retrievable receiver’s privacy such that the privacy of an honest receiver is protected unconditionally while all the previous choices of a misbehaving receiver can be revealed by the sender if the receiver makes more than the pre-determined number of choices in the OT protocol. We prove the security of the proposed OT scheme under the half-simulation model [NP05].

6. **Efficient e-coupon systems with strong user privacy.** We propose two novel e-coupon systems supporting multiple usage of an electronic coupon. Besides the security requirements mentioned above, our e-coupon systems can
achieve two new properties. First, the proposed e-coupon systems allows an honest user to redeem a valid coupon for up to \(k \) times, where \(k \) is a predetermined number set by the coupon issuer. Besides, if a malicious user attempts redeeming a coupon for more than \(k \) times, both the identity privacy and redemption privacy could be traced by the coupon issuer. We also define the formal security models for these new security requirements, and show that our new e-coupon systems are proven secure in the proposed models.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we review some previous research on proxy signature, attribute-based signature, oblivious transfer and e-coupon systems.

In Chapter 3, we review some background knowledge in cryptography. We introduce the concept of cyclic group, bilinear pairing, Lagrange interpolation and present the complexity assumptions used in this thesis. Besides, we introduce some basic cryptographic primitives such as digital signature, proxy signature, public key encryption, and so on.

In Chapter 4, we propose a \(k \)-time proxy signature scheme which can restrict the number of proxy signature generated by a proxy signer in the name of an original signer. We present the formal definition and security model for \(k \)-time proxy signature. We prove the security of the proposed scheme under the proposed security model using random oracle.

In Chapter 5, we introduce an attribute-based proxy signature scheme exploiting public key-based proxy signature and attribute-based signature. We first present the formal definition and security model of ABPS. Then we analyse the security of the proposed scheme under the proposed security model.

In Chapter 6, we present an attack to one type of delegation-by-warrant proxy signature schemes. We take a concrete ID-based proxy signature scheme as an example to explain how the attack works. Then we propose an improved scheme, in which we propose a solution that can also be applied to other proxy signature schemes to prevent the attack. We prove the security of the improved scheme to demonstrate that the improved scheme is not only secure under the previous adversarial model by also can resist the new attack.

In Chapter 7, we design a privacy-preserving e-coupon system with some new properties. We first present the formal definition and security model of such an e-coupon system, in which we formalize two new properties about user privacy (privacy of purchase) and traceability. We then construct an e-coupon system that can achieve all the security properties. We analyze the security of the proposed e-coupon
system and show that it is secure under the defined security model.

In Chapter 8, we present two new oblivious transfer schemes with retrievable receiver’s privacy (OTRRP). We first introduce the formal definition and security model for OTRRP. Then we present two different constructions of OTRRP. We analyse the security of the proposed OTRRP schemes and prove that they are secure under the half-simulation model.

In Chapter 9, we design another two e-coupon systems that support multiple-usage of an electronic coupon. We first present the formal definition and security model for the new e-coupon system. Then we construct two new e-coupon systems achieving different security properties. We prove that the proposed e-coupon systems are secure under the defined security model.

In Chapter 10, we conclude this thesis and present some future work.
Chapter 2

Literature Review

In this chapter, we review prior research on some cryptography primitives with restricted conditions, including proxy signature, attribute-based signature, oblivious transfer and e-coupon systems.

2.1 Proxy Signature

Proxy signature was first proposed by Mambo, Usuda and Okamoto in 1996 [MUO96]. In their work they presented three different methods in constructing proxy signature schemes, namely full delegation, partial delegation, and delegation by warrant. It has been shown impractical to construct proxy signature schemes by means of full delegation since an original signer has to handle his own secret to the proxy signer. Partial delegation proxy signature schemes can be further divided into proxy-protected and proxy-unprotected schemes according to whether a verifier can decide the proxy signature is generated by a proxy signer or the original signer. In a subsequent work, Kim et al. [KPW97] proposed a new type of proxy signature combining partial delegation and warrant. They further showed that such a combination can provide a higher level of security. Since then many proxy signature schemes based on partial delegation and warrant have been proposed (e.g., [LKK01b, XZF05, Wan05, HSMW06, YMS+12]).

Lee et al. [LKK01b] presented several attacks against previous proxy signature schemes and constructed a novel strong non-designated proxy signature scheme, which could be used in multi-proxy signature. Besides, the authors provides new classifications of proxy signatures, namely strong and weak proxy signatures, designated and non-designated proxy signature and self-proxy signature. Xu et al. [XZF05] extended proxy signature into identity-based setting, where a user is identified by some unique information about the identity of the user (e.g. user’s email address). They also proposed the sound security models for proxy signature in identity-based setting and the first identity-based proxy signature scheme proven secure using random oracles. Wang proposed a designated-verifier proxy signature scheme from two-party Schnorr signature and analyzed its security in [Wan05]. In addition, the author discussed weaker designated-verifier proxy signature and strong designated-verifier proxy signature as an extension of [LKK01b], with the difference that the proxy signature could only be verified by the designated verifier instead of the public. Huang et al. [HSMW06] proposed the first proxy signature scheme that
the security is not relied on random oracle. However, the proposed proxy signature scheme do not support strong unforgeability, which means any one could produce a new proxy signature after seeing a proxy signature and the corresponding message. Yong et al. [YMS+12] proposed a proxy signature scheme whose security is based on the integer factorization problem in the random oracle, which are different from proxy signature schemes mentioned above whose security relying on discrete logarithm problem and its variants.

Besides proxy signature schemes mentioned above, many extensions on proxy signature have also been proposed according to different application needs, such as threshold proxy signature [Zha97], blind proxy signature [ZSNL], one-time proxy signature [MH05], and so on. Threshold proxy signature, also known as multi-proxy signature, enables an original signer to delegate his signing right to multiple proxy signers. The proxy signers need to work together in order to produce a valid proxy signature on behalf of the original signer. One-time proxy signature puts strict restrictions on the signing capability of a proxy signer, who is only allowed to generate one valid proxy signature on behalf of the original signer. Blind proxy signature allows a user to obtain a valid signature on a message in a way that the proxy signer learns neither the message nor the resulting signature.

In proxy signature, one important problem is to prevent the proxy signers from abusing the signing ability from the original signer. The conventional solution is to specify the valid time period of the delegation in the warrant. When a verifier examines a proxy signature, he first checks the warrant to verify if the proxy signature falls into the valid time period. However, this is not sufficient since a malicious proxy signer can still produce a large number of proxy signatures in a short period if his computation power is strong enough. It is worth noticing proxy signature with revocation [LHH05, DSP07] has been proposed as an independent work to allow an original signer to revoke the signing rights from a proxy signer whenever it is necessary. However, the proposed proxy signature schemes are still suffering to the problem mentioned above.

2.2 Attribute-Based Signature

Attribute-based signature is treated as an extension of identity-based signature [Sha84] by allowing the identity of a user to be a set of descriptive attributes rather than a single unique string. Several ABS schemes supporting different types of predicates have been proposed after the concept of attribute-based cryptography was proposed in [SW05]. Li and Kim [LK08] proposed two attribute-based ring signature schemes. In their construction, the ring is formed by the users with a set of same attributes. In this way, the identity of the signer could be hidden in the
ring. However, as one of the basic properties, ABS has already enforced anonymity. Essentially, ring and group are comparable to special cases of ABS. In a subsequent work, Li et al. [LAS+10] proposed two ABS constructions supporting flexible threshold predicates. In their schemes, the predicate is a set of n attributes, and the signer must possess at least k ($k \leq n$) of them in order to generate a valid signature. The verifier can be convinced that the signer is really holding k out of n attributes, but cannot find out which k attributes are possessed by the signer. Later, Maji et al. [MPR11] proposed another ABS scheme where the attribute predicates can be expressed as monotone-span programs. Then in [OT14], Okamoto and Takashima proposed the first ABS scheme that can support more general non-monotone predicates.

ABS has been found useful in the circumstances where the capabilities of the users depend on certain combinations of their attributes. Attribute-based proxy signature (ABPS) is a nature extension of ABS. Compared with normal proxy signature (PKI-based setting), the users in ABPS are identified by attributes. ABPS has many potential applications, for example, attribute-based authentication [MPR11]. Consider a database whose access control is described in a policy such that only users who hold authorised attribute keys can access it. An authorised user can delegate his/her signing rights to another user so that the latter can also access the database and collect information when the former is not available.

2.3 Oblivious Transfer

An oblivious transfer scheme is an interactive protocol running between a sender with messages $\{m_1, m_2, \ldots, m_n\}$ and a receiver with choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$. After running the protocol, the receiver learns the intended messages $m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}$ but cannot learn anything about m_i for $i \notin \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$. Meanwhile, the receiver’s choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ are completely hidden from the sender.

The concept of oblivious transfer was introduced by Rabin in 1981 [Rab81]. In their original construction, the sender sends a single bit 0 or 1 to the receiver in such a way that with 1/2 probability the receiver will receive the same bit and with 1/2 probability that the receiver will receive nothing. At the same time, the sender has no idea whether the receiver receives the message or not. Since then, oblivious transfer has attracted a lot of attentions, and a number of works [EGL85, BCR86, NP99, CT05, CNS07] have been done to improve the original OT scheme in different aspects.

Even et al. [EGL85] proposed a 1-out-of-2 OT (OT$_2^1$) scheme, in which the sender obliviously sends a message m_i, $i \in \{0, 1\}$, to the receiver. Shortly after that, Brassard et al. [BCR86] extended the OT$_2^1$ [EGL85] to a more general k-out-of-n
(OT\(_k^n\)) setting, where the receiver is able to make multiple choices \(m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}\) \((\sigma_i \in \{1, 2, \ldots, n\} \text{ for } 1 \leq i \leq k)\) from a set of \(n\) messages \(\{m_1, m_2, \ldots, m_n\}\) held by the sender, meanwhile the receiver’s choices remain oblivious to the sender. Since then, many subsequent works [MZV02, CT05] aimed to design more efficient OT\(_k^n\) schemes. Different from normal OT\(_k^n\), another important research direction on OT is adaptive OT\(_k^n\) [NP99]. In adaptive OT\(_k^n\), the receiver can choose the messages adaptively, namely, the \(i\)-th value chosen by the receiver depends on the first \(i - 1\) values.

In the early OT schemes reviewed above, there is no condition on restricting the receiver’s ability. Any user in the system can act as a receiver and run the OT protocol to choose messages held by the sender obliviously. To address this problem, Coull et al. [CGH09] proposed an OT scheme supporting access control using state graphs, where for every transaction, the state of the receiver shifts from one to another. The receiver can access the protected services only if some of his states are not used. Camenisch et al. [CDN09] proposed another approach to enforce access control. In their system, the receiver first authenticates himself to a trusted third party to obtain some credentials. Later, the receiver proves to the sender that he possesses a valid credential from the third party using zero-knowledge proof. However, in this construction, the access policy is publicly known. To address this problem, Camenisch et al. [CDNZ11] proposed another oblivious transfer with access control in which only the receivers whose attributes satisfy a predicate can access the services. In order to reduce the computation and communication cost, Han et al. [HSMY12] proposed two efficient oblivious transfer schemes without zero-knowledge proof. In addition, different form previous schemes, the receivers could obtain credentials from a trusted third party but do not have to authenticate themselves. Thus, the communication and computation cost is lower than previous schemes supporting access control.

There have been a lot of research works [NP05, CNS07, KN09] on defining OT security, which can be classified into honest-but-curious model, half-simulation model [NP05] and full-simulation model [CNS07, KN09], according to whether the OT scheme can provide simulatable security for the sender and/or receiver. In the honest-but-curious model, all participants in the protocol are assumed to be honest, which makes this model too idealistic for practical use. Naor and Pinkas [NP05] introduced the half-simulation model that allows malicious senders and receivers. However, in this model, the security of the sender and receiver are considered separately. Half-simulation model achieves simulatable security for sender privacy and computationally indistinguishability for receiver privacy. In the full-simulation model [CNS07, KN09], it achieves simulatable security for both the receiver and sender.
However, previous research on oblivious transfer mainly focused on designing OT with unconditional sender and receiver’s privacy. In real-world applications, for example in digital content browsing [TFS04], OT can be applied to hide what contents have been browsed by a user. However, if a user is identified to be malicious, it is desirable to determine what contents (especially if the contents are sensitive) have been read by the user. Traditional OT schemes cannot meet the requirement in this situation.

2.4 Privacy-Preserving E-Coupon Systems

There are a number of e-coupon systems proposed in the literature. Chen et al. [CES+05] presented a privacy-preserving e-coupon system, in which the users are allowed to redeem a single e-coupon for a pre-determined number of times. In order to reduce the cost for issuing and redeeming coupons, Nguyen [Ngu06b] later presented another more efficient e-coupon system which has constant communication and computation cost. In [CGH06], Canard et al. also proposed another interesting multi-coupon system which allows a user to transfer some value of a multi-coupon to another user.

Although user anonymity has been considered in all the above e-coupon systems, none of them has considered traceability against dishonest users. That is, if a dishonest user redeems a multi-coupon more than the pre-determined number of times, it is desirable to allow the coupon issuer to trace the identity of the user. On the other hand, for honest users, we should ensure that their identities will remain anonymous to the coupon issuer.

Another desirable feature of an e-coupon system is user privacy. Different from user anonymity, here we are concerning the privacy of the goods/services chosen by the users during the redemption process. In general, an e-coupon can contain a number of options that have the same value and a user can choose any one of them. If the shop can know the good/service chosen by the user in the redemption process, then it is possible for the shop to link two redemptions performed by the same customer (e.g., a customer may prefer to redeem the same item among several transactions). Therefore, it is also desirable to keep the buying behavior of a user secret from the coupon issuer. It is worth noting that user privacy is possible in the electronic world since we are considering electronic goods, so there is no physical reduction of the goods from the shop’s ‘warehouse’, while in the physical world, the shop can always trace the number of each good to find out the item redeemed by the user.

It is worth noticing that \(k \)-time anonymous authentication schemes [TFS04, Ngu06a] have been proposed independently for applications that need to restrict
the number of times that users can access to a service. The difference is that a trusted group manger is involved in these k-time anonymous schemes to achieve traceability against malicious users. In our e-coupon system, we only require the system parameters to be generated from a trusted source. The proposed e-coupon system can trace the dishonest user without involvement of a trusted third party.
Chapter 3

Preliminaries

We introduce some mathematical background about cryptography and some cryptographic primitives that will be used throughout this thesis.

3.1 Mathematical Background

3.1.1 Finite Field

Definition 3.1. A field with finitely many elements is called a finite field (Galois field). We denote a finite field with \(n \) elements by \(\mathbb{F}_n \).

3.1.2 Group

Definition 3.2. Let \(G \) be a set and suppose that \(\circ \) is a binary operation on \(G \). We say the pair \((G, \circ) \) is a group if it has the following properties.

- **Associativity.** The operation \(\circ \) is associative; That is, \((g \circ h) \circ k = g \circ (h \circ k) \) for all \(g, h, k \in G \).

- **Identity.** There exists an identity for \(\circ \). That is, there exists \(e \in G \) such that \(g \circ e = e \circ g \) for all \(g \in G \).

- **Invertibility.** There exist inverses for \(\circ \). That is, for each \(g \in G \), there exists \(g^{-1} \in G \) such that \(g \circ g^{-1} = g^{-1} \circ g = e \).

- **Closure.** We say that law of closure holds for \(\circ \). That is, when \(\circ \) acts on two elements of \(G \) the results is also in \(G \).

If \(G \) is finite and has \(n \) elements, then we call \(n \) the order of \(G \) and we write \(o(G) = n \). If \(G \) is infinite we say that \(G \) has infinite order and we write \(o(G) = \infty \).

3.1.3 Abelian Group

Definition 3.3. We say a group \((G, \circ) \) is an Abelian group if it has the following property.

- **Commutativity.** The operation \(\circ \) is commutative if \(g \circ h = h \circ g \) for all \(g, h \in G \).
3.1.4 Cyclic group

Definition 3.4. An Abelian group \((G, \circ)\) is cyclic if there exists an element \(g \in G\), for any element \(h \in G\), there exists \(n \in \mathbb{N}\) such that \(h = g^n\). We call \(g\) a generator of \(G\).

When we mention a group \((G, \circ)\), we usually omit the binary operation \(\circ\) for simplicity. If the order of a group is a prime number, we call it a prime order group. It is worth noticing that all groups of prime order are cyclic groups. All group elements could be generated by a non-identity element in the group. In other words, all the elements except the identity are generators of the prime order group.

3.1.5 Elliptic Curve

Elliptic curve was suggested by Miller [Mil85] for constructing public-key cryptographic systems.

Definition 3.5. An elliptic curve is a plane curve over a finite field which consists of the points satisfying the equation \(y^2 = x^3 + ax + b\), along with a distinguished point at infinity, denoted by \(\infty\).

- Constants \(a, b \in \mathbb{R}\) satisfying the discriminant \(\Delta = -4a^3 - 27b^2 \neq 0\).
- A non-singular elliptic curve is the set \(E\) of solutions \((x, y) \in \mathbb{R} \times \mathbb{R}\) to the equation \(y^2 = x^3 + ax + b\) along with a point \(O\), referred to as the point at infinity.

3.1.6 Bilinear Pairing

Definition 3.6. Let \(G_1, G_2\) be additive groups of prime order \(p\) and let \(G_3\) be a multiplicative group of prime order \(p\). \(e : G_1 \times G_2 \to G_3\) is a bilinear mapping having the following properties.

- **Bilinearity**: \(e(aP, bR) = e(P, R)^{ab} = e(bP, aR)\) for any \(P \in G_1, R \in G_2\) and \(a, b \in \mathbb{R}\).

- **Non-degeneracy**: There exist \(P \in G_1, R \in G_2\) such that \(e(P, R) \neq 1_{G_3}\).

- **Efficiency**: \(e(P, R)\) can be efficiently calculated for all \(P \in G_1, R \in G_2\).

3.1.7 Lagrange Interpolation

Given \(t\) points \(q(1), q(2), ..., q(t)\) on a \(t - 1\) polynomial \(q\), one could use Lagrange interpolation [Sha79] to compute \(q(i)\) for any \(i \in \mathbb{Z}_p\) through

\[
q(i) = \sum_{j=1}^{t} q(j) \Delta_j, s(i).
\]
The Lagrange coefficient $\Delta_{j,S}(i)$ of $q(j)$ in the computation of $q(i)$ can be computed as

$$
\Delta_{j,S}(i) = \prod_{1 \leq \pi \leq t, \pi \neq j} \frac{i - \pi}{j - \pi}.
$$

3.2 Complexity Assumptions

We present the complexity assumptions used in this thesis.

3.2.1 Discrete Logarithm Assumption

Definition 3.7. Discrete Logarithm Assumption [McC90]: Let G be a cyclic group of order p with a generator g, the discrete logarithm problem (DL) states that given $h \in G$, compute $r \in \mathbb{Z}_p$ such that $h = g^r$.

Define the success probability of a probabilistic polynomial time (PPT) adversary A in solving the DL problem as:

$$
\text{Adv}^{DL}_{A,G}(\kappa) = \Pr(\log_g h \leftarrow g, h \in G).
$$

Where κ is the security parameter. The discrete logarithm assumption states that for all PPT algorithm A, $\text{Adv}^{DL}_{A,G}(\kappa)$ is negligible in κ.

3.2.2 Computational Diffie-Hellman Assumption

Definition 3.8. Computational Diffie-Hellman (CDH) Problem [DH76]:

Let G be a cyclic group of prime order q with a generator g. Given $g, g^a, g^b \in G$ for some random $a, b \in \mathbb{Z}_q$, compute $g^{ab} \in G$. Define the success probability of a polynomial algorithm A in solving the CDH problem as:

$$
\text{Succ}^{CDH}_{A,G}(\kappa) = \Pr[A(g, g^a, g^b) = g^{ab} : a, b \in \mathbb{Z}_q].
$$

Where $\kappa = \log(q)$ is the security parameter. The CDH assumption states that for any polynomial algorithm adversary A, $\text{Succ}^{CDH}_{A,G}(\kappa)$ is negligible in κ.

3.2.3 Decisional Diffie-Hellman Assumption

Definition 3.9. Decisional Diffie-Hellman (DDH) Problem [Bon98]: Given a cyclic group G of prime order q with a generator g, the DDH problem states that, given $g, g^a, g^b, Z \in G_q$ for some unknown $a, b \in \mathbb{Z}_q$ and a random generator g, decide whether $Z = g^{ab}$. Define the success probability of a polynomial algorithm A in
solving the DDH problem as:

\[
\text{Succ}^{\text{DDH}}_{A,G_q}(\kappa) = |\Pr[A(G_q, g, g^a, g^b, g^ab) = 1] - \Pr[A(G_q, g, g^a, g^b, Z) = 1]|.
\]

where \(\kappa = \log(q) \) is the security parameter, the DDH assumption states that, for any polynomial algorithm \(A \), \(\text{Succ}^{\text{DDH}}_{A,G_q}(\kappa) \) is negligible in \(\kappa \).

3.2.4 One-More Discrete Logarithm Assumption

Definition 3.10. One More Discrete Logarithm Problem (OMDL) [BNPS03]:

Given a cyclic group \(G_q \) of order \(q \) and \(g \) is a generator of \(G_q \). Let \(\text{DLog}(\cdot) \) be the discrete logarithm oracle that takes an element in \(G_q \) and returns the discrete logarithm in base \(g \). Let \(C(\cdot) \) be a challenge oracle which takes no input and returns a random element in \(G_q \). Let \(W_1, W_2, \ldots, W_t \) denote the challenges returned by \(C(\cdot) \), we say an OMDL adversary \(A \) wins if \(A \) can output a sequence of \(w_1, w_2, \ldots, w_t \in \mathbb{Z}_q \) satisfying \(g^{w_i} = W_i \) and the number of queries \(q_C \) make by \(A \) to the discrete logarithm oracle \(\text{DLog}(\cdot) \) is less than \(t \).

Define the success probability of a polynomial algorithm \(A \) in solving the OMDL problem as:

\[
\text{Succ}^{\text{OMDL}}_{A,G_q}(\kappa) = \Pr[w_1, w_2, \ldots, w_t \leftarrow A_{\text{DLog}(\cdot)}, q_C < t((g, (W_1, W_2, \ldots, W_t \leftarrow C(\cdot))))]
\]

the OMDL assumption is that, for any polynomial algorithm \(A \), \(\text{Succ}^{\text{OMDL}}_{A,G_q}(\kappa) \) is negligible in \(\kappa \).

3.2.5 One More Diffie-Hellman Assumption

Definition 3.11. One More Diffie-Hellman (OMDH) Assumption [NP05]:

Given a cyclic group \(G_q \) of prime order \(q \) and \(g \) is a generator of \(G_q \), let \(\text{DH}(\cdot) \) be the Diffie-Hellman oracle that takes \(X = g^x, Y = g^y \in G_q \) for some \(x, y \in \mathbb{Z}_q \) and returns the Diffie-Hellman value \(Z = g^{xy} \). Let \(C(\cdot) \) be a challenge oracle that takes no input and returns a random element in \(G_q \). Let \(Y_1, Y_2, \ldots, Y_t \) denote the challenges returned by \(C(\cdot) \), we say an OMDH adversary \(A \) wins if \(A \) can output the sequence of Diffie-Hellman values \(Z_1, Z_2, \ldots, Z_t \) of all DHP instances with input \(X, Y_i, i = 1, 2, \ldots, t \) and the number of queries \(q_{dh} \) made by \(A \) to the Diffie-Hellman oracle \(\text{DH}(\cdot) \) is less than \(t \). Define the success probability of a polynomial algorithm \(A \) in solving the OMDH problem as:

\[
\text{Succ}^{\text{OMDH}}_{A,G_q}(\kappa) = \Pr[Z_1, Z_2, \ldots, Z_t \leftarrow A_{\text{DH}(\cdot)}, q_{dh} < t((X, (Y_1, Y_2, \ldots, Y_t \leftarrow C(\cdot))))]
\]
the OMDH assumption states that, for any polynomial algorithm A, $\text{Succ}_{A,G_q}(\kappa)$ is negligible in κ.

3.2.6 Knowledge of Exponent Assumption

Definition 3.12. Knowledge of Exponent Assumption [BP04]: Given a cyclic group G_q of order q, for any adversary A that takes input q, g, g^a and returns (C, Y) with $Y = C^a$, there exists an “extractor” \bar{A}, which given the same inputs as A returns c such that $g^c = C$.

3.3 Cryptographic Primitives

We introduce several basic cryptographic primitives in this section.

3.3.1 Public Key Encryption

The goal of public key encryption (PKE) is to ensure the stored or transmitting data be inaccessible to unauthorised parties. In PKE, all the users possess unique public and private key pairs which are binding to their identities through a trusted public key infrastructure (PKI). To send a message, the sender encrypts the message with the recipient’s public key. In this way, only the user with knowledge of the corresponding private key could recover the message.

A public key encryption scheme consists a tuple of PPT algorithms as follows:

- **KeyGen**: On input of a security parameter κ, the key generation algorithm outputs a private and public key pair (sk, pk) for a user.

- **Encryption**: On input of a message m and the recipient’s public key pk, the encryption algorithm outputs a ciphertext c of m. The encryption algorithm could either be a probabilistic or deterministic algorithm.

- **Decryption**: On input of the recipient’s private key and a ciphertext c, the deterministic decryption algorithm outputs the plaintext m of c.

The security goals of encryption schemes is to achieve indistinguishability [GM84] and non-malleability [DDN91]. The notation of indistinguishability (IND) is formalized by Goldwasser and Micali [GM84] to capture the adversary’s inability in obtaining any information about the plaintext given knowledge of the corresponding ciphertext. While non-malleability (NM) is proposed by Dwork and Naor [DDN91] in modelling the adversary’s inability when given a challenge ciphertext, to output another ciphertext such that the corresponding plaintexts are meaningfully related.
In cryptanalysis of cryptographic schemes, the capabilities of different adversaries are modelled by their abilities in querying different oracles. In public key encryption, three different types of adversaries are considered, namely, chosen-plaintext attack (CPA), non-adaptive chosen-ciphertext attack (CCA1) and chosen-ciphertext attack (CCA2). A CPA adversary has access to the encryption oracle and can query any plaintext of his choice to obtain the corresponding ciphertext. It is worth noticing that the encryption oracle could be modelled by giving the public key suffices to the adversary in public-key setting. Besides the public keys, a CCA1 adversary [NY90] has access to a decryption oracle, to which he could query any ciphertext of his choice and obtain the corresponding plaintext. In CCA1, the adversary has access to the decryption oracle before his being given the challenge ciphertext. In contrast, a CCA2 adversary [RS91] can query the decryption oracle after he obtains the challenge ciphertext. The only restriction on a CCA2 adversary is that he should not send the challenge ciphertext to the decryption oracle. Therefore, the security of public key encryption schemes could be evaluated by six notions of security, namely, IND-CPA, IND-CCA1, IND-CCA2, NM-CPA, NM-CCA1, NM-CCA2 [BDPR98].

3.3.2 Digital Signature

Digital signature schemes provide vital secure properties like integrity, authentication and non-reputation, where integrity ensures that the data has not been modified during transmission, authentication convinces that the data is indeed from a claimed user while non-reputation implies the user can not deny at a later time his operation on the data.

A digital signature scheme consists of a tuple of PPT algorithms as follows.

- **KeyGen**: On input of a security parameter \(\kappa \), the key generation algorithm outputs a private and public key pair \((sk, pk)\) for a user.

- **Sign**: On input of a message \(m \) and the user’s private key \(sk \), the sign algorithm outputs a signature \(\sigma \) of \(m \). The sign algorithm could either be a probabilistic or deterministic algorithm.

- **Verity**: On input of the user’s public key, a signature \(\sigma \) and \(m \), the verify algorithm outputs ‘1’ (accept) or ‘0’ (reject).

We introduce several attacks in digital signature schemes.

- **Key-only attack**: In this attack, the attacker only has access to the signer’s public key.

- **Known message attack**: The adversary is given access to signatures for a list of messages but these messages are not chosen by him.
CHAPTER 3. PRELIMINARIES

- Chosen message attack. In this attack, the adversary can choose a set of messages and observe the corresponding signatures. However, the whole message list is constructed before the adversary sees any signature.

- Adaptive chosen message attack. The adversary can observe the signature of any message of his choice. Besides, he can requests signatures of messages which depend on previous obtained signatures [GMR88].

We describe some security notions for digital signatures:

- Existential forgery. An adversary could forge a signature for at least one message, while this message does not have to be of his choice (The adversary has no control over the messages that he could obtain the signatures).

- Selective forgery. An adversary could forge a signature on a pre-chosen message.

- Universal forgery. The adversary can generate an acceptable signature on any message without having the secret key.

- Total break. The adversary could calculate the signing key and totally break the system.

In practice, EUF-CMA is the most common security notion for DS schemes. We say a DS scheme is EUF-CMA secure if we can prove the DS scheme is existential unforgeable under the adaptive chosen-message attack.

3.3.3 Proxy Signature

Proxy signature is a variant of digital signature that enables one signer named proxy signer to generate signatures on behalf of another signer named original signer, while the public could be convinced that a proxy signature is generated by a proxy signer with proper delegation form an original signer.

A proxy signature scheme consists of a tuple of algorithms as follows.

- **Setup**: This algorithm takes the security parameter κ as input and returns the public parameters params.

- **KeyGen**: The Key Generation algorithm takes the system parameters params as input and outputs a user key pair (pk, sk). Let (sk_p, pk_p) and (sk_o, pk_o) denote the key pairs of the proxy signer and original signer generated through key generation algorithm.

- **DskGen**: The delegation signing key generation algorithm takes the private key sk_o of the original signer, public key pk_p of the proxy signer and a warrant w
including certain delegation information as input and outputs a delegation signing key dsk for the proxy signer.

- **PskGen**: This algorithm takes the delegation signing key dsk from the original signer and the private key sk_p of the proxy signer and outputs a proxy signing key psk.

- **ProSig**: The proxy signing algorithm takes the proxy signing key psk and a message m as input, and outputs a proxy signature σ.

- **ProVer**: The proxy signature verification algorithm takes the public keys pk_o and pk_p, a warrant w, a message m, and a proxy signature σ as input, and outputs either ‘1’ or ‘0’.

There have been some work on defining security models of proxy signature [MOY04, HSMW06, SMP08, BPW12]. Due to [HSMW06], three different types of adversaries should be taken into consideration in proxy signature.

- Outsider adversary. An outsider adversary only has access to the public keys of the original signer and proxy signer.

- Malicious original signer. A malicious original signer has access to the public keys of the proxy signers in addition to the private key of the original signer.

- Malicious proxy signer. A malicious proxy signer has access to the public keys of the original signers and the private key of the proxy signer.

The security goal of proxy signature is the same as digital signature. The security proof of a proxy signature scheme is to show the proxy signature scheme is unforgeable with the above three type of adversaries.

3.3.4 Oblivious Transfer

Oblivious transfer protocol is an interactive protocol running between a sender and a receiver such that the sender sends some information to the receiver while the result remains oblivious to the sender. There are two participants in an OT system, namely, a sender S and a receiver R. S possesses a set of messages $\{m_1, m_2, \ldots, m_n\}$ and R makes a set of choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ such that $\sigma_i \in \{1, 2, \ldots, n\}$ for $1 \leq i \leq k$. To be specific, an OT scheme can achieve the following properties:

1. The receiver can only obtain a fix number of messages $m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}$ from the message set $\{m_1, m_2, \ldots, m_n\}$ held by the sender where $\sigma_i \in \{1, 2, \ldots, n\}$ for $1 \leq i \leq k$. The receiver’s choice is hidden from the sender.
2. The receiver cannot learn anything on message m_i such that $i \notin \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ for $1 \leq i \leq n$.

An OT scheme is essentially an interactive protocol consisting of a tuple of PPT algorithms as follows.

- **Setup**: Taking as input of a security parameter κ, the setup algorithm outputs the system public parameters $params$.

- **KeyGen**: Taking as input of the public parameter $params$, the key generation algorithm outputs a retrievable key pair (pk, sk) for a user.

- **Commitment** (optional): Taking as input of the system parameters $params$, the messages m_1, m_2, \ldots, m_n, the commitment algorithm outputs a set of ciphertext c_1, c_2, \ldots, c_n.

- **Request**: Taking as input of the intended indexes σ, this algorithms outputs the commitment of the user’s choice A_{σ}.

- **Response**: Taking as input of the commitment A_{σ} from the receiver, the secret of the sender, the output of the algorithm is response of the sender.

- **Extract**: Taking as input of the response D_{σ} from the sender, the ciphertext c_{α} and the system parameters $params$, output the message m_{σ} of the receiver’s choice.

There have been some work [NP05, CNS07, KN09] on modelling security of OT schemes. The half-simulation model, introduced by Naor and Pinkas has bee applied widely in evaluating the security of OT schemes. In this model, the security of the sender and receiver is considered separately. The receiver’s privacy achieves computational indistinguishability which means one choice σ of the receiver is indistinguishable from another choice σ' from the view of the sender. While the sender security achieves a strong notion named simulatable security, which means any malicious receiver R in the real world, we could build an ideal game with the help of a trusted third party in which there is receiver R' such that the outputs of R and R' are indistinguishable.

3.3.5 Proof of Knowledge

A proof of knowledge system is an interactive proof system that allows one party, usually called prover P, to convince another party, called verifier V, that the prover knows some facts. Let x be an instance of a language L in NP and $W(x)$ be the set of witnesses for x that will be accepted in the proof. Define the relation $R = \{(x, w) : x \in L, w \in W(x)\}$. Let $\phi : \{0, 1\}^* \rightarrow [0, 1]$ be the knowledge error
function. A proof of knowledge system for the relation R should satisfy the following properties [BG92].

1. **Completeness**: The prover P who knows a witness w for x can convince the verifier V of knowledge x with overwhelming probability.

 \[
 \Pr(P(x, w) \leftrightarrow V(x) \rightarrow 1) = 1.
 \]

2. **Proof of knowledge**: If there exists a prover \hat{P} that has probability ϵ in convincing V, then there exists a knowledge extractor E which given oracle access to \hat{P} can extract a witness of x with probability at least $\epsilon - \phi(x)$, i.e.,

 \[
 \Pr(w \leftarrow E^{\hat{P}(x)}(x)) \geq \Pr(\hat{P}(x) \leftrightarrow V(x) \rightarrow 1) - \phi(x).
 \]

3.3.6 Hash Functions

Hash functions have been applied widely in constructing digital signature, message authentication codes and key agreement/distribution protocols. A hash function provides a short ‘fingerprint’ as a function of the data given to it. To be specific, a hash function $H : X \rightarrow Y$ has the following properties.

- Given $x \in X$, it is efficient to compute $H(x)$.
- It is infeasible to find two inputs $x, x' \in X$ such that $H(x) = H(x')$.

In order to the primary properties of hash functions, cryptographic hash functions have the following additional properties.

- **Pre-image resistance**: Given a hash function $H : X \rightarrow Y$ and $y \in Y$, there is no efficient mechanism to find $x \in X$ such that $H(x) = y$.
- **Second pre-image resistance**: Given a hash function $H : X \rightarrow Y$ and $x \in X$, there is no efficient mechanism to find $x' \in X$ such that $x \neq x'$ and $H(x) = H(x')$.
- **Collision resistance**: Given a hash function $H : X \rightarrow Y$, there is no efficient mechanism to find $x, x' \in X$ such that $x \neq x'$ and $H(x) = H(x')$.

Hash functions with pre-image resistance and second pre-image resistance are referred to as One-Way Hash Functions (OWHF). Those with second pre-image resistance and collision resistance are referred to as Collision Resistance Hash Functions (CRHF) [Pre94].
Chapter 4

k-Time Proxy Signature

Proxy signature, which allows an original signer to delegate his/her signing right to another party (or proxy signer), is very useful in many applications. Conventional proxy signature only allows the original signer to specify in the warrant the validity time period of the delegation but not the number of proxy signatures the proxy signer can generate. To address this problem, we provide a formal treatment for k-time proxy signature in this chapter. Such a scheme allows a designated proxy signer to produce only a fixed number of proxy signatures on behalf of the original signer. We provide the formal definitions and adversary models for k-time proxy signature, and propose an efficient construction which is provably secure against different types of adversaries. The original scheme was presented in ProSec 2013.

4.1 Introduction

One of the key issues in proxy signature is to ensure that a proxy signer will not misuse the signing right obtained from an original signer. In the seminal work by Mambo et al. [MUO96], a validity period is specified in a warrant in order to restrict the signing capability of a proxy signer. This approach has been used in almost all the following works on proxy signature. However, if the proxy signer is malicious, even in a very short time, the malicious proxy signer can still produce as many proxy signatures as he/she wishes. To address this problem, we provide a formal and comprehensive treatment for k-time proxy signature where the proxy signer can only generate a fixed number of proxy signatures on behalf of the original signer.

There have been a number of works (e.g., [BTT03, HKLL03, PWX04, KYC10]) on restricting the signing capability of a signer in normal digital signature schemes. In [HKLL03], Hwang et al. proposed a multiple-time digital signature scheme, which gives an upper bound on the number of signatures a signer can produce. Shortly after that, Pieprzyk et al. [PWX04] proposed a more general multiple-time signature scheme based on one-way functions and cover-free families. Kim et al. [KYC10] then extended multiple-time signature to a new primitive named metered signature, which allows a signer to produce a fixed number of signatures in a designated time period.

However, a formal and complete treatment for multi-time (or k-time) proxy signature is still missing. In [MH05], Mehta and Harn proposed a one-time proxy signature scheme, which is less useful than a more general k-time proxy signature.
scheme. There is a multi-time proxy signature scheme presented in [CKK03], however, no formal security model or proof has been provided. In [HC09], Hong and Chen presented a multiple-time proxy signature scheme based on a binary hash tree. However, their security analysis is incomplete since it does not cover all the possible attacks against a multiple-time proxy signature scheme.

Our Contributions. In this chapter, we provide a formal and complete treatment for multi-time (or k-time) proxy signature schemes. We first provide a formal security model for such schemes. In our model, we will consider three types of adversaries, namely outsiders, proxy signer, and original signer. Our model aims to capture the exact security goal of a k-time proxy signature scheme, that is only a proxy signer, who has been delegated the signing right from an original signer, can produce at most k valid proxy signatures. We then propose a new k-time proxy signature scheme based on the Schnorr signature scheme and verifiable secret sharing. In our scheme, the original signer can specify in the warrant the number of proxy signatures a proxy signer can produce. If the proxy signer produces more than predetermined number of proxy signatures, his/her private key can be computed by the public. That means the original signer does not need to monitor the behavior of the proxy signer. It is worth noting that such a feature is not supported in Hong and Chen’s scheme [HC09]. In their scheme, the proxy signer’s private key can only be computed by the original signer rather than by any third party verifier when the proxy signer misbehaves.

Organization of This Chapter. The rest of this chapter is organized as follows. We introduce the definition of k-time proxy signature in Section 4.2. A formal security model for k-time proxy signature is presented in Section 4.3. We then give our new proxy signature scheme in Section 4.4 and prove its security in Section 4.5. This chapter is concluded in Section 4.6.

4.2 Formal Definition

A k-time (or multi-time) proxy signature scheme consists of a tuple of algorithms \((\mathcal{ST}, \mathcal{KG}, \mathcal{DskGen}, \mathcal{PKG}, \mathcal{PS}, \mathcal{PV}, R)\):

- **Setup–(\mathcal{ST})**: This algorithm takes \(1^\kappa\) as input where \(\kappa\) is a security parameter and returns the public parameters \(\text{params}\).

- **KeyGen–(\mathcal{KG})**: The Key Generation algorithm takes \(\text{params}\) as input and outputs a user key pair \((pk, sk)\).

- **DskGen–(\mathcal{DskGen})**: This algorithm takes \((sk_o, pk_o, pk_p, m_w)\) as input and outputs a delegation key \(dsk\). Here \(m_w\) denotes a warrant which specifies the predetermined
number of proxy signatures that can be generated by the proxy signer.

- \(\text{PskGen}(\mathcal{PKG}) \): This algorithm takes \(dsk \) and \(sk_p \) as input and outputs a proxy signing key \(psk \).

- \(\text{ProSig}(\mathcal{PS}) \): The proxy signing algorithm takes the proxy signing key \(psk \) and a message \(m \) in the message space \(\mathbb{M} \) as input, and outputs a proxy signature \(\sigma \).

- \(\text{ProVer}(\mathcal{PV}) \): The proxy signature verification algorithm takes the public keys \(pk_o \) and \(pk_p \), a warrant \(m_w \), a message \(m \), and a proxy signature \(\sigma \) as input, and outputs either 1 or 0.

- \(\text{Reveal}(\mathcal{R}) \): Given \(pk_o, pk_p \), a warrant \(m_w \), and \(k + 1 \) different message and proxy signature pairs, where \(k \) is the number specified in the warrant \(m_w \), this algorithm either outputs a private key \(sk_p \) of the proxy signer or a special symbol ‘⊥’.

Correctness. We require that for any message space \(\mathbb{M} \subseteq \{0, 1\}^* \) and any security parameter \(\kappa \in \mathbb{N} \), if \(\text{params} \leftarrow \mathcal{ST}(1^\kappa) \), \((sk_o, pk_o) \leftarrow \mathcal{KG}(\text{params}) \), \((sk_p, pk_p) \leftarrow \mathcal{KG}(\text{params}) \), \(dsk \leftarrow \mathcal{DKG}(sk_o, pk_o, pk_p, m_w) \), \(psk \leftarrow \mathcal{PKG}(dsk, sk_p) \), then

\[
\mathcal{PV}(pk_o, pk_p, m_w, m, \mathcal{PS}(psk, m)) = 1.
\]

4.3 Security Model

In a \(k \)-time proxy signature scheme, the security consideration is different from that for the traditional proxy signature [YMS+12] or \(k \)-time signature [HKLL03]. According to the definition, the security of a \(k \)-time proxy signature should be defined in three aspects, which are summarized below.

1. **Type I:** the Type I attacker \(\mathcal{A}_I \) (an outsider) possesses the public keys of the original signer and the proxy signer, and tries to forge a proxy signature.

2. **Type II:** the Type II attacker \(\mathcal{A}_{II} \) (proxy signer) possesses the public keys of the original signer and the proxy signer. In addition, he also possesses the private key \(sk_p \). We can further divide \(\mathcal{A}_{II} \) into \(\mathcal{A}_{II1} \) and \(\mathcal{A}_{II2} \). \(\mathcal{A}_{II1} \) tries to forge a valid proxy signature without obtaining delegation from the original signer, and \(\mathcal{A}_{II2} \) has a valid delegation from the original signer and tries to produce more than predetermined number of proxy signatures.

3. **Type III:** the Type III attacker \(\mathcal{A}_{III} \) (the original signer) possesses the public keys of the original signer and the proxy signer. In addition, he has the private key \(sk_o \) of the original signer. \(\mathcal{A}_{III} \) tries to forge a valid proxy signature without knowing the private key \(sk_p \) of the proxy signer.
It is obvious that if a \(k \)-time proxy signature scheme is secure against \(A_{II} \) and \(A_{III} \), it is also secure against \(A_I \). So we will only focus on the adversarial models with regards to \(A_{II} \) and \(A_{III} \) in the rest of this chapter.

Before we formally define each adversarial model, we first introduce two types of queries that may appear in the models:

- **Delegation query**: \(A \) can query the delegation oracle \(O_{DKG}(sk_o, pk_o, pk_p, \cdot) \) with any warrant \(m_w \). The corresponding delegation key \(dsk \) is then generated and returned to \(A \).

- **Proxy signing query**: \(A \) can query the proxy signing oracle \(O_{PS}(psk, \cdot) \) with any message \(m \) of his choice. A valid proxy signature on \(m \) is generated and returned to \(A \).

Type III1 Adversary

We define the adversarial game between a Type III1 adversary \(A_{III1} \) and an simulator \(S \) as follows:

- **Setup**: The Simulator \(S \) runs \(ST \) to generate public parameters \(params \).

- **KeyGen** The Simulator \(S \) runs \(KG \) to generate the key pairs of the original signer \((sk_o, pk_o)\) and a proxy signer \((sk_p, pk_p)\). \(S \) sends \(pk_o, pk_p \) and \(sk_p \) to the adversary \(A_{III1} \).

- **Delegation queries**: \(A_{III1} \) chooses any warrant \(m_w \) of his/her choice and queries the delegation oracle \(O_{DKG} \). \(S \) generates the delegation key \(dsk \leftarrow DKG(sk_o, pk_o, pk_p, m_w) \) and returns \(dsk \) to \(A_{III1} \).

- **Proxy signing queries**: \(A_{III1} \) chooses a warrant \(m_w \) and a message \(m \), and queries the proxy signing oracle \(O_{PS} \). If \(m_w \) has appeared in a Delegation Query, a special symbol \('⊥' \) is returned to \(A \). Otherwise, \(S \) generates \(dsk \leftarrow DKG(sk_o, pk_o, pk_p, m_w) \), \(psk \leftarrow PKG(dsk, sk_p) \), \(\sigma \leftarrow PS(psk, m) \), and returns \(\sigma \) to \(A_{III1} \).

- Finally, \(A_{III1} \) outputs \((m_w^*, m^*, \sigma^*)\). We say \(A_{III1} \) wins the game if
 - \(\mathcal{P}(pk_o, pk_p, m_w^*, m^*, \sigma^*) = 1 \);
 - \(A_{III1} \) did not make a query to \(O_{DKG} \) on \(m_w^* \);
 - \(A_{III1} \) did not make a query to \(O_{PS} \) on \((m_w^*, m^*)\).

Define the advantage of a Type III1 adversary as

\[
Adv^{cwcma}_{A_{III1}}(\kappa) = \Pr[A_{III1} \text{ Wins the game}].
\]
Definition 4.1. We say a k-time proxy signature scheme is secure against the Type II1 chosen warrant and chosen message attacks if for any probabilistic polynomial time \mathcal{A}_{II1}, $\text{Adv}^{\text{cwa}}_{\mathcal{A}_{II1}}(\kappa)$ is negligible in κ.

Type II2 Adversary

We define the adversarial game between a Type II2 adversary \mathcal{A}_{II2} and an simulator \mathcal{S} as follows:

- **Setup:** The Simulator \mathcal{S} runs \mathcal{ST} to generate public parameters params.
- **KeyGen** The Simulator \mathcal{S} runs \mathcal{KG} to generate the key pairs of an original signer (sk_o, pk_o) and a proxy signer (sk_p, pk_p). \mathcal{S} sends pk_o, pk_p and sk_p to the adversary \mathcal{A}_{II2}.
- **Delegation queries:** \mathcal{A}_{II2} chooses any warrant m_w of his/her choice and queries the delegation oracle \mathcal{O}_{DKG}. \mathcal{S} generates the delegation key $dsk \leftarrow \mathcal{DKG}(sk_o, pk_o, pk_p, m_w)$ and returns dsk to \mathcal{A}_{II2}.
- Finally, \mathcal{A}_{II2} outputs a warrant m_w which contains a predetermined number k, and $k + 1$ message-signature pairs (m_i, σ_i) ($1 \leq i \leq k + 1$) where $m_i \neq m_j$ for $i \neq j$. We say \mathcal{A}_{II2} wins the game if
 - $\mathcal{P}(pk_o, pk_p, m_w, m_i, \sigma_i) = 1$ for all $i \in [1, k + 1]$;
 - $\mathcal{R}(pk_o, pk_p, m_w, (m_1, \sigma_1), \ldots, (m_{k+1}, \sigma_{k+1})) = \perp$.

Define the advantage of a Type II2 adversary as

$$\text{Adv}^{\text{cwa}}_{\mathcal{A}_{II2}}(\kappa) = \Pr[\mathcal{A}_{II2} \text{ Wins the game}].$$

Definition 4.2. We say a k-time proxy signature scheme is secure against the Type II2 chosen warrant attacks if for any probabilistic polynomial time \mathcal{A}_{II2}, $\text{Adv}^{\text{cwa}}_{\mathcal{A}_{II2}}(\kappa)$ is negligible in κ.

Type III Adversary

The adversarial game between a Type III adversary \mathcal{A}_{III} and an simulator \mathcal{S} is defined as follows:

- **Setup:** The Simulator \mathcal{S} runs \mathcal{S} to generate public parameters params and gives params to the adversary.
- **KeyGen** The Simulator \mathcal{S} runs \mathcal{KG} to generate the key pairs of the original signer (sk_o, pk_o) and a proxy signer (sk_p, pk_p). \mathcal{S} sends sk_o, pk_o and pk_p to the adversary \mathcal{A}_{III}.
• **Proxy signing queries**: A_{III} queries the proxy signing oracle O_{PS} by providing a warrant m_w, generated according to the scheme, a valid delegation key dsk for m_w, and a message m. S generates $psk \leftarrow PKG(dsk, sk_p)$, $\sigma \leftarrow PS(psk, m)$, and returns σ to A_{III}.

• Finally, A_{III} outputs (m^*_w, m^*, σ^*). We say A_{III} wins the game if
 - $PV(pk_o, pk_p, m^*_w, m^*, \sigma^*) = 1$;
 - For any warrant m_w with a predetermined number k, A_{III} makes at most k proxy signing queries;
 - A_{III} did not make a query to O_{PS} on (m^*_w, m^*).

Define the advantage of a Type III adversary as

$$Adv_{cma}^{cma}(A_{III})(\kappa) = \Pr[A_{III} \text{ Wins the game}].$$

Definition 4.3. We say a k-time proxy signature scheme is secure against the Type III chosen message attacks if for any probabilistic polynomial time A_{III}, $Adv_{cma}^{cma}(A_{III})(\kappa)$ is negligible in κ.

4.4 Proposed Scheme

In this section, we present a new k-time proxy signature scheme based on the Schnorr signature [Sch89] and secret sharing. Our k-time proxy signature scheme works as follows:

1. **$S\mathcal{T}$**: given a security parameter $\kappa \in \mathbb{N}$, generate the parameters $params = (G, g, q)$ such that $|q| = \kappa$ and a hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_q$.

2. **$K\mathcal{G}$**: randomly choose $x \in \mathbb{Z}_q$ and compute $y = g^x$. Output $(sk, pk) = (x, y)$.

3. **$D\mathcal{K}\mathcal{G}$**: given a warrant $m_w = (k, B = \{b_1, b_2, \ldots, b_k\})^a$, where k is a number selected by the original signer and $b_i = g^{a_i}$ ($1 \leq i \leq k$) are generated by the proxy signer and sent to the original signer via a secure channel, the original signer first chooses a random number $k_o \in \mathbb{Z}_q$, and then computes $K_o = g^{k_o}$, $\sigma_o = sk_o \cdot h(m_w \| K_o) + k_o \mod q$. The original signer then sets $dsk = (K_o, \sigma_o)$ as the delegation key for m_w.

4. **$P\mathcal{K}\mathcal{G}$**: given a delegation key $dsk = (K_o, \sigma_o)$ for a warrant m_w, the proxy signer computes $S_p = \sigma_o + sk_p \mod q$ and outputs the proxy signing key $psk = (K_o, S_p, sk_p)$.

It is worth noting that we can put additional information, such as the validity time period and the type of message the proxy signer is allowed to sign, in the warrant.
5. \mathcal{PS}: given a message m to be signed, and a proxy signing key $psk = (K_o, S_p, sk_p)$, the proxy signer chooses a random number $k_p \in \mathbb{Z}_q$, and computes $K_p = g^{sk_p}$ and $\sigma_p = S_p \cdot h(h(m_w || K_o)||m||K_p) + k_p \mod q$. The proxy signer also computes $f(\omega) = sk_p + a_1 \omega + a_2 \omega^2 + \ldots + a_k \omega^k \mod q$ where $\omega = h(m_w, m, \sigma_p)$. The proxy signature is $\sigma = (K_o, K_p, \sigma_p, f(\omega))$.

6. \mathcal{PV}: given public keys pk_o and pk_p, a warrant $m_w = (k, B = \{b_1, b_2, \ldots, b_k\})$, a message m and a proxy signature $\sigma = (K_o, K_p, \sigma_p, f(\omega))$, the verifier checks if the following equation holds

\[
\begin{align*}
g^{\sigma_p} &= K_p \cdot (pk_p \cdot K_o \cdot pk_o^{h(m_w || K_o)})^{h(h(m_w || K_o)||m||K_p)}; \\
g^{f(\omega)} &= pk_p \cdot b_1^2 \cdot b_2^2 \cdots b_k^k.
\end{align*}
\]

If both equations hold, output 1; otherwise, output 0.

7. \mathcal{R}: given $pk_o, pk_p, m_w = (k, B = \{b_1, b_2, \ldots, b_k\})$, and $k + 1$ message signature pairs (m_i, σ_i), solve the following equations

\[
\begin{align*}
f(\omega_1) &= sk_p + a_1 \omega_1 + a_2 \omega_1^2 + \ldots + a_k \omega_1^k \\
f(\omega_2) &= sk_p + a_1 \omega_2 + a_2 \omega_2^2 + \ldots + a_k \omega_2^k \\
&\quad \quad \cdots \\
f(\omega_{k+1}) &= sk_p + a_1 \omega_{k+1} + a_2 \omega_{k+1}^2 + \ldots + a_k \omega_{k+1}^k
\end{align*}
\]

for variables (sk_p, a_1, \ldots, a_k). If a solution is found, output sk_p, otherwise, output ‘⊥’.

The correctness of the scheme can be verified as follows

\[
\begin{align*}
g^{\sigma_p} &= g^{S_p \cdot h(h(m_w || K_o)||m||K_p) + k_p} \\
&= (g^{\sigma_o + sk_p})^{h(h(m_w || K_o)||m||K_p)} \cdot g^{k_p} \\
&= (g^{sk_o \cdot h(m_w || K_o) + k_o} \cdot g^{sk_p})^{h(h(m_w || K_o)||m||K_p)} \cdot K_p \\
&= (pk_o^{h(m_w || K_o)} \cdot K_o \cdot pk_p)^{h(h(m_w || K_o)||m||K_p)} \cdot K_p \\
g^{f(\omega)} &= g^{sk_p + a_1 \omega + a_2 \omega^2 + \ldots + a_k \omega^k} \\
&= pk_p \cdot (g^{a_1})^\omega \cdot (g^{a_2})^\omega^2 \cdots (g^{a_k})^\omega^k \\
&= pk_p \cdot b_1^2 \cdot b_2^2 \cdots b_k^k
\end{align*}
\]

4.5 Security Analysis

In this section we analyse the security of the above k-time proxy signature scheme against A_{II} and A_{III} adversaries.
Theorem 4.1. The proposed k-time proxy signature scheme is secure against the Type II1 chosen warrant and chosen message attacks if the Discrete Logarithm Problem is hard.

Proof. The proof is by contradiction. Given an adversary A_{II1} that can win the Type II1 game, we construct another algorithm B that can solve the DLP.

Given $(g, g^* = g^{x^*})$ for some unknown $x^* \in \mathbb{Z}_q$, B simulates the Type II1 game for A_{II1} as follows. B sets the original signer’s public key as $pk_o = y^*$ and maintains a H-table to record all the hash queries and the corresponding answers.

Hash queries: For each hash query with an input message msg, B first checks the H-table:

- If there exists an item (msg, h) in the H-table, where msg refers to the messages queried before, B returns h as the answer to A_{II1}.
- Otherwise, B chooses a random $h \in \mathbb{Z}_q$, sends h to A_{II1} as the answer for the hash query, and adds (msg, h) into the H-table.

Delegation queries: When A_{II1} makes a delegation query on a warrant $m_w = (k, B = (b_1, b_2, \cdots, b_k))$, B answers the query as follows:

- Choose randomly $h_o, \sigma_o \in \mathbb{Z}_q$, compute $K_o = g^{x_o}/pk_o$, and set $h(m_w\|K_o) = h_o$ by adding $(m_w\|K_o, h_o)$ into the H-table.
- Return (K_o, σ_o) as the delegation key to A_{II1}.

Proxy signing queries: When A_{II1} makes a proxy signing query on a warrant $m_w = (k, B = (b_1, b_2, \cdots, b_k))$, and a message m, B responds the query as follows:

- Generate a delegation key $dsk = (K_o, \sigma_o)$ for the warrant m_w by applying the same approach as described in answering delegation queries.
- Use the derived dsk and sk_p to produce the proxy signing key psk by running the PKG algorithm, and then use psk to generate the proxy signature for message m by running the PS algorithm.

Assume A_{II1} can forge a valid proxy signature $\sigma^* = (K_o^*, K_p^*, \sigma_p^*, f(\omega^*))$ for a warrant m_w^* and a message m^* such that

$$g^{\sigma_p^*} = K_p^* \cdot (pk_p \cdot K_o^* \cdot pk_o)^{h(m_w^*\|K_o^*)} \cdot h(h(m_w^*\|K_o^*)\|m^*\|K_p^*).$$

Then according to the Forking Lemma [PS96], by rewinding the adversary and providing a new hash value for $h(m_w^*\|K_o^*)\|m^*\|K_p^*$, B can obtain $S_p^* = \sigma_o^* + sk_p \mod$
CHAPTER 4. K-TIME PROXY SIGNATURE

\[q \text{ and } \sigma^* = S_p^* - sk_p \mod q \text{ which satisfies} \]
\[g^{\sigma^*} = K_o^* \cdot pk_o^{h^*} \]

where \(h^* = h(m_w || K_o^*) \).

After that, \(B \) repeats the above simulation for \(A_{II} \) except that a new value \(\hat{h}^* \) is chosen as the hash value for \(m_w || K_o^* \). Again, due to the Forking Lemma [PS96], \(B \) can obtain a new \(\hat{\sigma}^*_o \) which satisfies
\[g^{\hat{\sigma}^*_o} = K^*_o \cdot pk_o^{\hat{h}^*}. \]

\(B \) can then compute
\[x^* = sk_o = (\sigma^*_o - \hat{\sigma}^*_o)/(h^* - \hat{h}^*) \]
and solve the Discrete Logarithm Problem. This completes the proof for Theorem 1.

Theorem 4.2. The proposed \(k \)-time proxy signature scheme is secure against the Type II\(_1\) chosen warrant attacks.

Proof. According to our scheme, if a signature \(\sigma = (K_o, K_p, \sigma_p, f(\omega)) \) is valid with regards to a warrant \(m_w = (k, B = (b_1, b_2, \cdots, b_k)) \) and message \(m \), then
\[g^{f(\omega)} = pk_p \cdot b_1^\omega \cdot b_2^\omega^2 \cdots b_k^\omega^k. \]

Suppose an adversary \(A_{II} \) have produced \(k + 1 \) proxy signatures with regards to a warrant \(m_w \) and different messages \(\{m_1, m_2, \cdots, m_{k+1}\} \), then we have
\[
\begin{align*}
 & f(\omega_1) = sk_p + a_1 \omega_1 + a_2 \omega_1^2 + \cdots + a_k \omega_1^k \\
 & f(\omega_2) = sk_p + a_1 \omega_2 + a_2 \omega_2^2 + \cdots + a_k \omega_2^k \\
 & \vdots \\
 & f(\omega_{k+1}) = sk_p + a_1 \omega_{k+1} + a_2 \omega_{k+1}^2 + \cdots + a_k \omega_{k+1}^k
\end{align*}
\]
where \(\omega_i = h(m_w, m_i, \sigma_{pi}) \) for \(1 \leq i \leq k + 1 \). Since the hash function is modelled as a random oracle, each \(\omega_i \) is a random element in \(\mathbb{Z}_q \). Therefore, with overwhelming probability, the reveal algorithm \(\mathcal{R} \) can recover the unique solution \((sk_p, a_1, a_2, \cdots, a_k) \) that satisfies the above equations.

Theorem 4.3. The proposed \(k \)-time proxy signature scheme is secure against the Type III\(_2\) chosen message attacks if the Discrete Logarithm Problem is hard.

Proof. The proof is similar to the proof for Theorem 1, that is, if there exists an adversary \(A_{III} \) which can win the Type III game, we can construct another algorithm \(B \) which can solve the Discrete Logarithm Problem.
CHAPTER 4. K-TIME PROXY SIGNATURE

Given \((g, y^* = g^{x^*})\) where \(x^* \in \mathbb{Z}_q\) is randomly chosen from \(\mathbb{Z}_q\), \(B\) simulates the Type III game for \(A_{III}\) as follows. \(B\) generates \(sk_o, pk_o\) and sets the proxy signer’s public key as \(pk_p = y^*\). \(B\) answers hash queries by maintaining a \(H\)-table as in the proof of Theorem 1.

When a new warrant \(m_w\) with a predetermined number \(k\) is to be created, \(B\) generates the values of \(B = (b_1, b_2, \ldots, b_k)\) as follows. \(B\) randomly chooses \(\omega_i, s_i \in \mathbb{Z}_q\) for \(1 \leq i \leq k\). Then based on the result in [Ped91], \(B\) can calculate \(b_i (1 \leq i \leq k) \in G\) that satisfies \(g^{x^i} = y^* \cdot \prod_{j=1}^{k} b_j^w\) for all \(1 \leq i \leq k\). \(B\) saves the values of \(\{\omega_i, s_i\}_{1 \leq i \leq k}\) with regards to \(m_w\) for later use.

Proxy signing queries: To answer the \(\ell\)-th \((1 \leq \ell \leq k)\) proxy signing query on a warrant \(m_w\), \(B\) first finds out the values of \((\omega_{\ell}, s_{\ell})\) that have been computed when generating the warrant \(m_w\). \(B\) then computes the proxy signature as follows:

- Randomly choose \(\sigma_p, \tau \in \mathbb{Z}_q\);
- Compute \(K_p = g^{\sigma_p}/(pk_p \cdot pk_o^{h(m_w, K_o)})^\tau\);
- Set \(h(h(m_w, K_o)||m, K_p) = \tau\);
- Set \(h(m_w, m, \sigma_p) = \omega_{\ell}\);
- Return \(\sigma = (K_o, K_p, \sigma_p, s_{\ell})\).

It is easy to verify that \(\sigma\) can successfully pass the signature verification.

Suppose \(A_{III}\) outputs a forgery \((m^*_w, m^*, \sigma^* = (K^*_o, K^*_p, \sigma^*_p, s^*))\) which satisfies

\[
g^{\sigma^*} = K^*_p \cdot (y^* \cdot K^*_o \cdot pk_o^{h(m_w, K_o)})^{h(h(m_w, K_o)||m, K_p)}
\]

where \(dsk^* = (K^*_o, \sigma^*_o)\) is the delegation key provided by \(A_{III}\) for the warrant \(m^*_w\). According to the Forking Lemma, by rewinding \(A_{III}\) and providing a new hash value of \(h(h(m^*_w, K^*_o)||m, K^*_p)\), \(B\) can obtain another valid signature \(\hat{\sigma}^* = (K^*_o, K^*_p, \hat{\sigma}^*_p, \hat{s}^*)\) for \((m^*_w, m^*)\). Then \(B\) can derive

\[
S^*_p = (\sigma^*_p - \hat{\sigma}^*_p)/(h^* - \hat{h}^*) \mod q
\]

where \(h^*\) and \(\hat{h}^*\) are the hash values for \(h(h(m^*_w, K^*_o)||m, K^*_p)\) in the two executions. Finally, \(B\) can compute \(x^* = S^*_p - \sigma^*_o \mod q\) and solve the DLP.

4.6 Summary

In this chapter, we presented a formal security model and an efficient construction of \(k\)-time proxy signature scheme. Our model has considered different types of
potential adversaries against a k-time proxy signature scheme, and is to date the first complete formal security model for such schemes. We then presented a practical k-time proxy signature scheme based on the Schnorr signature and verifiable secret sharing. One interesting feature of our scheme is that the proxy signer’s secret key can be discovered by the public if the proxy signer misbehaves. We also provided formal security proofs to demonstrate that the proposed scheme is provably secure in the proposed security model. We leave the problem of constructing a secure k-time proxy signature scheme without random oracles as our future work.
Chapter 5

Attribute-Based Signing Right Delegation

Attribute-based signature and proxy signature are both very useful in many real-world applications. In this chapter, we present an attribute-based proxy signature scheme benefiting from both proxy signature and attribute-based signature. In the proposed scheme, an original signer, who possesses a set of attributes, can delegate his/her signing right to a designated proxy signer. By verifying the signature, a verifier can be convinced that the signature is generated by the proxy signer who has obtained the delegation from a legitimate signer whose attributes satisfy a predicate. However, the verifier cannot tell from the signature who is the original signer. We provide the formal definition and adversarial models for attribute-based proxy signature, and an efficient scheme that supports threshold predicates. The original scheme was presented in *NSS 2014*.

5.1 Introduction

In this chapter, we are interested in signing right delegation under the attribute-based setting environment. The proposed scheme can be regarded as a variant of attribute-based proxy signature schemes (ABPS). ABPS has many potential applications, for example, attribute-based authentication [MPR11]. Consider a database whose access control is described in a policy such that only users who hold authorised attribute keys can access it. An authorised user can delegate his/her signing rights to another user so that the latter can also access the database and collect information when the former is not available. The delegated signer is called a proxy of the original authorised signer. In our proposed scheme, the verifier can be convinced that a valid proxy signer holds the right delegation from an original signer and therefore can access the database. The attributed based proxy signature can be regarded as a certificate for accessing the database. We noticed that a paper regarding attribute-based proxy signature has recently been proposed in [LMX+13]. However, the adversarial models in [LMX+13] are not properly defined. In addition, the application scenario is different from ours.

Organization of This Chapter. The rest of this chapter is organized as follows. The formal definition and security model of ABPS are presented in Section 5.2 and Section 5.3 separately. We then present our ABPS scheme in Section 5.4 and prove...
its security in Section 5.5. This chapter is concluded in Section 5.6.

5.2 Formal Definition

An attribute-based proxy signature scheme is parameterized by a universe of possible attributes \mathbb{A}, a warrant space \mathbb{M}_ω, and a message space \mathbb{M}. It consists of the following algorithms.

- **ABPS.Setup**: takes a security parameter 1^κ as input and outputs the public parameters params and a master secret key MSK for the central authority.
- **ABPS.KeyGen**: takes params as input and outputs a proxy key pair (pk, sk).
- **ABPS.AttrKeyGen**: takes $(\text{MSK}, \text{params}, \omega)$ as input where $\omega \subseteq \mathbb{A}$ is the attribute set of a user and outputs an attribute key sk_ω.
- **ABPS.DskGen**: takes $(sk_\omega, m_w \in \mathbb{M}_w, \Upsilon)$ as input, where m_w is a warrant specified by the original signer, Υ is a predicate such that there exists $\omega' \subseteq \omega$ which satisfies $\Upsilon(\omega') = 1$, and outputs a delegation key dsk.
- **ABPS.ProSig**: takes $(dsk, sk, m \in \mathbb{M})$ as input, and outputs a proxy signature σ.
- **ABPS.ProVer**: takes $(\Upsilon, pk, m_w, m, \sigma)$ as input, and outputs 1 (‘accept’) or 0 (‘reject’).

Correctness: We require that for any warrant and message spaces $\mathbb{M}_w, \mathbb{M} \subseteq \{0,1\}^*$ and any security parameter $\kappa \in \mathbb{N}$, if

$$(\text{params}, \text{MSK}) \leftarrow \text{ABPS.Setup}(1^\kappa),$$

$$(pk, sk) \leftarrow \text{ABPS.KeyGen}(\text{params}),$$

$sk_\omega \leftarrow \text{ABPS.AttrKeyGen}(\text{MSK}, \text{params}, \omega),$$

$$dsk \leftarrow \text{ABPS.DskGen}(sk_\omega, m_w, \Upsilon),$$

then

$$\text{ABPS.ProVer}(\Upsilon, pk, m_w, m, \text{ABPS.ProSig}(dsk, sk, m)) = 1.$$

5.3 Security Model

In an attribute-based proxy signature scheme, the security consideration is different from that for a traditional proxy signature or attribute-based signature. According
to the definition of attribute-based proxy signature, we consider three different types of adversaries:

1. A_I: an outsider attacker who only has the universe of attributes \mathbb{A} and the public key pk_p of the proxy signer and tries to forge a valid proxy signature σ.

2. A_{II}: a malicious proxy signer that possesses the private key sk_p and a valid warrant m_w from the original signer, and tries to forge a valid proxy signature σ for another warrant m'_w.

3. A_{III}: a malicious original signer that possesses the attribute key sk_ω and the public key pk_p of the proxy signer, and tries to forge a valid proxy signature σ without knowing the private key sk_p of the proxy signer.

It is obvious that if an attribute-based proxy signature scheme is secure under A_{II} or A_{III}, it is also secure against A_I. Thus we will only focus on the adversarial models with regards to A_{II} and A_{III} in the rest of this chapter. Before we formally define each adversarial model, we first introduce three types of oracle queries that will appear in the models:

- **Attribute Key Generation Query**: A can query the attribute key for an attribute set $\omega \subseteq \mathbb{A}$ of his choice to the attribute key generation oracle $O_{AKG}(\cdot)$. The corresponding attribute key sk_ω is then generated and returned to A.

- **Delegation Query**: A can query the delegation oracle $O_{DKG}(sk_\omega, \cdot, \cdot)$ with any warrant m_w and access structure Υ of his choice. The corresponding delegation key dsk is generated and returned to A.

- **Proxy Signing Query**: A can query the proxy signing oracle $O_{PS}(dsk, sk_p, \cdot)$ with any message m of his choice. A valid proxy signature on m is generated and returned to A.

We define the selective adversarial game between a malicious proxy signer A_{II} and a simulator S as follows:

- **Initial Phase**: A_{II} chooses and outputs a challenge predicate Υ^* that will be used in forging a proxy signature.

- **ABPS.Setup Phase**: The simulator S runs ABPS.Setup to generate the params and MSK, and sends params to A_{II}.

- **ABPS.KeyGen Phase**: The simulator S also runs the ABPS.KeyGen to generate the key pairs (pk_p, sk_p) of the proxy signer, and sends (pk_p, sk_p) to A_{II}.
• **Attribute Key Generation Queries**: A_{II} selects an attribute set $\omega \in A$, the simulator S runs $sk_\omega \leftarrow \text{ABPS.AttrKeyGen}(MSK, params, \omega)$ and returns sk_ω to A_{II}.

• **Delegation Queries Phase**: A_{II} chooses any predicate Υ such that $\Upsilon \neq \Upsilon^*$ and any warrant m_w of his choice and queries the delegation oracle O_{DKG}. S generates the delegation key $dsk \leftarrow \text{ABPS.DskGen}(sk_\omega, \Upsilon, m_w)$ and sends dsk to A.

• **Proxy Signing Queries Phase**: A_{II} chooses a warrant $m_w \in M_W$ and a message $m \in M$ and queries the proxy signing oracle O_{PS}. If m_w has appeared in a Delegation Query, a special symbol ‘\bot’ is returned to A_{II}. Otherwise, S generates

$$dsk \leftarrow \text{ABPS.DskGen}(sk_\omega, \Upsilon, m_w),$$

$$\sigma \leftarrow \text{ABPS.ProSign}(dsk, sk_p, m_w, m)$$

and returns σ to A_{II}.

• **Forgery Phase**: Finally, A outputs a proxy signature σ^* on message m^* for a warrant m_w^* and the predicate Υ^*.

We say A_{II} wins the game if

• $\text{ABPS.ProVer}(\Upsilon^*, pk_p, m_w^*, m^*, \sigma^*) = 1$;

• (m_w^*, Υ^*) has not been queried to O_{DKG};

• Attribute sets ω^* satisfying $\Upsilon^*(\omega^*) = 1$ have not been submitted to the attribute key generation oracle O_{AKG}.

Define the advantage of a malicious adversary A_{II} in winning the game as

$$\text{Adv}_{A_{II}}^{spscma}(\kappa) = \Pr[A_{II} \text{ Wins the game}].$$

Definition 5.1. We say an attribute-based proxy signature scheme is secure against the A_{II} under the selective-predicate and chosen warrant and message attacks if for any probabilistic polynomial time A_{II}, $\text{Adv}_{A_{II}}^{spscma}(\kappa)$ is negligible in κ.

The adversarial game between a malicious original signer A_{III} and a simulator S is defined as follows:

• **ABPS.Setup Phase**: The simulator S runs the ABPS.Setup to generate the $params$ and MSK, and sends $params$ and MSK to A_{III}.
• **ABPS.KeyGen Phase:** The simulator generates

\[(pk_p, sk_p) \leftarrow \text{ABPS.KeyGen}\]

and sends \(pk_p\) to \(A_{III}\).

• **Proxy Signing Queries Phase:** \(A_{III}\) queries the proxy signing oracle \(O_{PS}\) by providing a warrant \(m_w\), a valid delegation key \(dsk\) for \(m_w\), and a message \(m\) of his choice. The simulator \(S\) generates the proxy signature \(\sigma \leftarrow \text{ABPS.ProSign}(dsk, sk_p, m_w, m)\) and returns \(\sigma\) to \(A_{III}\).

• **Forgery Phase:** Finally, \(A_{III}\) outputs a proxy signature \(\sigma^*\) on message \(m^*\) for a warrant \(m^*_w\) and predicate \(\Upsilon^*\).

We say \(A_{III}\) wins the game if

• \(\text{ABPS.PorVer}(\Upsilon^*, pk_p, m^*_w, m^*, \sigma^*) = 1\);
• \((m^*_w, m^*)\) has not been queried to \(O_{PS}\);

Define the advantage of a malicious adversary \(A_{III}\) in winning the game as

\[
\text{Adv}^{\text{cma}}_{A_{III}}(\kappa) = \Pr[A_{III} \text{ Wins the game}].
\]

Definition 5.2. We say an attribute-based proxy signature scheme is secure against the \(A_{III}\) under chosen message attacks if for any probabilistic polynomial time \(A_{III}\), \(\text{Adv}^{\text{cma}}_{A_{III}}(\kappa)\) is negligible in \(\kappa\).

5.4 Proposed Scheme

In our system, the original signer holds a set of attributes and delegates his signing rights to a proxy signer with a normal public/private key pair.

1. **ABPS.Setup:** First, define the universe of attributes \(U\) as elements in \(\mathbb{Z}_p\).
 Let the \(d - 1\) default set of attributes from \(\mathbb{Z}_p\) which has no intersection with \(U\) be \(\Omega = \{\Omega_1, \Omega_2, \ldots, \Omega_{d-1}\}\) and let \(\omega^*\) be another default attribute set with \(\omega^* \subseteq U\). Select a random generator \(g \in R \mathbb{G}_1\) and a random number \(x \in \mathbb{Z}_p^*\), set \(g_1 = g^x\). Pick random elements \(g_2\) and compute \(Z = e(g_1, g_2)\). Select a collision resistant hash function \(H : \{0, 1\}^* \rightarrow \mathbb{G}_1\). The public parameters are \(\text{params} = (g, g_1, g_2, Z, H)\). The master secret key is \(MSK = x\).

2. **ABPS.KeyGen:** The user selects one random number \(x_p \in R \mathbb{Z}_p^*\) and set the private and public key pair as \((sk_p, pk_p) = (x_p, g^{x_p})\).
3. **ABPS.AttrKeyGen**: To generate a private key for an attribute set ω, proceed as follows:

- Choose a $d - 1$ polynomial q such that $q(0) = x$;
- Generate a new set of attribute $\hat{\omega} = \omega \cup \Omega$. For each $i \in \hat{\omega}$, choose $r_i \in R \mathbb{Z}_p$ and compute $d_{i0} = g^{q(i)} \cdot H(\text{attr}_i)^{r_i}$ and $d_{i1} = g^{r_i}$;
- The private key $D_i = \{(d_{i0}, d_{i1})\}, i \in \hat{\omega}$.

4. **ABPS.DskGen**: Given a warrant m_w, the original signer selects a k-element subset $\omega' \subseteq \omega \cap \omega^*$ and the delegation signing key is generated as follows:

- The original signer selects a default attribute subset $\Omega' \subseteq \Omega$ with $|\Omega'| = d - k$, chooses $n + d - k$ random values $r'_i \in \mathbb{Z}_p$, where $i \in \omega^* \cup \Omega'$;
- The original signer chooses a random value $s \in \mathbb{Z}_p$ and computes $\sigma_0 = \prod_{i \in \omega' \cup \Omega'} d^\Delta_{i,s^{(0)}} \prod_{i \in \omega^* \cup \Omega'} H(\text{attr}_i)^{r'_i} \{\sigma_i = d^\Delta_{i,s^{(0)}} g^{r'_i}\}_{i \in \omega' \cup \Omega'}, \{\sigma_i = g^{r'_i}\}_{\omega^* \cup \Omega'}, \sigma'_0 = g^s$;
- The delegation signing key is $dsk = (\sigma_0, \{\sigma_i\}_{i \in \omega' \cup \Omega'}, \sigma'_0)$.

5. **ABPS.ProSign**: Given dsk, sk_p and a message $m \in \{0, 1\}^*$. The proxy signature $\sigma_M = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3})$ is generated as follows:

- Compute $\sigma_{M_1} = \sigma_0 \cdot H(m)^{sk_p}, \sigma_{M_2} = \{\sigma_i\}_{i \in \omega^* \cup \Omega'}, \sigma_{M_3} = \sigma'_0$.

6. **ABPS.Verification**: Given $\sigma_M = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3})$, m_w and Υ_{k, ω^*}, the verifier first check whether the proxy signer follow the rules specified in the warrant. If no, output reject, otherwise, the verifier checks the following equation:

$$\prod_{i \in \omega^* \cup \Omega'} e(g, \sigma_{M_1}) e(H(\text{attr}_i), \sigma_i) e(H(m_w), \sigma_{M_3}) e(pk_p, H(m)) \overset{?}{=} Z.$$

If the equation holds, output accept, where it can be assured that the signature is generated form some user possessing k attributes among ω^*, otherwise, output reject.

- **Correctness**: The correctness of the verification is justified by the following
5.5 Security Analysis

In this section we analyse the security of the above attribute-based proxy signature scheme against A_{II} and A_{III} adversaries.

Theorem 5.1. Our attribute-based proxy signature scheme is secure against the A_{II} chosen warrant and chosen message attacks if the CDH Problem is hard.

Proof. The proof is by contradiction in the selective predicate security model. Suppose that an adversary A_{II} has an advantage ϵ in attacking the proposed scheme, then we can build an algorithm B that use A_{II} to solve the CDH problem. Let G_1 be a bilinear pairing group of prime order p, B is given $g, g^\alpha, g^\beta \in G_1$ which is a random instance of the CDH problem. Its goal is to compute $g^{\alpha \beta}$. Algorithm B will simulate the challenger and interact with the forger A_{II} as described below, let’s recall the definition of A_{II}, A_{II} is a malicious proxy signer possessing the private key of the proxy signer. With this in mind, the simulation is as follows:

1. Initial Phase: A_{II} chooses a predicate Υ_{k,ω^*}^* as the challenge predicate.

2. Setup: Let the default attribute set Ω be $\{\Omega_1, \ldots, \Omega_{d-1}\}$. B sets $g_1 = g^\alpha, g_2 = g^\beta$, where g^α, g^β are inputs of the CDH problem. B sets the public parameters as:

\[
e(g, \sigma_{M_1}) \prod_{i \in \omega^* \cup \Upsilon'} e(H(\text{attr}_i), \sigma_i) e(H(m_\omega), \sigma_{M_3}) e(pk_p, H(m)) \]

\[
= \prod_{i \in \omega^* \cup \Upsilon'} e(H(\text{attr}_i), \sigma_i) e(H(m_\omega), \sigma_{M_3}) e(pk_p, H(m))
\]

\[
= e(g, \prod_{i \in \omega^* \cup \Upsilon'} \delta^H_{i, \omega^*}(0)) \prod_{i \in \omega^* \cup \Upsilon'} H(\text{attr}_i)^{r_i} H(m_\omega)^r e(pk_p, H(m))
\]

\[
= e(g, \prod_{i \in \omega^* \cup \Upsilon'} \delta^H_{i, \omega^*}(0)) e(g, \prod_{i \in \omega^* \cup \Upsilon'} H(\text{attr}_i)^{r_i}) e(H(m_\omega), \sigma_{M_3}) e(pk_p, H(m))
\]

\[
= e(g, \prod_{i \in \omega^* \cup \Upsilon'} \delta^H_{i, \omega^*}(0)) e(g, \prod_{i \in \omega^* \cup \Upsilon'} H(\text{attr}_i)^{r_i})
\]

\[
= e(g, g_2^{q(0)})
\]

\[
= e(g, g_2^q)
\]

\[
= e(g^q, g_2)
\]

\[Z.
\]
CHAPTER 5. ATTRIBUTE-BASED SIGNING RIGHT DELEGATION

• \mathcal{B} chooses random $x_p \in_R \mathbb{Z}_p^*$ and sets $sk_p = x_p, pk_p = g^{x_p}$.

• \mathcal{B} sends $(G_1, G_2, e, p, g, g_1, g_2, H)$ and (sk_p, pk_p) to \mathcal{A}_{II}.

3. Hash queries: In order to make the simulation easy to follow, we regard the attribute, warrant and message queries as H_1, H_2 and H_3 queries respectively. Assume \mathcal{B} keeps hash tables T_1, T_2 and T_3 for the queries.

(a) H_1 Query: Assume \mathcal{A}_{II} makes q_{H1} attribute queries, for each query on attribute attr_i, \mathcal{B} simulates as follows:

- If attr_i have existed in T_1, a same value $H(\text{attr}_i)$ is returned to \mathcal{A}_{II}.
- Otherwise,
 - If $\text{attr}_i \in \omega^* \cup \Omega^*$, \mathcal{B} chooses random $a_i \in \mathbb{Z}_p$ and returns $H(\text{attr}_i) = g^{a_i}$ to \mathcal{A}_{II}. \mathcal{B} adds $(\text{attr}_i, H(\text{attr}_i))$ to T_1.
 - If $\text{attr}_i \notin \omega^* \cup \Omega^*$, \mathcal{B} chooses random $a_i, b_i \in \mathbb{Z}_p$ and returns $H(\text{attr}_i) = g^{-a_i} g^{b_i}$ to \mathcal{A}_{II}. \mathcal{B} adds $(\text{attr}_i, H(\text{attr}_i))$ to T_1.

(b) H_2 Query: Assume \mathcal{A}_{II} makes q_{H2} warrant queries, \mathcal{B} selects a random number $\delta \in (0, q_{H2})$, for each query on warrant m_{w_i}, \mathcal{B} simulates as follows:

- If m_{w_i} have existed in T_2, a same value $H(m_{w_i})$ is returned to \mathcal{A}_{II}.
- Otherwise,
 - If $i \neq \delta$, \mathcal{B} chooses random $a_i, b_i \in_r \mathbb{Z}_p$ and returns $H(m_{w_i}) = g_i^{b_i} g^{a_i}$. \mathcal{B} adds $(m_{w_i}, H(m_{w_i}))$ to T_2.
 - If $i = \delta$, \mathcal{B} chooses random b_i and returns $H(w_i) = g^{b_i}$. \mathcal{B} adds $(m_{w_i}, H(m_{w_i}))$ to T_2.

(c) H_3 Query: Assume \mathcal{A}_{II} makes q_{H3} message queries, for each query on message m_i, \mathcal{B} simulates as follows:

- If m_i has existed in T_3, a same value $H(m_i)$ is returned to \mathcal{A}_{II}.
- Otherwise, \mathcal{B} chooses random $r_i \in_r \mathbb{Z}_p$ and returns $H(m_i) = g^{r_i}$. \mathcal{B} adds $(m_i, H(m_i))$ to T_3.

4. Attribute key extraction queries: Assume \mathcal{A}_{II} issues an attribute key extraction query on an attribute set ω such that $|\omega^* \cap \omega| < k$. Following the analysis in [LAS+10], we first define three sets Γ, Γ', S in the following manner:

$\Gamma = (\omega \cap \omega^*) \cup \Omega^*$ and $\Gamma \subseteq \Gamma' \subseteq S$ with $|\Gamma'| = d - 1$. Let $S = \Gamma' \cup \{0\}$. The simulation on the attribute key D_i is as follows:

- For $i \in \Gamma'$: $D_i = (g_2^{\tau_i} H(\text{attr}_i)^{r_i}, g^{r_i})$, where $\tau_i, r_i \in_R \mathbb{Z}_p$.

• For \(i \notin \Gamma' \), \(D_i \) could be simulated as:

\[
D_i = \left(g_2^{\frac{\Delta_{0,S(i)}h_i}{a_i}} + \sum_{j \in \Gamma'} \Delta_{j,S(i)}q(j) \right) \left(g_1^{-a_i} g_{h_i}^{r_j} \right)^{r_i}, \ g_2^{\frac{\Delta_{0,S(i)}}{a_i}} g^{r_i},
\]

where \(r_i' \in R \mathbb{Z}_p \). It is a correct key because it implicitly sets

\[
r_i = \frac{\Delta_{j,S(i)}q(j)}{a_i} \beta + r_i'.
\]

As we know,

\[
q(i) = \sum_{j \in \Gamma'} \Delta_{j,S(i)}q(j) + \Delta_{0,S(i)}q(0),
\]

thus we have,

\[
g_2^{q(i)} H(\text{attr}_i)^{r_i} = g_2^{\frac{\Delta_{0,S(i)}h_i}{a_i}} + \sum_{j \in \Gamma'} \Delta_{j,S(i)}q(j) H(\text{attr}_i)^{r_i'}
\]

and

\[
g^{r_i} = g_2^{\frac{\Delta_{0,s(i)}h_i}{a_i}} g^{r_i'}.
\]

5. Delegation signing key queries: \(A_{II} \) can also issue a query for a warrant \(W \) for an attribute set \(\omega \) with \(k' \) values out of an \(n' \)-value attribute set \(\omega' \). The delegation signing key query could be simulated as follows:

• If \(|\omega \cup \omega'| < k \), \(B \) can generate a simulated private key for \(\omega \) as in the attribute key simulation and get a signature for \(\omega \) on \(W \) normally.

• If \(|\omega \cap \omega'| > k \), \(B \) selects a random \((d - k') \)-element subset \(\Omega' \) from \(\Omega \). If \(H(W) \neq g^{a_i} \), in order to simulate \((g_2^x \prod_{i \in \omega \cup \Omega'} H(\text{attr}_i)^{r_i} H(w)^{r_a}, \ \{g^{r_i}\}_{i \in \omega \cup \Omega'} \),

 - Choose \(r_a' \in \mathbb{Z}_p \) and set \(r_a' = \frac{1}{c} \beta + r_a \). Then

\[
g_2^x \prod_{i \in \omega \cup \Omega'} H(\text{attr}_i)^{r_i} H(w)^{r_a} = (g_1^{c} g^{a_i})^{r_a} \prod_{i \in \omega \cup \Omega'} H(\text{attr}_i)^{r_i} g_2^{-\frac{a_i}{c}} ,
\]

\[
g^{r_a} = g_2^{\frac{1}{c}} g^{r_a'}
\]

when \(H(W) = g_1^{c} g^{a_i} \).

6. Proxy signing queries: Assume \(A_{II} \) makes \(q_{ps} \) proxy signing queries. If \(A_{II} \) issues a proxy signature queries for a message \(m \in \{0,1\}^* \) under a warrant \(W \) for a predicate \(\Upsilon \), in order to simulate \(\sigma = \sigma_0 \cdot H(m)^{sk_p} \), \(B \) generates the delegation signing key \(\sigma_0 \) as in the delegation signing queries and answers the proxy signing queries as follows:
• If m_i has existed in T_3, then return $\sigma = \sigma_0 \cdot pk_r^i$ as the proxy signature to A_{II}, where $H(m_i) = g^r$ exists in T_3.

• If m_i does not appear in T_3, then choose random $r_i \in \mathbb{Z}_p$ and return $\sigma = \sigma_0 \cdot pk_r^i$ as the proxy signature to A_{II}. B adds $(m_i, H(m_i))$ to T_3.

7. Forgery: Assume A_{II} outputs a valid proxy signature

$$\sigma^* = (\sigma_0^*, \{\sigma_i^*\}_{i \in \omega^* \cup \Omega^*}, \sigma_0')$$

for predicate Y_{k, ω^*}. If $H(m_w) \neq g^{a\delta}$ or $\Omega^* \neq \Omega$ where Ω^* are the dummy attributes, B will abort. Therefore

$$\sigma^* = (\sigma_0^*, \{\sigma_i^*\}_{i \in \omega^* \cup \Omega^*}, \sigma_0') = (g_2^a \prod_{i \in \omega^* \cup \Omega^*} H(\text{attr}_i)^{r_i} H(m_w)^{r_n} H(m)^{s_{kp}}, \{g_i^r\}_{i \in \omega^* \cup \Omega^*}, g^r_\alpha).$$

Thus B can compute

$$g^{\alpha\beta} = \frac{\sigma_0^*}{\prod_{i \in \omega^* \cup \Omega^*} (\sigma_i^*)^{a_i} (\sigma_0'^*)^{a_\delta} (pk_r)^{r_i}}$$

because $H(\text{attr}_i) = g^{a_i}$, $H(m_w) = g^{a_i}$.

Next, we analyze the success probability of B, B will not abort if the following conditions holds:

• $H(m_w) = g^{a_\delta}$.

• Correct guess of $d - k$ elements Ω^* from Ω.

Therefore the success probability of B in solving CDH problem is:

$$Succ_B^{CDH} = \frac{\epsilon}{q_{H2}^{cd-k}}.$$

Theorem 5.2. Our attribute-based proxy signature scheme is secure against the A_{III} chosen message attacks if the CDH Problem is hard.

Proof. Let G_1 be a bilinear pairing group of prime order p. Algorithm B is given $g, g^\alpha, g^\beta \in G_1$ which is a random instance of the CDH problem. Its goal is to compute $g^{\alpha\beta}$. Algorithm B will simulate the challenger and interact with the adversary A_{III} as described below.

Let’s recall the definition of the adversary A_{III}. A_{III} has the attribute key of the original signer as well as the public of the proxy signer, thus the attribute key
extraction and delegation queries are not needed here. The simulation is performed as follows:

1. **Setup:** \(B\) sets the public keys of the users and the common parameter as:

 - \(B\) selects a random generator \(g \in_R \mathbb{G}_1\) and two random number \(x, g_2 \in_R \mathbb{Z}_p^*\), then \(B\) chooses a \(d-1\) degree polynomial \(q\) with \(q(0) = x\) and computes \(g_1 = g^x\). \(B\) sets \(sk_p = \alpha, pk_p = g^\alpha\), where \(g^\alpha, g^\beta\) are inputs of the CDH problem.
 - \(B\) then sends \((G_1, G_2, e, p, g, x, g_1, g_2, H)\) and \(pk_p\) to \(A_{III}\).

2. **Hash queries:** Assume \(A_{III}\) makes \(q_{H1}, q_{H2}, q_{H3}\) times for attribute, warrant and message queries, respectively. \(B\) maintains hash tables \(T_1, T_2, T_3\) for attribute, warrant and message queries. For the hash queries for the attribute and warrant, \(B\) performs the same as in Theorem 1. For the message query on any \(m\) of \(A_{III}\)'s choice, \(B\) chooses a random number \(I \in (1, q_{H3})\), for each query on message \(m_i\), if \((m_i, H(m_i))\) exits in hash table, \(B\) just returns \(H(m_i)\) to \(A_{III}\), otherwise, the simulation is performed as follows:
 - If \(m_i \neq m_I\), \(B\) chooses random \(r_i \in_R \mathbb{Z}_p\), returns \(H(m_i) = g^{r_i}\) and adds \((m_i, H(m_i))\) to \(T\).
 - If \(m_i = m_I\), \(B\) chooses random \(r_I \in_R \mathbb{Z}_p\), return \(H(m_I) = (g^3)^{r_I}\).

3. **Proxy Signing Queries:** Suppose \(A_{III}\) issues a proxy signing query for a message \(M \in \{0,1\}^*\) under a warrant \(W\) with predicate \(\Upsilon_{k,\omega^*}\). \(B\) first generates the attribute key \(sk_\omega\) using the same method as the **attribute key extraction queries** in Theorem 1. Then \(B\) generates the delegation key \(dsk = (\sigma_0, \{\sigma_i\}_{i \in \omega \cap \Upsilon^*}, \sigma'_0)\) using the method same as **Delegation signing key queries** in Theorem 1. Then \(B\) simulates the proxy signature queries as follows:
 - If \(M \in T_3\), assume \(H(M) = g^{r_M}\), \(B\) simulates the proxy signature \(\sigma = (\sigma_1, \sigma_2, \sigma_3)\) where \(\sigma_1 = \sigma_0 \cdot pk_p^{r_M}, \sigma_2 = \{\sigma_i\}_{i \in \omega \cap \Upsilon^*}\) and \(\sigma_3 = \sigma'_0\).
 - If \(M \notin T_3, B\) chooses random \(r^* \in_R \mathbb{Z}_p\) and simulates the proxy signature as \(\sigma_1 = \sigma_0 \cdot pk_p^{r^*}, \sigma_2 = \{\sigma_i\}_{i \in \omega \cap \Upsilon^*}\) and \(\sigma_3 = \sigma'_0\). \(B\) adds \((M, H(M))\) to hash table \(T\).

4. **Forgery:** Assume that the adversary \(A_{III}\) can output a proxy signature \(\sigma^* = (\sigma^*_1, \sigma^*_2, \sigma^*_3)\) of the message \(M^*\) under the warrant \(W^*\) for predicate \(\Upsilon^*\) such that:
 - \((M^*, W^*)\) has not been submitted as one of the proxy signing queries.
• $\sigma^* = (\sigma_1^*, \sigma_2^*, \sigma_3^*)$ is a valid proxy signature.

In this case, if $M^* = m_I$, B can compute:

$$g^{\alpha\beta} = \frac{\sigma_1^*}{g_2^* \prod_{i \in \omega \cup \Omega^*} (\sigma_1^*)^{a_i} (\sigma_2^*)^{a_i} (\sigma_3^*)^{a_i'} \delta_i^{1/2}}$$

Next, we analyse the success probability of B. B will not abort if the following conditions hold:

• $H(m_w) = g^{a_1}$.

• $H(M) = (g^{\beta})^{r_I}$.

• Correct guess of $d - k$ elements Ω^* from Ω.

Therefore,

$$Succ_{CDH}^B = \epsilon \frac{q_{H2}(q_{H3} + q_{ps})^{C_{d-1}}}{C_{d-1}}.$$

5.6 Summary

In this chapter, we studied attribute-based proxy signature (ABPS) for threshold predicates. We presented a formal security model and a concrete construction of ABPS scheme. Our model has considered different types of potential adversaries against an ABPS scheme. An interesting feature of our scheme is that it offers original signer privacy, that is even the proxy signer cannot find out who is the original signer except that the original signer’s attributes satisfy a pre-claimed predicate. We leave the problem of building ABPS for other types of predicates as our future work.
Chapter 6

Security of Delegation-by-Warrant Proxy Signature Schemes

In this chapter, we identify a new attack that has been neglected by many existing proven secure proxy signature schemes. We demonstrate this attack by launching it against an identity-based proxy signature scheme which is proven secure. We then propose one method that can effectively prevent this attack. The weakness in some other proxy signature schemes can also be fixed by applying the same method.

6.1 Introduction

The concept of proxy signature was introduced by Mambo, Usuda and Okamoto in 1996 [MUO96]. They presented three different types of proxy signature, namely full delegation, partial delegation, and delegation by warrant in their seminal work. Shortly after Mambo et al.’s work, Kim et al. [KPW97] proposed a new type of proxy signature combing partial delegation and warrant. They demonstrated that schemes combining partial delegation and warrant can provide a higher level of security than schemes based on partial delegation or warrant separately. Since then, proxy signature has been extensively researched in different settings, such as blind proxy signature [ZSNL], anonymous proxy signature [SW02, FP08], and identity-based proxy signature [WMS+07].

These delegation-by-warrant proxy signature schemes can be further classified into two categories according to whether the proxy signature is generated by the proxy signer using his own private key or not. In the first type, the proxy signer generates a new proxy signing key using the delegation information and his own private key. The proxy signatures are generated under the new proxy signing key. The proxy signature schemes in [Zha97, LKK01b, LKK01a, Wan05, LYMW13] fall into the first type. In the second type, the proxy signer issues a proxy signature using his own private key. The proxy signatures are essentially combinations of the original signer’s signature on the warrant and the proxy signature’s signature on the message. Such proxy signature schemes could be found in [HSMW06, WMS+07, LKZC07, SXYM11, LMY14a]

On the security modeling of proxy signature, Boldyreva et al. [BPW12] proposed a comprehensive security model for the delegation by warrant proxy signature, where an original signer can also perform self-delegation. Malkin et al. [MOY04] extended
the security model to allow fully hierarchical proxy signatures. They also proved that proxy signatures are essentially equivalent to key-insulated signatures. The security model proposed in [BPW12, MOY04] is in the registered key model, which means the adversary has to submit every public and private key pair in the security game except the challenge one. Later, Schuldt et al. [SMP08] proposed an enhanced security model for proxy signature by allowing the adversary to query arbitrary proxy signing keys.

Our Contributions. We revisit proxy signature and show an attack that has been neglected by the second type of proxy signature schemes [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a] that have been proven secure. In these schemes, a proxy signature is essentially the combination of the original signer’s standard signature on a warrant and the proxy signer’s standard signature on a message. In the security analysis, it is assumed that an adversary has access to the original signer and proxy signer’s standard signature oracles. We show that under such a circumstance, some proxy signature schemes [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a] that have been previous proved secure are in fact not secure. We demonstrate a new attack by launching it against an identity-based proxy signature scheme [WMS+07] that has been proven secure. We show that a malicious adversary can create a proxy signature on a message, if he has access to the standard signature of the original signer and proxy signer, which is as defined in the security models in [HSMW06, WMS+07]. Thus, these proxy signature schemes [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a], which we believe is not a complete list, are in fact not secure. We propose an efficient solution by revising the identity-based proxy signature scheme [WMS+07] to thwart this attack. It is worth noticed that the same method can also be applied to [HSMW06, LKZC07, SXYM11, LMY14a] to resist this attack.

Organization of This Chapter. The rest of this chapter is organized as follows. We present a new attack in some proxy signature schemes in Section 6.2 by attacking an identity-based proxy signature scheme. The security model for proxy signature that captures the attack is presented in Section 6.3. We then revise the identity-based proxy signature scheme in Section 6.4 and prove its security in Section 6.5. This chapter is concluded in Section 6.6.

6.2 An Attack in Some Proxy Signature Schemes

In this section, we present an attack that has been neglected by many existing proxy signature schemes [HSMW06, LKZC07, WMS+07, SXYM11, LMY14a]. To better explain how an attacker works, we demonstrate this attack via a concrete example.
Before we start to introduce the attack, we first review an identity-based proxy signature scheme proposed in [WMS+07].

An Identity-Based Proxy Signature Scheme

1. **Setup:** Let \(e : G_1 \times G_1 \rightarrow G_2 \) be a bilinear pairing map where \(G_1 \) and \(G_2 \) are of prime order \(q \). Let \(P \) be a generator of \(G_1 \). Chooses a random number \(s \in \mathbb{Z}_q^* \) and set \(P_{pub} = sP \). Select three collision-resistant hash functions \(H_0, H_1, H_2 : \{0,1\}^* \rightarrow G_1 \). The system parameters \(params = \{e, G_1, G_2, q, P_{pub}, H_0, H_1, H_2\} \), the master secret key \(Msk = s \).

2. **KeyExtract:** On input a user’s identity \(ID \), outputs the secret key for this identity \(sk_{ID} = sH_0(ID) \).

3. **StandardSign:** On input a message \(m \), the standard signature on \(m \) under identity \(ID \) is \(\sigma = (\sigma_1, \sigma_2) \) such that \(\sigma_1 = sk_{ID} + rH_1(M) \) and \(\sigma_2 = rP \) where \(r \in \mathbb{Z}_q^* \).

4. **StandardVer:** On input a standard signature \(\sigma = (\sigma_1, \sigma_2) \) of message \(m \) under identity \(ID \), outputs ‘1’ if \(e(\sigma_1, P) = e(H_0(ID), P_{pub})e(H_1(m), \sigma_2) \); Otherwise, output ‘0’.

5. **DelegationGen:** Let \(w \) be a warrant that includes the delegation information such as the identities of the original signer and the designated proxy signer, the delegation period, the types of messages that a proxy signer can sign and so on. Then the original signer with identity \(ID_A \) generates the delegation information \(\sigma_w = (\sigma_{W_1}, \sigma_{W_2}) \) such that \(\sigma_{W_1} = sk_{ID_A} + r_AH_1(m_w) \) and \(\sigma_{W_2} = r_A P \) where \(r_A \in \mathbb{Z}_q \). The original signer sends the delegation signing key \(\sigma_w \) to the proxy signer.

6. **ProSign:** Upon receiving the delegation information \(\sigma_w = (\sigma_{W_1}, \sigma_{W_2}) \) and \(w \) from the original signer, the proxy signer with identity \(ID_B \) generates a proxy signature \(\sigma = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}) \) on a message \(m \) such that \(\sigma_{M_1} = \sigma_{W_1} + sk_{ID_B} + r_BH_2(m) \), \(\sigma_{M_2} = \sigma_{W_2} \), \(\sigma_{M_3} = r_B P \).

7. **ProVer:** On input the identities \(ID_A, ID_B \) of the original signer and proxy signer, a warrant \(w \in \{0,1\}^* \) and a message \(m \in \{0,1\}^* \) and the proxy signature \(\sigma = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}) \), outputs ‘1’ if

\[
e(\sigma_{M_1}, P) = e(H_0(ID_A), P_{pub})e(H_1(w), \sigma_{M_2})e(H_0(ID_B), P_{pub})e(H_2(m), \sigma_{M_3}).
\]

Otherwise, output ‘0’.
An Attack Against the ID-based Proxy Signature Scheme

Wu et al.’s identity-based proxy signature scheme [WMS+07] is proven secure. However, we show below that if the original signer and proxy signer also use their private keys to generate standard signatures, which is just as defined in their security models, then their scheme could be broken by a malicious outsider attacker. Assume the identities of the original signer and proxy signer are ID_A, ID_B respectively, in the security model in [WMS+07], three types of adversaries are defined, namely,

- A_{I}, which is an outsider adversary that has knowledge of (ID_A, ID_B).
- A_{II}, which is a malicious proxy signer that has knowledge of (ID_A, ID_B, sk_{ID_B}).
- A_{III}, which is a malicious original signer that has knowledge of (ID_A, sk_{ID_A}, ID_B).

Since the original signer and proxy signer could use the same key pairs to generate normal signatures using the standard signature scheme introduced in [WMS+07]. Suppose A_{I} aims to generate a proxy signature $\sigma = (\sigma_{M1}, \sigma_{M2}, \sigma_{M3})$ on a message m with a warrant w, it is worth noticing that A_{I} might obtain such a genius warrant w when verifies a valid proxy signature. Then A_{I} acts as follows:

- A_{I} requires a standard signature $(\sigma_{A1}, \sigma_{A2})$ on warrant w of the original signer with identity ID_A, where w is a warrant containing the delegation information. The original signer chooses a random $r_A \in \mathbb{Z}_q$ and generates the standard signature $(\sigma_{A1}, \sigma_{A2})$ such that $\sigma_{A1} = sk_{ID_A} + r_A H_1(w)$ and $\sigma_{A2} = r_A P$.

- Upon receiving the standard signature $(\sigma_{A1}, \sigma_{A2})$ on w from the original signer, A_{I} aborts if $e(\sigma_{A1}, P) \neq e(H_0(ID_A), P_{pub})e(H_1(w), \sigma_{A2})$.

- A_{I} requires a standard signature $(\sigma_{B1}, \sigma_{B2})$ on message $w||m$ of the proxy signer with identity ID_B, where m is a message. The proxy signer chooses a random $r_B \in \mathbb{Z}_q$ and generates the standard signature $(\sigma_{B1}, \sigma_{B2})$ such that $\sigma_{B1} = sk_{ID_B} + r_B H_2(w, m)$ and $\sigma_{B2} = r_B P$.

- Upon receiving the standard signature $(\sigma_{B1}, \sigma_{B2})$ on m from the proxy signer, A_{I} aborts if $e(\sigma_{B1}, P) \neq e(H_0(ID_B), P_{pub})e(H_2(w, m), \sigma_{B2})$.

- If both $(\sigma_{A1}, \sigma_{A2})$ and $(\sigma_{B1}, \sigma_{B2})$ are valid, A_{I} outputs a proxy signature $\sigma = (\sigma_{M1}, \sigma_{M2}, \sigma_{M3})$ on message m with warrant w such that $\sigma_{M1} = \sigma_{A1} + \sigma_{B1} = sk_{ID_A} + r_A H_1(w) + sk_{ID_B} + r_B H_2(w, m)$, $\sigma_{M2} = \sigma_{A2} = r_A P$ and $\sigma_{M3} = \sigma_{B2} = r_B P$.
It can be verified that $\sigma = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3})$ is a valid proxy signature. Thus, the proposed identity-based proxy signature is insecure, since given a proxy signature $\sigma = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3})$, it might come from a malicious adversary. The proposed attack is a practical attack since a malicious adversary could launch such an attack without notice of both the original signer and the proxy signer. Besides the scheme mentioned in this section, we have found that the proxy signature schemes in [HSMW06, LKZC07, SXYM11, LMY14a] are also subjected to this attack.

6.3 Security Model

We revise the security model for identity-based proxy signature defined in [WMS$^+07$] to capture the new attack in this section. In the security model for proxy signature, the capability of an adversary is modelled by its ability to query different oracles. Before we formally define each adversarial game, we first introduce four types of oracle queries that will appear in the models:

- **Key extract query**: A can query an identity $ID \in ID$, where ID represents the identity space, to the key extract oracle $O_{KE}(\cdot)$. The corresponding key sk_{ID} is then generated and returned to A.

- **Original signer’s standard signing query**: A can query the original signer’s signing oracle $O_{OS}(\cdot)$ with any warrant $w \in W$ under the original signer’s identity $ID \in ID$, where W represents the warrant space. The private key sk_{ID} on identity ID is generated using the key extraction algorithm. The corresponding original signer’s signature σ_o on warrant w is generated and returned to A.

- **Proxy signing query**: A can query the proxy signing oracle $O_{PS}(\cdot)$ with any message $m \in M$ with warrant $w \in W$ of his choice under the original signer’s identity ID_A and the proxy signer’s identity ID_B such that $ID_A, ID_B \in ID$, where M represents the message space. The private keys sk_{ID_A} and sk_{ID_B} on identities ID_A, ID_B are generated using the key extraction algorithm. A valid proxy signature on m is then generated and returned to A.

- **Proxy signer’s signing Query**: A can query the standard signature with any message $m \in M$ of his choice to the proxy signer’s standard signing oracle $O_{PS}(\cdot)$. A valid standard signature of the proxy signer σ_p on m under the proxy signer’s identity is then generated and returned to A.

According to the information held by an attacker, three different types of adversaries are defined:
1. A_{I}: an outsider attacker who only has the identities of the original signer and the proxy signer that aims to forge a valid proxy signature.

2. A_{II}: a malicious proxy signer who possesses the private key sk_{ID_B} of the proxy signer and the identity of the original signer, and tries to forge a valid proxy signature σ without knowledge of the private key sk_{ID_A} of the original signer.

3. A_{III}: a malicious original signer that possesses the private key sk_{ID_A} of the original signer and the identity ID_B of the proxy signer, and tries to forge a valid proxy signature σ without knowing the private key sk_{ID_B} of the proxy signer.

Adversarial Game with A Malicious Outsider Adversary

We first define the adversarial game between a malicious outsider adversary A_{I} and a simulator S as follows:

- **Setup**: The simulator S runs the Setup algorithm to generate the $params$ and MSK, and sends $params$ to A_{I} as well as keeps MSK secret.

- **Original signer’s standard signing queries**: A_{I} can choose any warrant $w \in W$ with the original signer’s identity ID_A and queries the original signer’s standard signing oracle $O_{OS'S}$. S generates the private key sk_{ID_A} using the key extract algorithm $sk_{ID_A} \leftarrow KeyExtract(MSK, ID_A, params)$, then S generates the delegation information $\sigma_o \leftarrow StandardSign(sk_{ID_A}, w, params)$ and sends σ_o to A_{I}.

- **Proxy Signer’s Standard Signature Queries**: A_{I} queries the proxy signer’s standard signing oracle $O_{PS'S}$ with a message $m \in M$ of his choice under the proxy signer’s identity $ID_B \in ID$. S generates the private key sk_{ID_B} using the key extract algorithm $sk_{ID_B} \leftarrow KeyExtract(MSK, ID_B, params)$, then S generates the standard signature $s\sigma \leftarrow StandardSign(sk_{ID_B}, m, params)$ and sends $s\sigma$ to A_{I}.

- **Forgery Phase**: Finally, A_{I} outputs a proxy signature σ^* on message M^* for a warrant W^* with the original signer’s identity ID_A and the proxy signer’s identity ID_B.

We say A_{II} wins the game if

- $ProVer(\sigma^*, ID_A, ID_B, W^*, M^*) = 1$;

- (W^*, ID_A) has been queried to the original signer’s standard signing oracle $O_{OS'S}$;
• \((W^*, M^*, ID_B)\) has been queried to the proxy signer’s standard signing oracle \(O_{PS}'\).

Define the advantage of a malicious adversary \(A_I\) in winning the game as

\[
Adv_{A_I}(\kappa) = \Pr[A_I \text{ Wins the game}].
\]

Definition 6.1. We say an identity-based proxy signature scheme is secure against an outsider adversary \(A_I\) if for any probabilistic polynomial time \(A_I\), \(Adv_{A_I}(\kappa)\) is negligible in \(\kappa\).

Adversarial Game with A Malicious Proxy Signer

We first define the adversarial game between a malicious proxy signer \(A_{II}\) and a simulator \(S\) as follows:

• **Setup:** The simulator \(S\) runs **Setup** algorithm to generate the \(params\) and \(MSK\), and sends \(params\) to \(A_{II}\) as well as keeps \(MSK\) secret.

• **Key extract queries:** \(A_{II}\) selects an identity \(ID\) such that \(ID \in ID\), the simulator \(S\) runs \(sk_{ID} \leftarrow \text{KeyExtract}(MSK, ID, params)\) and returns \(sk_{ID}\) to \(A_{II}\).

• **Original signer’s standard signing queries:** \(A_{II}\) can choose any warrant \(w \in W\) with an identity \(ID \in ID\) and queries original signer’s standard signing oracle \(O_{OS}'\). \(S\) generates the private key \(sk_{ID}\) using the key extract algorithm \(sk_{ID} \leftarrow \text{KeyExtract}(MSK, ID, params)\), then \(S\) generates the original signer’s standard signature \(\sigma_o \leftarrow \text{StandardSign}(sk_{ID}, w, params)\) and sends \(\sigma_o\) to \(A_{II}\).

• **Proxy signing queries:** \(A_{II}\) chooses a warrant \(w \in W\) and a message \(m \in M\) and queries the proxy signing oracle \(O_{PS}\) with the original signer’s identity \(ID_1\) and the proxy signer’s identity \(ID_2\). \(S\) generates

\[
sk_{ID_1}, sk_{ID_2} \leftarrow \text{KeyExtract}(MSK, ID_1, ID_2, params)
\]

\[
\sigma_w \leftarrow \text{DelegationGen}(sk_{ID_1}, w, params),
\]

\[
\sigma \leftarrow \text{ProSign}(\sigma_w, sk_{ID_2}, m, params)
\]

and returns \(\sigma\) to \(A_{II}\).

• **Forgery Phase:** Finally, \(A\) outputs a proxy signature \(\sigma^*\) on message \(M^*\) for a warrant \(W^*\) with the original signer’s identity \(ID_A\) and the proxy signer’s identity \(ID_B\).
We say A_{II} wins the game if

- $\text{ProVer}(\sigma^*, ID_A, ID_B, W^*, M^*) = 1$;
- ID_A has not been queried to the key extraction oracle $O_{KE}(\cdot)$.
- (W^*, ID_A) has not been queried to the delegation oracle O_{DG};
- (W^*, M^*, ID_A, ID_B) has not been queried to the proxy signing oracle O_{PS}.

Define the advantage of a malicious adversary A_{II} in winning the game as

$$\text{Adv}_{A_{II}}(\kappa) = \Pr[A_{II} \text{ Wins the game}].$$

Definition 6.2. We say an identity-based proxy signature scheme is secure against the A_{II} under chosen identity and warrant attacks if for any probabilistic polynomial time A_{II}, $\text{Adv}_{A_{II}}(\kappa)$ is negligible in κ.

Adversarial Game with A Malicious Original Signer

The adversarial game between a malicious original signer A_{III} and a simulator S is defined as follows:

- **Setup, Key Extract Queries and Proxy Signing Queries** are same as those in the adversarial game against a malicious proxy signer.

- **Proxy Signer’s Standard Signature Queries**: A_{III} queries the proxy signer’s standard signing oracle $O_{ps'}$s with a message $m \in M$ of his choice under an identity $ID \in ID$. S generates the private key sk_{ID} using the key extract algorithm $sk_{ID} \leftarrow \text{KeyExtract}(MSK, ID, params)$, then S generates the standard signature $\sigma_p \leftarrow \text{StandardSign}(sk_{ID}, m, params)$ and sends σ_p to A_{III}.

- **Forgery Phase**: Finally, A_{III} outputs a proxy signature σ^* on message M^* for a warrant W^* with the original signer’s identity ID_A and the proxy signer’s identity ID_B.

We say A_{III} wins the game if

- $\text{ProVer}(\sigma^*, ID_A, ID_B, W^*, M^*) = 1$;
- ID_B has not been queried to the key extraction oracle O_{KE};
- (W^*, M^*, ID_B) has not been queried to the proxy signer’s standard signing oracle $O_{ps'S}$;
- (W^*, M^*, ID_A, ID_B) has not been queried to the proxy signing oracle O_{PS}.
CHAPTER 6. IMPROVED SECURITY ON PROXY SIGNATURE

Define the advantage of a malicious adversary A_{III} in winning the game as

$$\text{Adv}_{A_{III}}(\kappa) = \Pr[A_{III} \text{ Wins the game}].$$

Definition 6.3. We say an identity-based proxy signature scheme is secure against the A_{III} under chosen identity and message attacks if for any probabilistic polynomial time A_{III}, $\text{Adv}_{A_{III}}(\kappa)$ is negligible in κ.

6.4 The Revised Identity-Based Proxy Signature Scheme

We present the revised ID-based proxy signature scheme that efficiently thwarts the proposed attack in this section.

1. **Setup:** Let $e : \mathbb{G}_1 \times \mathbb{G}_1 \rightarrow \mathbb{G}_2$ be a bilinear pairing map where \mathbb{G}_1 and \mathbb{G}_2 are of prime order q. Let P be a generator of \mathbb{G}_1. Chooses a random number $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$. Select three collision-resistant hash functions H_0, H_1, H_2 such that $H_0, H_1, H_2 : \{0, 1\}^* \rightarrow \mathbb{G}_1$. The system parameters $\text{params} = \{e, \mathbb{G}_1, \mathbb{G}_2, q, P_{pub}, H_0, H_1, H_2\}$, the master secret key $Msk = s$.

2. **KeyExtract:** On input a user’s identity ID, outputs the secret key for this identity $sk_ID = sH_0(ID)$.

3. **StandardSign:** On input a message m, the standard signature on m under identity ID is $\sigma = (\sigma_1, \sigma_2)$ such that $\sigma_1 = sk_ID + rH_1(m)$ and $\sigma_2 = rP$, where $r \in \mathbb{Z}_q^*$.

4. **StandardVer:** On input a standard signature $\sigma = (\sigma_1, \sigma_2)$ of message m under identity ID, output ‘1’ if $e(\sigma_1, P) = e(H_0(ID), P_{pub})e(H_1(m), \sigma_2)$; Otherwise, output ‘0’.

5. **DelegationGen:** Let w be a warrant that includes the delegation information such as the identities of the original signer and the designated proxy signer, the delegation period, the types of messages that a proxy signer can sign and so on. Then the original signer with identity ID_A generates the delegation information $\sigma_w = (\sigma_{W_1}, \sigma_{W_2})$ such that $\sigma_{W_1} = sk_{ID_A} + r_AH_1(w)$ and $\sigma_{W_2} = r_AP$ where $r_A \in \mathbb{Z}_q$. The original signer sends the delegation information σ_w to the proxy signer.

6. **ProSign** Upon receiving the delegation information $\sigma_w = (\sigma_{W_1}, \sigma_{W_2})$ and w from the original signer, the proxy signer with identity ID_B generates a proxy
signature $\sigma = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}$ on a message m such that $\sigma_{M_1} = \sigma_{W_1} + sk_{ID_B} + r_BH_2(w, m) + r_BH_1(w), \sigma_{M_2} = \sigma_{W_2} + r_BP, \sigma_{M_3} = r_BP$.

7. **ProVer**: On input the identities ID_A, ID_B of the original signer and proxy signer, a warrant w and a message m and the proxy signature $\sigma = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3})$, outputs ‘1’ if

$$e(\sigma_{M_1}, P) = e(H_0(ID_A), P_{pub})e(H_1(w), \sigma_{M_2}) \cdot e(H_0(ID_B), P_{pub})e(H_2(w, m), \sigma_{M_3})$$

Otherwise, output ‘0’.

6.5 Security Analysis

In this section we analyse the security of the revised ID-based proxy signature scheme against A_{I}, A_{II} and A_{III} adversaries.

Theorem 6.1. The revised ID-based proxy signature scheme is secure against an outsider adversary A_I if the CDH assumption holds.

Proof. The proof is by contradiction under the random oracle model. Suppose that exists an outsider adversary A_I that has a non-negligible advantage ϵ in attacking the proposed scheme, then we can build another algorithm B that uses A_I to solve the CDH problem. Let \mathbb{G}_1 be a bilinear pairing group of prime order q. B is given $P, aP, bP \in \mathbb{G}_1$ which is a random instance of the CDH problem. Its goal is to compute abP. Algorithm B will simulate the challenger and interact with the forger A_I as described below.

1. **Setup**: B selects a bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_1 \rightarrow \mathbb{G}_2$ where \mathbb{G}_1 and \mathbb{G}_2 are of prime order q. B chooses a generator P of \mathbb{G}_1. Let (P, aP, bP) be the inputs of the CDH problem. B sets the master public key $P_{pub} = sP$ where $s \in \mathbb{Z}_q^*$. B selects three collision-resistant hash functions $H_0, H_1, H_2 : \{0, 1\}^* \rightarrow \mathbb{G}_1$. B sends $(e, \mathbb{G}_1, \mathbb{G}_2, q, P, P_{pub}, H_0, H_1, H_2)$ to A_{II}.

2. **Hash queries**: In the security proof, the hash functions H_0, H_1, H_2 are modelled as random oracles. We regard the identity, warrant and message queries as H_0, H_1 and H_2 queries respectively. Assume B keeps hash tables T_0, T_1 and T_2 for these queries.

(a) H_0 Query: For each query on identity ID_i, if ID_i has existed in T_0, a same value $H_0(ID_i)$ is returned to A_{II}. Otherwise, B chooses a random $c_i \in \mathbb{Z}_q$ and sets $H_0(ID_i) = c_iP$. B sends c_iP to A_I as well as stores $(ID_i, c_i, H_0(ID_i))$ to T_0.

CHAPTER 6. IMPROVED SECURITY ON PROXY SIGNATURE

(b) H_1 Query: Assume A_I makes q_{H_1} warrant queries, B selects a random number $\beta \in (1, q_{H_1})$, for each query on warrant w_i such that $1 \leq i \neq \beta \leq q_{H_1}$, if w_i has existed in T_1, a same value $H_1(w_i)$ is returned to A_I. Otherwise,

- If $w_i \neq w_\beta$, B chooses a random $k_i \in \mathbb{Z}_q$ and sets $H_1(w_\beta) = k_i P$. B sends $H_1(w_\beta)$ to A_I as well as stores $(w_\beta, k_i, H_1(w_\beta))$ to T_1.
- If $w_i = w_\beta$, B sets $H_1(w_\beta) = a P$. B sends $H_1(w_\beta)$ to A_I.

(c) H_2 Query: For each query on message m_i accompanying with a warrant w_i, if $H_2(w_i, m_i)$ has existed in T_2, a same value $H_2(w_i, m_i)$ is returned to A_I. Otherwise, B chooses a random $u_i \in \mathbb{Z}_q$ and sets $H_2(w_i, m_i) = u_i P$. B sends $H_2(w_i, m_i)$ to A_I as well as stores $((w_i, m_i), u_i, H_2(w_i, m_i))$ to T_2.

3. Original signer’s standard signing queries: A_I can query the original signer’s standard signature on a warrant w_i. Assume A_I makes q_{ors} queries with the original signer’s identity ID_A, for each query on w_i, assume $H_0(ID_A)$ and $H_1(w_i)$ have existed in T_0 and T_1, if they are not the cases, B performs the above algorithms to assign values for $H_0(ID_A)$ and $H_1(w_i)$. Assume $H_0(ID_A) = c_A P$, B simulates as follows:

- If $w_i \neq w_\beta$, assume $H_1(w_i) = k_i P$, then B chooses randomly $r_{A_\beta} \in \mathbb{Z}_q$ and sets $\sigma_{w_\beta} = (\sigma_{w_\beta 1}, \sigma_{w_\beta 2})$ such that $\sigma_{w_\beta 1} = c_A s P + r_{A_\beta} k_i P = s H_0(ID_A) + r_{A_\beta} H_1(w_i)$ and $\sigma_{w_\beta 2} = r_{A_\beta} P$.
- If $w_i = w_\beta$, then B chooses randomly $r_{A_\beta} \in \mathbb{Z}_q$ and sets $\sigma_\beta = (\sigma_{w_\beta 1}, \sigma_{w_\beta 2})$ such that $\sigma_{w_\beta 1} = c_A s P + r_{A_\beta} b P = s H_0(ID_A) + r_{A_\beta} H_1(w_\beta)$ and $\sigma_{w_\beta 2} = r_{A_\beta} P$.

4. Proxy signer’s standard signing queries: Assume A_I makes q_{ps} standard signature queries under the proxy signer’s identity ID_B. For each query on $M_i = w_i | m_i$, assume $H_0(ID_B)$ and $H_2(M_i)$ have existed in T_0 and T_2, if they are not the cases, B performs the above algorithms to assign values for $H_0(ID_A)$ and $H_2(M_i)$. Assume $H_0(ID_B) = c_B P$, B chooses a number $\delta \in (1, q_{ps})$ and simulates as follow:

- If $M_i \neq M_\delta$, assume $H_2(M_\delta) = u_\delta P$, then B chooses randomly $r_{B_\delta} \in \mathbb{Z}_q$ and sets $\sigma_{p_\delta} = (\sigma_{p_\delta 1}, \sigma_{p_\delta 2})$ such that $\sigma_{p_\delta 1} = c_B s P + r_{B_\delta} k_i P = s H_0(ID_B) + r_{B_\delta} H_2(M_i)$ and $\sigma_{p_\delta 2} = r_{B_\delta} P$.
- If $M_i = M_\delta$, assume $H_2(M_\delta) = u_\delta P$, then B sets $dsk_\delta = (\sigma_{B_1\delta}, \sigma_{B_2\delta})$ such that $\sigma_{B_1\delta} = c_B s P + b u_\delta P = s H_0(ID_B) + b H_2(M_\delta)$ and $\sigma_{B_2\delta} = b P$.

5. Forgery: Assume A_I outputs a valid proxy signature $\sigma^* = (\sigma_{M_1}^*, \sigma_{M_2}^*, \sigma_{M_3}^*)$ on message M^* under a warrant W^* with the proxy signer’s identity ID_A and the proxy signer’s identity ID_B. Besides,
CHAPTER 6. IMPROVED SECURITY ON PROXY SIGNATURE

- \((ID_A, W^*)\) has been queried in the original signer’s standard signing queries.
- \((ID_B, W^*, M^*)\) has been queried in the proxy signer’s standard signing queries.

If \(W^* \neq w_\beta\) or \(M^* \neq M_\delta\), \(\mathcal{B}\) will abort. Otherwise, given the the forged proxy signature \(\sigma^* = (\sigma_{M_1}^*, \sigma_{M_2}^*, \sigma_{M_3}^*)\). \(\mathcal{B}\) can solve the CDH problem

\[
abP = \sigma_{M_1}^* - \sigma_{A_1 \beta} - \sigma_{B_1 \delta}
\]

\(\mathcal{B}\) will not abort when \(W^* = w_\beta\) and \(M^* = M_\delta\). Thus, if there exists an outsider adversary \(\mathcal{A}_I\) that has a non-negligible probability \(\epsilon\) in breaking the proposed identity-based proxy signature scheme. Then there exist another probabilistic polynomial time algorithm \(\mathcal{B}\) that has a probability

\[
\text{Succ}_{\mathcal{B}, G_1}^{\text{CDH}} = \frac{\epsilon}{qos' \cdot qps'}
\]

which is non-negligible. Thus, we reach a contradiction.

Theorem 6.2. The revised ID-based proxy signature scheme is secure against the \(\mathcal{A}_{II}\) chosen identity and chosen warrant attacks if the CDH assumption holds.

Proof. Let’s recall the definition of \(\mathcal{A}_{II}\), \(\mathcal{A}_{II}\) is a malicious proxy signer possessing the private key of the proxy signer. With this in mind, the simulation is as follows:

1. **Setup:** \(\mathcal{B}\) selects a bilinear map \(e : G_1 \times G_1 \rightarrow G_2\) where \(G_1\) and \(G_2\) are of prime order \(q\). \(\mathcal{B}\) chooses a generator \(P\) of \(G_1\). Let \((P, aP, bP)\) be the inputs of the CDH problem. \(\mathcal{B}\) sets the master public key \(P_{pub} = aP\). \(\mathcal{B}\) selects three collision-resistant hash functions \(H_0, H_1, H_2 : \{0,1\}^* \rightarrow G_1\). \(\mathcal{B}\) sends \((e, G_1, G_2, q, P, P_{pub}, H_0, H_1, H_2)\) to \(\mathcal{A}_{II}\).

2. **Hash queries:** Regard the identity, warrant and message queries as \(H_0, H_1\) and \(H_2\) queries respectively. \(\mathcal{B}\) keeps hash tables \(T_0, T_1\) and \(T_2\) for these queries.

 (a) **\(H_0\) Query:** Assume \(\mathcal{A}_{II}\) makes \(q_{H_0}\) identity queries, choose \(\alpha \in (1, q_{H_0})\), for each query on identity \(ID_i\) such that \(1 \leq i \neq \alpha \leq q_{H_0}\), if \(ID_i\) has existed in \(T_0\), a same value \(H_0(ID_i)\) is returned to \(\mathcal{A}_{II}\). Otherwise,

 - If \(i \neq \alpha\), \(\mathcal{B}\) chooses a random \(c_i \in \mathbb{Z}_q\) and sets \(H_0(ID_i) = c_iP\). \(\mathcal{B}\) sends \(c_iP\) to \(\mathcal{A}_{II}\) as well as stores \((ID_i, c_i, H_0(ID_i))\) to \(T_0\).
 - If \(i = \alpha\), \(\mathcal{B}\) sets \(H_0(ID_\alpha) = bP + c_\alpha P\) where \(c_\alpha \in \mathbb{Z}_q\) and returns \(H_0(ID_I)\) to \(\mathcal{A}_{II}\). \(\mathcal{B}\) adds \((ID_\alpha, c_\alpha, H_0(ID_\alpha))\) to \(T_0\).
(b) \(H_1\) Query: Assume \(\mathcal{A}_{II}\) makes \(q_{H_1}\) warrant queries, \(\mathcal{B}\) selects a random number \(\beta \in (1, q_{H_1})\), for each query on warrant \(w_i\) such that \(1 \leq i \neq \beta \leq q_{H_1}\), if \(w_i\) has existed in \(T_1\), a same value \(H_1(w_i)\) is returned to \(\mathcal{A}_{II}\). Otherwise,

- If \(w_i \neq w_\beta|_{ID_a\rightarrow a}\), which means \(ID_a\) is included in \(w_i\) and the user with identity \(ID_a\) plays the role of original signer in the system. \(\mathcal{B}\) chooses a random \(k_i \in \mathbb{Z}_q\) and sets \(H_1(w_i) = k_iP - bP\). \(\mathcal{B}\) sends \(H_1(w_i)\) to \(\mathcal{A}_{II}\) as well as stores \((w_i, k_i, H_1(w_i))\) to \(T_1\).

- If \(w_i \neq w_\beta|_{ID_a\rightarrow p}\), which means \(ID_a\) is included in \(w_i\) and the user with identity \(ID_a\) plays the role of proxy signer in the system. \(\mathcal{B}\) chooses a random \(k_i \in \mathbb{Z}_q\) and sets \(H_1(w_i) = k_iP\). \(\mathcal{B}\) sends \(H_1(w_i)\) to \(\mathcal{A}_{II}\) as well as stores \((w_i, k_i, H_1(w_i))\) to \(T_1\).

- If \(w_i = w_\beta\), \(\mathcal{B}\) chooses a random \(k_i \in \mathbb{Z}_q\) and sets \(H_1(w_\beta) = k_iP\). \(\mathcal{B}\) sends \(H_1(w_\beta)\) to \(\mathcal{A}_{II}\) as well as stores \((w_\beta, k_i, H_1(w_\beta))\) to \(T_1\).

(c) \(H_2\) Query: Assume \(\mathcal{A}_{II}\) makes \(q_{H_2}\) message queries, \(\mathcal{B}\) selects a random number \(\delta \in (1, q_{H_1})\), for each query on message \(m_i\) accompanying with a warrant \(w_i\) such that \(1 \leq i \neq \delta \leq q_{H_1}\), if \(H_2(w_i, m_i)\) has existed in \(T_2\), a same value \(H_2(w_i, m_i)\) is returned to \(\mathcal{A}_{II}\). Otherwise,

- If \(w_i \neq w_\beta, m_i \neq m_\delta\), \(\mathcal{B}\) chooses a random \(u_i \in \mathbb{Z}_q\) and sets \(H_2(w_i, m_i) = u_iP + aP\). \(\mathcal{B}\) sends \(H_2(w_i, m_i)\) to \(\mathcal{A}_{II}\) as well as stores \(((w_i, m_i), c_i, H_2(w_i, m_i))\) to \(T_2\).

- If \(w_i = w_\beta, m_i \neq m_\delta\), same as the case when \(w_i \neq w_\beta, m_i \neq m_\delta\).

- If \(w_i \neq w_\beta, m_i = m_\delta\), same as the case when \(w_i \neq w_\beta, m_i \neq m_\delta\).

- If \(w_i = w_\beta, m_i = m_\delta\), \(\mathcal{B}\) chooses a random \(u_i \in \mathbb{Z}_q\) and sets \(H_2(w_\beta, m_\delta) = u_iP\). \(\mathcal{B}\) sends \(H_2(w_\beta, m_\beta)\) to \(\mathcal{A}_{II}\) as well as stores \(((w_\beta, m_\delta), u_i, H_2(w_\beta, m_\delta))\) to \(T_2\).

3. Key extraction queries: \(\mathcal{A}_{II}\) can make key extraction queries on any identity \(ID \in \mathcal{ID}\) such that \(ID \neq ID_a\). If \(\mathcal{A}_{II}\) makes key extraction query on identity \(ID_a\), \(\mathcal{B}\) just terminates the simulation and reports a failure. Assume \(\mathcal{A}_{II}\) makes \(q_k\) key extractions queries, for each query on identity \(ID_i\) for \(1 \leq i \leq q_k\).

- If \(ID_i\) has existed in table \(T_0\), assume \(H_0(ID_i) = c_iP\), then \(\mathcal{B}\) returns \(sk_{ID_i} = c_i aP = aH_0(ID_i)\) to \(\mathcal{A}_{II}\).

- Otherwise, \(\mathcal{B}\) chooses a random \(c_i \in \mathbb{Z}_q\) and sets \(H_0(ID_i) = c_iP\). \(\mathcal{B}\) returns \(sk_{ID_i} = c_i aP\) to \(\mathcal{A}_{II}\) and adds \((ID_i, c_i, H_0(ID_i))\) to \(T_0\).

4. Original signer’s standard signing queries: \(\mathcal{A}_{II}\) can query original signer’s standard signature on a warrant \(w_i \in \mathcal{W}\) under an identity \(ID_i \in \mathcal{ID}\). Assume
CHAPTER 6. IMPROVED SECURITY ON PROXY SIGNATURE

\[A_{II} \] makes \(q_{os}'s \) original signer’s standard signing queries. For each query, assume \(ID_i \) and \(w_i \) have been submitted to the \(H_0 \) and \(H_1 \) queries respectively. If they are not the cases, \(B \) performs the above algorithms to set values for \(H_0(ID_i) \) and \(H_1(w_i) \), then \(B \) simulates \(\sigma_{w_i} \) as follows:

- If \(ID_i \neq ID_\alpha \) and \(w_i \neq w_\beta|ID_\alpha\rightarrow\alpha \), assume \(H_0(ID_i) = c_iP \) and \(H_1(w_i) = k_iP - bP \) respectively, then \(B \) chooses a random \(r_i \in \mathbb{Z}_q \) and returns the original signer’s standard signature \(\sigma_{w_i} = (\sigma_{w_1}, \sigma_{w_2}) \) such that \(\sigma_{w_1} = c_iP_{pub} + r_i(k_iP - bP) = sk_{ID_i} + r_iH_1(w_i) \) and \(\sigma_{w_2} = r_iP \) to \(A_{II} \).

- If \(ID_i \neq ID_\alpha \) and \(w_i \neq w_\beta|ID_\alpha\rightarrow\alpha \), assume \(H_0(ID_i) = c_iP \) and \(H_1(w_i) = k_iP \) respectively, then \(B \) chooses a random \(r_i \in \mathbb{Z}_q \) and returns original signer’s standard signature \(\sigma_{w_i} = (\sigma_{w_1}, \sigma_{w_2}) \) such that \(\sigma_{w_1} = c_iP_{pub} + r_iP = sk_{ID_i} + r_iH_1(w_i) \) and \(\sigma_{w_2} = r_iP \) to \(A_{II} \).

- If \(ID_i = ID_\alpha \) and \(w_i \neq w_\beta|ID_\alpha\rightarrow\alpha \), assume \(H_0(ID_i) = bP + c_iP \) and \(H_1(w_i) = k_iP - bP \) respectively, then \(B \) simulates the original signer’s standard signature \(\sigma_{w_i} = (\sigma_{w_1}, \sigma_{w_2}) \) by setting \(\sigma_{w_2} = r_iP = l_iP + aP \) where \(l_i \in \mathbb{Z}_q \) and \(\sigma_{w_1} = (c_i + k_i)P_{pub} + k_iP - l_iP - l_iP \). It can be verified that \((\sigma_{w_1}, \sigma_{w_2}) \) is a correct simulation since:

\[
\begin{align*}
\sigma_{w_1} & = (c_i + k_i)P_{pub} + k_iP - l_iP - l_iP \\
& = abP + c_iP_{pub} + k_iP + k_iP - l_iP \quad \text{by setting } \sigma_{w_2} = r_iP \\
& = a(c_i + P_{pub}) + (a + l_i)(k_iP - bP) \\
& = aH_0(ID_\alpha) + r_iH_1(w_i)
\end{align*}
\]

- If \(ID_i = ID_\alpha \) and \(w_i \neq w_\beta|ID_\alpha\rightarrow\alpha \), since we do not consider self-delegation in our scheme, then \(B \) just terminates the simulation and reports failure.

- If \(ID_i = ID_\alpha \) and \(w_i = w_\beta \), \(B \) terminates the simulation and reports failure.

5. **Proxy signing queries**: \(A_{II} \) can query a proxy signature on a message \(m_i \in \mathcal{M} \) under a warrant \(w_i \in \mathcal{W} \) with the proxy signer’s identity \(ID_{i1} \), and the original signer’s identity \(ID_{i2} \), such that \(ID_{i1}, ID_{i2} \in \mathcal{ID} \). Assume \(ID_{i1}, ID_{i2} \) have been submitted to the \(H_0 \) query and \(w_i \) and \(w_i||m_i \) have been submitted to the \(H_1 \) and \(H_2 \) queries respectively. If they are not the cases, the above algorithms will be performed to assign new values \(H_0(ID_{i1}), H_0(ID_{i2}), H_1(w_i), \) and \(H_2(w_i, m_i) \). Assume \(A_{II} \) makes \(q_{ps} \) proxy signing queries. For each query on a message \(m_i \) with warrant \(w_i \) such that \(1 \leq i \leq q_{ps} \), \(B \) simulates the corresponding proxy signature as follows:

(a) If \(ID_{i1} \neq ID_\alpha, ID_{i2} \neq ID_\alpha \) assume \(H_0(ID_{i1}) = c_1P, H_0(ID_{i2}) = c_2P \), then \(B \) chooses two random numbers \(r_{i1}, r_{i2} \in \mathbb{Z}_q^* \) and returns the proxy
signature \(\sigma_i = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}) \) such that \(\sigma_{M_1} = c_1, aP + r_1, H_1(w_i) + c_2, aP + r_2, H_2(w_i, m_i) + r_2, H_1(w_i) \), \(\sigma_{M_2} = (r_1 + r_2)P \) and \(\sigma_{M_3} = r_2, P \) to \(A_H \). It is a correct simulation since

\[
e(\sigma_{M_1}, P) = e(c_1, aP + r_1, H_1(w_i) + c_2, aP + r_2, H_2(w_i, m_i) + r_2, H_1(w_i), P)
\]

= \(e(c_1, P, aP)e(H_1(w_i), (r_1 + r_2)P)e(c_2, P, aP)e(H_2(m_i, w_i), r_2, P) \)

= \(e(H_0(ID_{D_1}), P_{pub})e(H_1(w_i), \sigma_{M_2})e(H_0(ID_{D_2}), P_{pub})e(H_2(m_i, w_i), \sigma_{M_3}) \)

(b) If \(ID_{D_1} \neq ID_{\alpha}, ID_{D_2} = ID_{\alpha} \), assume \(H_0(ID_{D_1}) = c_1, P, H_0(ID_{D_2}) = c_2, P + bP \), then

i. If \(w_i \neq w_\beta |_{ID_\alpha \rightarrow o}, m_i \neq m_\delta \) or \(w_i \neq w_\beta |_{ID_\alpha \rightarrow o}, m_i = m_\delta \), \(B \) terminates the simulation and reports failure.

ii. If \(w_i \neq w_\beta |_{ID_\alpha \rightarrow p} \) and \(m_i \neq m_\delta \), assume \(H_1(w_i) = k_i, P \) and \(H_2(w_i, m_i) = u_i, P + aP, B \) simulates the proxy signature \(\sigma_i = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}) \) by setting \(\sigma_{M_3} = r_2, P = v_i, P - bP, \sigma_{M_2} = r_1, P + v_i, P - bP \) and \(\sigma_{M_1} = (c_1 + c_\alpha + v_i)P_{pub} + r_1, H_2(w_i) + k_i, (v_i, P - bP) + u_i, (v_i, P - bP) \) where \(v_i, r_i, \in \mathbb{Z}_q \). It can be verified that it is a correct simulation since

\[
e(\sigma_{M_1}, P) = e((c_1 + c_\alpha + v_i)P_{pub} + r_1, H_2(w_i) + k_i, (v_i, P - bP) + u_i, (v_i, P - bP), P)
\]

= \(e(c_1, P, aP)e(H_1(w_i), (r_1 + r_2)P)e(abP + c_\alpha, aP + v_i, aP + u_i, v_i, P
\]

- \(w_i, bP - abP, P) \)

= \(e(c_1, P, aP)e(H_1(w_i), (r_1 + r_2)P)e((v_i - b, (u_i, P
\]

+ aP), P) \)

= \(e(H_0(ID_{D_1}), P_{pub})e(H_1(w_i), \sigma_{M_2})e(H_0(ID_{D_2}), P_{pub})e(H_2(w_i, m_i), \sigma_{M_3}) \)

iii. If \(w_i \neq w_\beta |_{ID_\alpha \rightarrow p}, m_i = m_\delta \) or \(w_i = w_\beta, m_i \neq m_\delta \), \(B \) performs same as that in case ii.

iv. If \(w_i = w_\beta \) and \(m_i = m_\delta \), \(B \) terminates the simulation and reports failure.

(c) If \(ID_{D_1} = ID_{\alpha}, ID_{D_2} \neq ID_{\alpha} \), assume \(H_0(ID_{D_1}) = c_\alpha, P + bP, H_0(ID_{D_2}) = c_2, P \), then
i. If \(w_i \neq w_\beta |_{ID_a \rightarrow o} \) and \(m_i \neq m_\delta \), assume \(H_1(w_i) = k_iP - bP \) and \(H_2(w_i, m_i) = u_iP + aP \). \(\mathcal{B} \) chooses \(l_i, r_2, \in \mathbb{Z}_q^* \) and simulates the proxy signature \(\sigma_i = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}) \) by setting \(\sigma_{M_3} = r_2P, \sigma_{M_2} = v_iP - bP + r_2P \) and \(\sigma_{M_1} = (c_\alpha + k_i + c_2)P_{pub} + l_i(k_iP - bP) + r_2(k_iP - bP) + r_2u_i(P + aP) \). It is a correct simulation since

\[
e(\sigma_{M_1}, P) = e(c_\alpha + k_i + c_2)P_{pub} + l_i(k_iP - bP) + r_2(k_iP - bP) + r_2u_i(P + aP), P)
\]

\[
= e(abP + ac_\alpha P + l_i k_iP - l_i bP + a k_iP - abP + r_2(k_iP - bP), P)
\]

\[
e(c_2P_{pub}, P)e(r_2(u_iP + aP), P)
\]

\[
= e(a(c_\alpha P + bP), P)e((l_i + a + r_2)(k_iP - bP), P)e(c_2P_{pub}, aP)e(u_iP + aP, r_2P)
\]

\[
= e(H_0(ID_1), P_{pub})e(H_1(w_i), \sigma_{M_2})e(H_0(ID_2), P_{pub})e(H_2(w_i, m_i), \sigma_{M_3})
\]

ii. If \(w_i \neq w_\beta |_{ID_a \rightarrow p}, m_i \neq m_\delta \) or \(w_i \neq w_\beta |_{ID_a \rightarrow p}, m_i = m_\delta \), \(\mathcal{B} \) terminates the simulation and reports failure.

iii. If \(w_i \neq w_\beta |_{ID_a \rightarrow o} \) and \(m_i = m_\delta \), assume \(H_1(w_i) = k_iP - bP \) and \(H_2(w_i, m_\beta) = u_iP + aP \). \(\mathcal{B} \) performs same as that in case i.

iv. If \(w_i = w_\beta \) and \(m_i \neq m_\delta \), assume \(H_1(w_\beta) = k_iP \) and \(H_2(w_\beta, m_i) = u_iP + aP \). \(\mathcal{B} \) chooses \(v_i, r_1, \in \mathbb{Z}_q^* \) and simulates the proxy signature \(\sigma_i = (\sigma_{M_1}, \sigma_{M_2}, \sigma_{M_3}) \) by setting \(\sigma_{M_3} = v_iP - bP, \sigma_{M_2} = v_iP - bP + r_1P \) and \(\sigma_{M_1} = (c_\alpha + c_2 + v_i)P_{pub} + r_1k_iP + k_i(v_iP - bP) + u_i(v_iP - bP) \). It is a correct simulation since

\[
e(\sigma_{M_1}, P)
\]

\[
= e((c_\alpha + c_2 + v_i)P_{pub} + r_1k_iP + k_i(v_iP - bP) + u_i(v_iP - bP), P)
\]

\[
= e((c_\alpha + b)aP + c_2aP + r_1k_iP + k_i(v_iP - bP) + (v_i - b)aP + u_i(v_iP - bP), P)
\]

\[
= e(c_\alpha P + bP, aP)e(k_iP, r_1P + v_iP - bP)e(c_2P_{pub}, aP)e(u_iP, v_iP - bP)
\]

\[
= e(H_0(ID_1), P_{pub})e(H_1(w_i), \sigma_{M_2})e(H_0(ID_2), P_{pub})e(H_2(w_i, m_i), \sigma_{M_3})
\]

v. If \(w_i = w_\beta \) and \(m_i = m_\delta \), \(\mathcal{B} \) terminates the simulation and reports failure.
(d) If \(ID_{1} = ID_{\alpha} \), \(ID_{2} = ID_{\alpha} \), \(B \) terminates the simulation and reports failure.

6. **Forgery**: Assume \(A_{II} \) outputs a valid proxy signature \(\sigma^* = (\sigma_{M_1}^*, \sigma_{M_2}^*, \sigma_{M_3}^*) \) on message \(M^* \) under a warrant \(W^* \) with the proxy signer’s identity \(ID_{A} \) and the proxy signer’s identity \(ID_{B} \). Besides,

- \(ID_{A} \) has not been queried in the key extraction queries.
- \((ID_{A}, W^*) \) has not been queried in the delegation queries.
- \((ID_{A}, ID_{B}, W^*, M^*) \) has not been queried in the proxy signing queries.

If \(H_0(ID_{A}) \neq bP + c_\alpha P \) or \(H_1(W^*) \neq k_\beta P \) or \(H_2(W^*, M^*) \neq u_\delta P \), \(B \) will abort. Otherwise, given the the forged proxy signature \(\sigma^* = (\sigma_{M_1}^*, \sigma_{M_2}^*, \sigma_{M_3}^*) \), \(B \) can solve the CDH problem

\[
abP = \sigma_{M_1}^* - c_\alpha aP - k_\beta \sigma_{M_2}^* - c_2aP - u_\delta \sigma_{M_3}^*
\]

when \(H_0(ID_{A}) = bP + c_\alpha P \), \(H_1(ID_{B}) = k_\beta P \) and \(H_2(W^*, M^*) = u_\delta P \).

Next, we analysis the success probability of \(B \), \(B \) will not abort if the following conditions holds:

- \(ID_{A} = ID_{\alpha} \).
- \(W^* = w_\beta \).
- \(M^* = m_\delta \).

Therefore if \(A_{II} \) has a non-negligible probability \(\epsilon \) in breaking the proposed ID-based proxy signature scheme, then the success probability of \(B \) in solving CDH problem is:

\[
\text{Succ}_{B,G_1}^{\text{CDH}} \geq \frac{\epsilon}{(qH_0 + q_k + q_{os's} + 2q_{ps})(qH_1 + q_{os's} + q_{ps})(qH_2 + q_{ps})},
\]

which is non-negligible. Thus, we reach a contradiction.

Theorem 6.3. The revised ID-based proxy signature scheme is secure against the \(A_{III} \) chosen message and identity attack if the CDH assumption holds.

Proof. The security is similar to that in Theorem 2. Thus, we just describe it briefly.

1. **Setup, Hash queries** and **Key extract** queries are same as those in the security proof against a malicious proxy signer.

2. **Proxy signer’s standard signing queries** and **Proxy signing queries** are similar to the **Original signer’s stand signing queries** and **Proxy signing queries** in the security for Theorem 2.
Through simulation, it can be reduced that if there exists a malicious original signer that can break the proposed scheme with a non-negligible probability ϵ, then we can build another probabilistic polynomial time algorithm B that can solve the CDH problem with a non-negligible probability $\text{Succ}_{B,G_1}^{CDH}$ such that

$$\text{Succ}_{B,G_1}^{CDH} \geq \frac{\epsilon}{(q_{H_0} + q_k + q_{ps}'s + 2q_{ps})(q_{H_1} + q_{ps}'s + q_{ps})(q_{H_2} + q_{ps})}$$

where $q_{ps}'s$ refers to the number of proxy signer’s standard signing queries. Thus, we reach a contradiction.

6.6 Summary

In this chapter, we introduced a practical attack which has not been considered by some existing proxy signature schemes. In particular, we took an identity-based proxy signature scheme to describe how this attack works. We also presented an enhanced security model that can capture this attack. Our model has considered different types of potential adversaries against an identity-based proxy signature scheme and allowed the adversary to query the individual signatures of both the original signer and the proxy signer. The proposed new scheme inherits the good features of the original scheme, and at the same time can effectively prevent the attack. The proposed method can also be applied in other proxy signature schemes [HSMW06, LKZC07, SXYM11, LMY14a] to ensure an improved security.
Chapter 7

An Efficient Privacy-Preserving E-Coupon System

Previous work on electronic coupon (e-coupon) systems mainly focused on security properties such as unforgeability, double-redemption detection, and anonymity. However, achieving both traceability against dishonest users and anonymity for honest users without involving any third party is an open problem that has not been solved by the previous work. Another desirable feature of an e-coupon system that has not been studied in the literature is user privacy, which means the shop cannot identify the good (among all the choices specified in the coupon) that has been chosen by the customer during the redemption process. In this chapter, we present a novel e-coupon system that can achieve all these desirable properties. We define the formal security models for these new security requirements, and show that our new e-coupon system is proven secure in the proposed models. The original scheme was presented in Inscrypt 2014.

7.1 Introduction

We have reviewed several e-coupon system in the literature [CES+05, Ngu06b, CGH06]. Besides those properties already mentioned in the literature, there are some desirable features that should be taken into consideration in an e-coupon system. For example, privacy of purchase is an important issue that has been neglected in existing e-coupon systems [CES+05, Ngu06b, CGH06]. It is important to keep the choices and buying habits of users private from the coupon issuer. Another issue is that there is no efficient mechanism to trace malicious users in existing e-coupon systems without involving a trusted third party.

Our Contributions. In this chapter, we propose a new e-coupon system, which can achieve all the desirable properties mentioned above, namely unforgeability, anonymity for honest users, double redemption detection, traceability against dishonest users, and user privacy. It is worth noticing that different from a fair e-cash system [SPC95, FTY98, MNV01], the traceability in our e-coupon system is performed by the merchant (i.e., coupon issuer) rather than the bank, which makes the task more challenging. In order to achieve unforgeability, anonymity for honest users, double redemption detection and traceability against dishonest users,
we design a new variant of blind signature which allows the signer (which is essentially the coupon issuer) to issue a signature (coupon) on a message without seeing its content. However, different from conventional blind signature schemes [Cha82, CPS94, JLO97, CKW04, AO00], our scheme involves an extra dynamic challenge-response verification in the verification phase to ensure that if a coupon is redeemed more than once, the identity of the coupon holder can be calculated. In order to achieve user privacy, we employ an oblivious transfer scheme [CT05] in the redemption protocol.

Organization of This Chapter. The rest of this chapter is organized as follows. We provide some definitions in Section 7.2. The formal security model for our e-coupon system is presented in Section 7.3. We then present our construction in Section 7.4 and prove its security in Section 7.5. This chapter is concluded in Section 7.6.

7.2 Formal Definition

An e-coupon system consists of two participants, namely, a user and a coupon issuer, which is also a service provider or shop. Our e-coupon system consists of the following algorithms.

1. **ParamGen:** On input a security parameter κ, the parameter generation algorithm outputs the public parameters.

 \[\text{params} \leftarrow \text{ParamGen}(1^\kappa) \]

2. **KeyGen:** On input the public parameter params, the key generation algorithm outputs a key pair for a user or a service provider.

 \[(pk, sk) \leftarrow \text{KeyGen}(\text{params}) \]

3. **Issue:** The issue algorithm is an interactive protocol between the service provider \mathcal{S} and a user \mathcal{U},

 \[C \leftarrow \text{Issue}(\mathcal{S}(pk_\mathcal{S}, sk_\mathcal{S}), \mathcal{U}(pk_\mathcal{U}, \text{params})) \]

 The output is an e-coupon for the user.
4. **Redeem**: The redeem algorithm is an interactive protocol between a user U and the service provider S, taking as input an e-coupon C, the public key pk_S of the service provider, the public parameters $params$, a challenge c from the service provider S and a corresponding response R from the user U. The output of this algorithm for the service provider is accept or reject.

\['accept' \text{ or } 'reject' \leftarrow \text{Redeem}_S(pk_S, params, C, c, R). \]

The output of this algorithm for the user is the item $item_i$ of his choice or a failure symbol.

\['⊥' \text{ or } item_i \leftarrow \text{Redeem}_U(pk_S, params, C, c, R). \]

5. **Reveal**: The reveal algorithm is executed by the service provider, taking a sequence of the challenge-response pairs and the corresponding redeemed coupon $\{(c_1, R_1), (c_2, R_2), C\}$ and the public parameters $params$ as input, outputs the identity ID_U of the corresponding user or a failure symbol $'⊥'$.

\[ID_U \text{ or } '⊥' \leftarrow \text{Reveal}((c_1, R_1), (c_2, R_2), C, params). \]

7.3 **Security Model**

We formalize four security requirements for our e-coupon system, that is unforgeability, user anonymity, double-redemption detection, and user privacy.

Unforgeability

Unforgeability requires that an adversary A (could be a malicious user) cannot forge a new valid coupon that can be redeemed successfully with an honest service provider S. The adversarial game for unforgeability between an adversary A and a simulator B is defined as follows:

1. **ParamGen**: The simulator B runs algorithm **ParamGen** to generate public parameters $params$.

2. **KeyGen**: The simulator B generates two key pairs (pk_S, sk_S) and (pk_U, sk_U), B sends pk_S and (pk_U, sk_U) to A and keeps sk_S secret.

3. **Issue queries**: Assume A makes q_s issue queries to the issuing oracle $\mathcal{I}(\cdot)$, for the i-th query, $1 \leq i \leq q_s$, A runs the issue protocol with B in an interactive
manner, after each query, \(A \) obtains a coupon

\[
C_i \leftarrow \text{Issue}(S(pk_S, sk_S), U(pk_U, \text{params})).
\]

4. **Challenge**: Finally, \(A \) outputs a new coupon \(C^* \). We say \(A \) wins the game if this coupon has not appeared in any issue query but can be redeemed successfully by \(A \), i.e.,

- ‘accept’ \(\leftarrow \text{Redeem}_S(pk_S, \text{params}, C^*, c, R) \).
- \(C^* \neq C_i \), for \(1 \leq i \leq q_s \).

Define the advantage of a adversary \(A \) in winning the unforgeability game as

\[
\text{Adv}_{A}^{\text{unf}}(\kappa) = \Pr[A \text{ wins the game}]
\]

Definition 7.1. An e-coupon system is said to be unforgeable if \(\text{Adv}_{A}^{\text{unf}}(\kappa) \) is negligible for any PPT adversary \(A \).

Anonymity

Anonymity requires that if one user follows the protocol honestly, even a malicious service provider cannot link one redeemed coupon to the identity of the user. The adversarial game between \(A \) and simulator \(B \) for anonymity is defined as follows:

1. **ParamGen**: The simulator \(B \) runs algorithm **ParamGen** to generate public parameters \(\text{params} \).

2. **KeyGen**: The simulator \(B \) generates key pairs for a service provider \((pk_S, sk_S) \) and two users \(U_0 (pk_{U_0}, sk_{U_0}) \) and \(U_1 (pk_{U_1}, sk_{U_1}) \) respectively; \(B \) sends \((pk_S, sk_S, pk_{U_0}, pk_{U_1}) \) to \(A \).

3. **Issue queries**: Assume \(A \) runs **Issue** algorithm \(q \) times with \(U_0 \) and \(U_1 \) respectively. Let \(C^0 = \{C^1_{U_0}, C^2_{U_0}, \ldots, C^q_{U_0}\} \) and \(C^1 = \{C^1_{U_1}, C^2_{U_1}, \ldots, C^q_{U_1}\} \) be the coupon set obtained by \(U_0 \) and \(U_1 \).

4. **Challenge**: \(A \) outputs an index \(1 \leq i \leq q \). \(B \) flips a coin to decide a value \(b^* \in \{0, 1\} \), and returns \(C^i_{U_{b^*}} \) to \(A \). \(A \) makes a guess \(b' \) of the value \(b^* \).

We say \(A \) wins the game if \(b' = b^* \). Define the advantage of a adversary \(A \) in winning the game as

\[
\text{Adv}_{A}^{\text{Ano}}(\kappa) = \Pr[A \text{ wins the game}] - \frac{1}{2}
\]

Definition 7.2. An e-coupon system is said to provide anonymity if \(\text{Adv}_{A}^{\text{Ano}}(\kappa) \) is negligible for any PPT adversary \(A \).
Double-redemption detection

Detection of double-redemption is a major concern for any digital coupon system. An e-coupon system is said to provide double-redemption detection if one user cannot redeem one coupon twice with the same service provider without being caught. In our e-coupon system, if one coupon is redeemed twice, the service provider can find a polynomial time algorithm to trace the identity of the user with overwhelming probability. The adversarial game for double-redemption detection is defined as follows:

1. **ParamGen**: The simulator B runs algorithm ParamGen to generate public parameters params.

2. **KeyGen**: The simulator B generates two key pairs (pk_U, sk_U) and (pk_S, sk_S), B sends (pk_U, sk_U) and pk_S to A.

3. **Issue queries**: Assume A makes q_d coupon issuing queries. S runs the Issue algorithm with A to issue a sequence of coupons $\{C_1, C_2, \ldots, C_{q_d}\}$ for A.

4. **Redeem queries**: A runs the redeem protocol with S with any coupon of his choice.

5. **Challenge**: A outputs two pairs (C^*, c_1^*, R_1^*) and (C^*, c_2^*, R_2^*). We say A wins the game if

 - $(C^*, c_1^*, R_1^*) \neq (C^*, c_2^*, R_2^*)$.
 - $\text{Redeem}_S(pk_S, \text{params}, C^*, c_1^*, R_1^*) = 1$ and $\text{Redeem}_S(pk_S, \text{params}, C^*, c_2^*, R_2^*) = 1$.
 - $'⊥' \leftarrow \text{Reveal}((c_1^*, R_1^*), (c_2^*, R_2^*), C^*, \text{params})$

Define the advantage of A in winning the adversarial game above as

\[\text{Adv}_{\text{Adv}}^{\text{drd}}(\kappa) = P\left[A \text{ wins the game}\right] \]

Definition 7.3. An e-coupon system is said to provide double-redemption detection if $\text{Adv}_{\text{Adv}}^{\text{drd}}(\kappa)$ is negligible for any PPT adversary A.

User privacy

We formalize a new security property which has not been considered in previous e-coupon systems. When a valid user redeems an e-coupon with the service provider, it is desirable that the service provider cannot make a connection between the coupon from the user and the service that is redeemed by the user if the coupon can be used
to redeem an item from a list of options. The adversarial game for user privacy is defined as follows.

1. **ParamGen**: The simulator \mathcal{B} runs algorithm **ParamGen** to generate public parameters params.

2. **KeyGen**: The simulator \mathcal{B} generates two key pairs $(\text{pk}_U, \text{sk}_U)$ and $(\text{pk}_S, \text{sk}_S)$. \mathcal{B} sends $(\text{pk}_S, \text{sk}_S)$ and pk_U to \mathcal{A}.

3. **Issue queries**: \mathcal{A} runs the **Issue** algorithm with \mathcal{B} to generate a set of coupons $C = \{C_1, C_2, \ldots, C_{q_R}\}$.

4. **Guess**: \mathcal{A} outputs an index $1 \leq i \leq q_R$. \mathcal{B} then redeems C_i with \mathcal{A} to choose an item m_{b^*} from $\{m_1, m_2, \ldots, m_n\}$, which is the set of items that can be redeemed by \mathcal{B}. Finally, \mathcal{A} makes a guess $b' \in [1, n]$ for b^*.

We say \mathcal{A} wins the game if $b' = b^*$. Define the success probability of the adversary \mathcal{A} in making a successful guess about the service that the user choose as

$$\text{Adv}^{\text{up}}_\mathcal{A}(\kappa) = \Pr[\mathcal{A} \text{ wins the game}] - \frac{1}{n}$$

Definition 7.4. An e-coupon system is said to provide user privacy if $\text{Adv}^{\text{up}}_\mathcal{A}(\kappa)$ is negligible for any PPT adversary \mathcal{A}.

7.4 Proposed Scheme

We denote in our system the service provider by \mathcal{S} and a user by \mathcal{U}. Denote $\{m_1, m_2, \ldots, m_n\}$ the set of items that can be redeemed. The detail description of our e-coupon system is as follows.

1. **ParamGen**: On input a security parameter $\kappa \in \mathbb{N}$, generates the system parameters $\text{paras} = (G, g, p, q, H_1, H_2)$, where G_q is the subgroup of \mathbb{Z}_p with prime order q and g is a generator of G_q, where $p = 2q + 1$ is also prime. $H_1 : \{0, 1\}^\ast \rightarrow G_q$ and $H_2 : G_q \rightarrow \{0, 1\}^\kappa$ are two collision-resistant hash functions.

2. **KeyGen**: On input a security parameter $\kappa \in \mathbb{N}$ and the public parameter params, randomly choose $x, y \in_R \mathbb{Z}_q^\ast$ and calculate g^x, g^y and output the private and public key pairs $(\text{sk}_U = x, \text{pk}_U = g^x)$ and $(\text{sk}_S = y, \text{pk}_S = g^y)$ for the user and service provider respectively.

3. **Issue**: The issue protocol is performed through interactive communications between the service provider \mathcal{S} and a user \mathcal{U}. The result of the issue protocol is that \mathcal{S} generates a valid coupon for a user \mathcal{U}.
CHAPTER 7. AN PRIVACY-PRESERVING E-COUPON SYSTEM

71

On receiving a request from \(U \), \(S \) chooses \(k \in R \mathbb{Z}_q^* \) and computes \(\delta_1 \leftarrow pk_{id}^k \) and \(\delta_2 \leftarrow g^k \) sends \((\delta_1, \delta_2)\) to \(U \).

After receiving \((\delta_1, \delta_2)\) from \(S \), \(U \) checks whether \(\delta_1 = \delta_2^{k_{id}} \). If the verification fails, \(U \) stops; otherwise, \(U \) chooses \(x_1 \in \mathbb{Z}_p^* \) and computes \(\alpha \leftarrow (g^{x_1} + 1)^{x_1} \), \(\beta \leftarrow (g^x)^{x_1} \) and \(m \leftarrow H_1(\alpha, \beta, \lambda) \). \(U \) chooses two different random number \(a, b \) and computes \(r \leftarrow m_\beta \delta_1^{-a} \) and \(m' \leftarrow \frac{m H_1(m,r)}{g^b}, \) \(U \) sends \(m' \) to \(S \).

\(S \) computes the signature \(s' = m'y + k \) on the blind message \(m' \) and sends \(s' \) to \(U \).

\(U \) verifies if \(g^{s'} \equiv Y^{m'} \delta_2 \mod p \), if the equation holds, \(U \) removes the blind factor \(b \) by calculating \(s = \frac{sk}{a} + a \) and stores \((\alpha, \beta, \lambda, r, s)\); otherwise, abort.

4. Redeem: The redeem protocol is performed as follows:

- After receiving a redeem request from the user, \(S \) generates a challenge \(c = H_1(ID_S||Date||Time) \) and sends \(c \) to \(U \).

- After receiving \(c \), \(U \) computes \(R = x_1 + cx_1x \) and choose \(\sigma_i \in \{1, 2, \ldots, n\} \) and a random number \(a_i \in \mathbb{Z}_q^* \), \(w_{\sigma_i} = H_1(\sigma_i) \) and \(A = w_{\sigma_i}g^{a_i} \). \(U \) sends \((c, R, \alpha, \beta, \lambda, r, s)\) and \(A \) to \(S \).

- \(S \) checks if \(H_1(\alpha, \beta, \lambda) = \beta^{-s} \alpha^{H_1(H_1(\alpha, \beta, \lambda), r)}r \) and \(g^R = \lambda/\beta^c \). If the equation not holds, aborts; otherwise, \(S \) computes \(D = A^y \), \(w_i = H_1(i) \) and \(c_i = m_i \oplus H_2(w_i^y), i = 1, 2, \ldots, n \). \(S \) sends \(D \) and \(c_1, c_2, \ldots, c_n \) to \(U \).

- \(U \) computes \(K = D/Y^w \) and recover \(m_{\sigma_i} = c_{\sigma_i} \oplus H_2(K) \).

5. Reveal: Assume the coupon \(C = (\alpha, \beta, \lambda, r, s) \) is redeemed twice, the \(S \) could get two challenge-response pairs \((R_1, c_1)\) and \((R_2, c_2)\) on \(C \) such that \(R_1 = x_1 + c_1x_1x \) and \(R_2 = x_1 + c_2x_1x \). It is obvious that \(S \) could calculate \(x \) and \(x_1 \), thus the identity of \(U \) is traced by \(S \).

6. Correctness: The correctness check for validity of the coupon is as follows:

\[
\begin{align*}
\beta^{-s} & \alpha^{H_1(H_1(\alpha, \beta, \lambda), r)}r \\
& = (pk_{id}^{x_1})^{-s}g^{x_1y_1}r \\
& = (pk_{id}^{x_1})^{-H_1(H_1(\alpha, \beta, \lambda), r)}g^{y_1} \alpha \cdot \frac{b}{a} (pk_{id}^{x_1}) H_1(H_1(\alpha, \beta, \lambda), y) m (pk_{id}^{x_1}) a (pk_{id}^{x_1}) \frac{b}{a} \\
& = m \\
& = H_1(\alpha, \beta, \lambda)
\end{align*}
\]
The correctness check for a user U to recover the correct message is as follows:

$$c_{\sigma_i} \oplus H_2(K)$$
$$= m_{\sigma_i} \oplus H_2(w^{y_i}_{\sigma_i}) \oplus H_2(A^y / Y^{a_i})$$
$$= m_{\sigma_i} \oplus H_2((w_{\sigma_i}g^{a_i})^y / Y^{a_i})$$
$$= m_{\sigma_i} \oplus H_2((w_{\sigma_i})^y)$$
$$= m_{\sigma_i}$$

7.5 Security Analysis

Theorem 7.1. The proposed e-coupon system is unforgeable.

Proof. The security proof is by contradiction. We will prove that if there exists a PPT adversary A that can forge a coupon, then there exists another algorithm B that can break the OMDL assumption with a non-negligible probability. Suppose there exists a polynomial time forge adversary A which can break the unforgeability of our system with a non-negligible probability ϵ. B is the simulator in our proof and has access to two types of oracles. The first is discrete logarithm oracle $DLog_{G_q} (\cdot)$ which takes $P_i \in G_q$ as input and returns $p_i \in \mathbb{Z}_q$ such that $g^{p_i} = P_i$. The second is a challenge oracle $C(\cdot)$ which takes noting as input, but for each time it is invoked it returns a challenge $P \in G_q$. Besides, B maintains an H-table to record all the hash queries and the corresponding answers. Assume A makes q_h hash queries and q_s coupon issuing queries, the simulation is as follows:

1. **ParamGen:** B runs algorithm **ParamGen** to generate public parameters (G, p, q, g, H_1, H_2).

2. **KeyGen:** B runs **KeyGen** to generate a key pair (sk_U, pk_U). B queries the challenge oracle $C(\cdot)$ and sets the response P_0 as the public key of the shop $pk_S = P_0$. B sends (p, g, pk_S) and (sk_U, pk_U) to A.

3. **Hash queries:** For each hash query with an input message m, B first checks the H-table:
 - If there exists a pair (m, h) in the H-table, where m refers to the message queried before, B returns h as the answer to A.
 - Otherwise, B chooses a random $h \in \mathbb{Z}_q$, sends h to A as the answer for the hash query, and adds (m, h) into the H-table.

4. **Issue queries:** Upon receiving an issuing query, B make a query to the challenge oracle $C(\cdot)$ and obtains a challenge P_i. B then sets $(\delta_1, \delta_2) = (P_i^{s_{sk_U}}, P_i)$
and sends \((\delta_1, \delta_2)\) to the adversary. After receiving a message \(m_i\), \(B\) sends \(P_i P_0^{m_i}\) to the discrete logarithm oracle \(D\text{Log}(\cdot)\) and gets a response \(z_i\), and sends \(z_i\) to \(A\). Since \(z_i = D\text{Log}_{G,q,g}(P_i P_0^{m_i}) = D\text{Log}_{G,q,g}(P_i) + m_i D\text{Log}_{G,q,g}(P_0)\). In \(A\)'s view, \(B\) simulates the signer perfectly.

5. **Challenge**: Suppose \(A\) can successfully forge a new coupon \(C^* = (\alpha^*, \beta^*, \lambda^*, r^*, s^*)\) where \(s^* = ep_0 + r'\), and \(C^*\) can pass the redemption protocol. According to the Forking lemma [PS96] by rewinding \(A\) to the step where \(H_1(m^*, r^*) = e\) is determined and providing a new hash value for \(H_1(m^*, r^*) = \hat{e}\). \(B\) can generate another valid coupon \(\tilde{C}^* = (\alpha^*, \beta^*, \lambda^*, r^*, \tilde{s}^*)\) where \(\tilde{s}^* = e'p_0 + r'\). Then \(B\) can compute

\[
p_0 = D\text{Log}_{G,q,g}(P_0) = \frac{s^* - \tilde{s}^*}{e - \hat{e}}.
\]

Once \(B\) obtains \(p_0\), for each challenge \(P_i\) from the challenge oracle \(C(\cdot)\), it can calculate \(p_i = z_i - m_i p_0\) for each \(P_i\). Therefore, \(B\) can successfully solve the OMDL problem.

Theorem 7.2. The proposed e-coupon system provides anonymity.

Proof. Anonymity of the user requires the service provider cannot link a redeemed coupon to an honest user. The proof is by contradiction, suppose that there exists a PPT adversary \(A\) which can break anonymity of our e-coupon system with a non-negligible probability \(\epsilon\), then we can build an algorithm \(B\) that use \(A\) to solve the DDH problem with a non-negligible probability. Let \((g, g^a, g^b, g^z)\) be an instance of the DDH problem, the purpose of \(B\) is to decide whether \(g^z = g^{ab}\). The simulation is as follows:

1. **ParamGen**: \(B\) runs algorithm **ParamGen** to generate public parameters \((G, p, q, g, H_1, H_2)\).

2. **KeyGen**: \(B\) choose two random number \(s^*, r_0 \in \mathbb{Z}_p^*\) and computes \(S^* = g^{s^*}\). \(S\) sets key pair of the service provider as \((pk_S, sk_S) = (S^*, s^*)\) and the public keys of two valid users \(U_0\) and \(U_1\) as \(pk_{U_0} = g^{r_0}\) and \(pk_{U_1} = g^b\) respectively. \(B\) sends \((pk_S, sk_S)\) and \(pk_{U_0}, pk_{U_1}\) to \(A\).

3. **Issuing queries**: \(B\) performs **Issuing queries** with \(A\) as follows.

 (a) For \(U_0\), \(B\) knows the private key of \(U_0\). Thus \(B\) just follows the **Issue** protocol to obtains a set of coupons \(\{C_{U_0}^1, C_{U_0}^2, \ldots, C_{U_0}^{q_{U_0}}\}\);

 (b) For \(U_1\), \(B\) simulates the queries as follows:
Upon receiving a pair \((\delta_1, \delta_2) = (pr^k_{\ell_0}, g^{ki})\) from \(A\). \(B\) executes the extractor defined in the KEA assumption [BP04] to extract the value \(k_i\). If \(A\) misbehaves to generate a fake pair \((\delta_1', \delta_2')\). The extractor will return a failure symbol \(\perp\) and thus \(B\) stops this query. Otherwise, \(B\) chooses a random number \(r_i\) and sets \(\alpha_i = g^{(z)\ast r_i}, \beta_i = g^{(z)r_i}, \lambda_i = g^{(a)r_i}\) and computes \(m_i = H_1(\alpha_i, \beta_i, \lambda_i)\).

\(B\) chooses two random number \(a_i, b_i \in \mathbb{Z}_q\) and computes \(r = m_i g^{zr_ia_i} \cdots g^{sbi}\) and \(m' = a_i \ell_i(m_i, r)\). \(B\) sends \(m'\) to \(A\).

On receiving an \(\bar{s}\) from \(A\), \(B\) calculates \(s = \frac{\bar{s}h_i}{a_i} + a_i\), and stores \((\alpha_i, \beta_i, \lambda_i, r, s)\).

Let \(C^0 = \{C_{i_0}^1, C_{i_0}^2, \ldots, C_{i_0}^{q_0}\}\) and \(C^1 = \{C_{i_0}^1, C_{i_0}^2, \ldots, C_{i_0}^{q_0}\}\) be the \(q\) coupons generated for \(U_0\) and \(U_1\) respectively in this phase.

4. **Challenge:** After receiving the index \(i\), \(B\) flips a coin to decide a value \(b^* \in \{0, 1\}\) and returns \(C_{i_{b^*}}^j\) to \(A\). \(A\) finally returns \(b'\). \(B\) outputs ‘1’ if \(b' = b^*\). Otherwise, \(B\) outputs ‘0’.

We finish the simulation for the e-coupon system. Assume a PPT \(A\) have a non-negligible probability \(\epsilon\) in breaking anonymity of our scheme. Then the probability of \(B\) to solve the DDH problem \(A_{\mathcal{B}}^{DDH}(\kappa)\) can be calculated as follows:

\[
A_{\mathcal{B}}^{DDH}(\kappa) = \Pr[A \text{ wins}|g^* = g^{ab}] - \Pr[A \text{ wins}|g^* = g^r] \\
= \Pr[b^* = b'|g^* = g^{ab}] - \Pr[b^* = b'|g^* = g^r] \\
= \frac{1}{2} + \epsilon - (\Pr[b^* = b'|g^* = g^r \land b^* = 0]\Pr[b^* = 0] + \Pr[b^* = b'|g^* = g^r \land b^* = 1] \cdot \Pr[b^* = 1]) \\
= \frac{1}{2} + \epsilon - \frac{1}{2}(\frac{1}{2} + \epsilon + \frac{1}{2}) \\
= \frac{1}{2} \epsilon
\]

which is non-negligible. Thus, we reach a contradiction.

Theorem 7.3. The proposed e-coupon system provides double-redemption detection.

Proof. According to our e-coupon system, if \(U\) has double-redeemed a coupon \((\alpha, \beta, \lambda, r, s)\), then \(B\) obtains two different challenge-response pairs \((c_1, R_1)\) and \((c_2, R_2)\) on the coupon where \(R_1 = x_1 + c_1x_1x\) and \(R_2 = x_1 + c_2x_1x\), therefore, the secret key \(x\) of \(U\) can be easily calculated as follows:

\[
x = \frac{R_2 - R_1}{c_2R_1 - c_1R_2}
\]
Thus, the public key of the user could be obtained by the service provider by further calculating $y = g^x \mod p$.

Theorem 7.4. The proposed e-coupon system provides unconditionally user privacy.

Proof. User privacy of our e-coupon system can be prove by following the receiver’s privacy in the oblivious transfer scheme proposed in [CT05]. For any $A = w_\sigma g^{a_\sigma}$, there exists w_l and a'_l such that $l \neq \sigma$, but $A = w_l g^{a'_l}$. Thus in the service provider’s view, A could be a masked value of any index. Thus, the user’s choices are unconditionally secure.

7.6 Summary

In this chapter, we proposed a practical e-coupon system which enables the coupon issuer to trace the identity of misbehaving users, while maintain the anonymity for the honest users. We achieved this without requiring any third party in the system. In addition, we formalized the notion of user privacy during the coupon redemption process and proved that our new e-coupon system also satisfied this property.
Chapter 8

Efficient Oblivious Transfer with Retrievable Receiver’s Privacy

To achieve traceability against users’ redemption privacy in an e-coupon system, we construct two oblivious transfer schemes with some new properties in this chapter. Oblivious transfer (OT) has been applied widely in privacy-sensitive systems such as on-line transactions and electronic commerce to protect users’ sensitive information. Traceability is a desirable feature of such systems where the privacy of the honest users are protected unconditionally while the misbehaving users’ privacy can be traced. However, previous research on OT mainly focused on designing protocols with unconditional receiver’s privacy. Thus, traditional OT schemes cannot fulfill the traceability requirements in the aforementioned applications. In this chapter, we address this problem by presenting a novel OT with retrievable receiver’s privacy (OTRRP) without involvement of any trusted third party. In the new system, an honest receiver is able to make a fixed number of choices with perfect receiver privacy. However, if the receiver misbehaves and tries to request more than a pre-fixed number of choices, then all his previous choices could be traced by the sender. We first define the formal definition and security model for OTRRP, and then propose two efficient OTRRP schemes and prove their security under the proposed security model.

8.1 Introduction

As reviewed in Section 2.3, all the previous research on OT aimed to design OT schemes with unconditional receiver and sender privacy. In real-world applications [AIR01, LMY14b], it is desirable for the sender to trace the choices of the receiver if they misbehave. Thus, the previous OT schemes are not suitable in these scenarios. To the best of our knowledge, there is only one work [MXZ11] on constructing OT scheme with retrievable receiver’s privacy. Unfortunately, this OT scheme involves a trusted time server that publishes trapdoors on a time basis, and using the trapdoor the privacy of all the receivers, including the honest ones, will be lost. The motivation of this work is to propose a new OT with retrievable receiver’s privacy such that the privacy of an honest receiver is protected unconditionally while all the previous choices of a misbehaving receiver can be revealed by the sender if the receiver makes more than the pre-determined number of choices in the OT protocol.
Our Contributions. In this chapter, we present two novel oblivious transfer schemes that allow a sender to reveal the dishonest receivers’ privacy without the help of any trusted third party. To be more specific, our proposed OTk schemes can achieve the following properties:

1. The receiver can only obtain a fixed number of messages \(m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k} \) from the message set \(\{m_1, m_2, \ldots, m_n\} \) held by the sender where \(\sigma_i \in \{1, 2, \ldots, n\} \) for \(1 \leq i \leq k \). The receiver’s choice is hidden from the sender.

2. The receiver cannot learn anything on message \(m_i \) such that \(i \notin \{\sigma_1, \sigma_2, \ldots, \sigma_k\} \) for \(1 \leq i \leq n \).

3. If receiver makes more than \(k \) requests, then all his previous choices \((m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}) \) could be traced by the sender.

We construct two efficient adaptive OTk schemes with retrievable receiver’s privacy and prove its security under the half-simulation model [NP05].

Organization of This Chapter. The rest of this chapter is organized as follows. We introduce the formal definition in Section 8.2 and the security model in Section 8.3 separately. Two ORTTP schemes and their security analysis are presented in Section 8.4 and Section 8.5 separately. This chapter is concluded in Section 8.6.

8.2 Formal Definition

We present the formal definition of OTRRP in this section. There are two participants in an OT system, namely, a sender \(S \) and a receiver \(R \). \(S \) possesses a set of messages \(\{m_1, m_2, \ldots, m_n\} \) and \(R \) makes a set of choices \(\{\sigma_1, \sigma_2, \ldots, \sigma_k\} \) such that \(\sigma_i \in \{1, 2, \ldots, n\} \) for \(1 \leq i \leq k \).

Formal Definitions of OTRRP

An OTRRP scheme is essentially an interactive protocol consisting of a tuple of PPT algorithms \(\text{(Setup, Commitment (Optional), Request, Response, Extract, Reveal)} \).

1. \textit{Setup}: Taking as input of a security parameter \(\kappa \), the setup algorithm outputs the system public parameters.

\[
\text{params} \leftarrow \text{Setup}(1^\kappa)
\]

2. \textit{KeyGen}: Taking as input of the public parameter \(\text{params} \), the key generation algorithm outputs a retrievable key pair \((rpk, rsk) \) for the receiver and a one-
time key pair for the sender.

\[(rpk, rsk) \leftarrow \text{KeyGen}(\text{params})\]
\[(opk, osk) \leftarrow \text{KeyGen}(\text{params})\]

3. **Commitment** (Optional): Taking as input of the system parameters \(\text{params}\), the retrievable public key \(rpk\) of the receiver, the messages \(m_1, m_2, \ldots, m_n\) and one-time secret key \(osk\) of the sender, the commitment algorithm outputs a set of ciphertext \(c_1, c_2, \ldots, c_n\).

\[c_1, c_2, \ldots, c_n \leftarrow \text{Commitment}(rpk, m_1, m_2, \ldots, m_n, osk, \text{params})\]

4. **Request**: Taking as input of the intended indexes \(\sigma\), the retrievable private key \(rsk\) and \(\text{params}\), this algorithms outputs the commitment of the user’s choice.

\[A_{\sigma} \leftarrow \text{Request}(\sigma; rsk; \text{params})\]

5. **Response**: Taking as input of the commitment \(A_{\sigma}\) from the receiver, the secret of the sender, the output of the algorithm is response of the sender.

\[D_{\sigma} \leftarrow \text{Response}(A_{\sigma}, sk, \text{params})\]

If there is no **Commitment** algorithm in the scheme, then there are some additional outputs \(c_1, c_2, \ldots, c_n\) of the **Response** algorithm such that:

\[c_1, c_2, \ldots, c_n, D_{\sigma} \leftarrow \text{Response}(A_{\sigma}, rpk, m_1, m_2, \ldots, m_n, osk, \text{params})\]

where \(c_1, c_2, c_n\) are ciphertexts of \(m_1, m_2, \ldots, m_n\).

6. **Extract**: Taking as input of the response \(D_{\sigma}\) from the sender, the ciphertext \(c_\alpha\) and the system parameters \(\text{params}\), output the message of the receiver’s choice.

\[m_{\sigma} \leftarrow \text{Extract}(D_{\sigma}, c_\alpha, \text{params})\]

7. **Reveal**: The **Reveal** algorithm is performed by the sender, taking as input of the \(k+1\) transcripts \(A_{\sigma_1}, A_{\sigma_2}, \ldots, A_{\sigma_{k+1}}\) from a receiver, the retrievable public key \(rpk\) and \(\text{params}\), outputs the receiver’s choice \(\sigma_1, \sigma_2, \ldots, \sigma_k\).

\[\sigma_1, \sigma_2, \ldots, \sigma_k \leftarrow \text{Reveal}(A_{\sigma_1}, A_{\sigma_2}, \ldots, A_{\sigma_{k+1}}; rpk; \text{params})\]
CHAPTER 8. NOVEL OBLIVIOUS TRANSFER SCHEMES

Correctness: We require that for any security parameter $\kappa \in \mathbb{N}$, if $\text{params} \leftarrow \text{ParamGen}(1^\kappa)$, $(\text{rpk}, \text{rsk}) \leftarrow \text{KeyGen}($params$)$, $c_1, c_2, \ldots, c_n \leftarrow \text{Commitment}(\text{rpk}, m_1, m_2, \ldots, m_n, \text{osk}; \text{params})$, $A_\sigma \leftarrow \text{Request}(\sigma; \text{rsk}, \text{params})$, $D_\sigma \leftarrow \text{Response}(A_\sigma, \text{osk}; \text{params})$, or $\text{params} \leftarrow \text{ParamGen}(1^\kappa)$, $(\text{rpk}, \text{rsk}) \leftarrow \text{KeyGen}($params$)$, $(\text{opk}, \text{osk}) \leftarrow \text{KeyGen}($params$)$, $A_\sigma \leftarrow \text{Request}(\sigma; \text{rsk}, \text{params})$, $c_1, c_2, \ldots, c_n, D_\sigma \leftarrow \text{Response}(A_\sigma, \text{rpk}, m_1, m_2, \ldots, m_n, \text{osk}, \text{params})$, then

- The receiver can extract the correct message.
 $$\Pr(m_\sigma \leftarrow \text{Extract}(D_\sigma, \text{rsk}, \text{params})) = 1.$$

- If the receiver makes less than $k + 1$ requests, then the sender cannot obtain any information about the receiver’s choice.
 $$\Pr(\perp \leftarrow \text{Reveal}(A_{\sigma_1}, A_{\sigma_2}, \ldots, A_{\sigma_\delta}; \text{rpk}; \text{params}|\delta \leq k)) = 1.$$

- If the receiver makes more than k requests, then the sender can trace the previous choice of the receiver.
 $$\Pr(\sigma_1, \sigma_2, \ldots, \sigma_\delta \leftarrow \text{Reveal}(A_{\sigma_1}, A_{\sigma_2}, \ldots, A_{\sigma_\delta}; \text{rpk}; \text{params}|\delta > k)) = 1.$$

8.3 Security Model

In this section, we revise the half-simulation model proposed in [NP05] to evaluate the security of the proposed OTRRP scheme. Besides the sender and receiver’s privacy, we define a new security property named retrievability to capture the new feature of OTRRP. In the half-simulation model, the security of the sender and receiver is considered separately. Assume the sender S holds a set of messages $\{m_1, m_2, \ldots, m_n\}$ and the receiver possesses a set of choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ such that $\sigma_i \in \{1, 2, \ldots, n\}$ for $1 \leq i \leq k$. A secure OTRRP scheme should meet the following security requirements:

1. **Receiver’s Privacy**:
 - If R makes less than $k + 1$ requests, then S cannot obtain any information about R’s choice.
 - For any two different choice sets $\mathcal{C} = \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ and \mathcal{C}', the transcripts $\mathcal{A} = \{A_{\sigma_1}, A_{\sigma_2}, \ldots, A_{\sigma_k}\}$ and $\mathcal{A}' = \{A'_{\sigma_1}, A'_{\sigma_2}, \ldots, A'_{\sigma_k}\}$ received by S corresponding to $\mathcal{M} = \{m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}\}$ and $\mathcal{M}' = \{m'_{\sigma_1}, m'_{\sigma_2}, \ldots, m'_{\sigma_k}\}$ are
indistinguishable if the received messages $\mathcal{M} = \{m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}\}$ and $\mathcal{M}' = \{m'_{\sigma_1}, m'_{\sigma_2}, \ldots, m'_{\sigma_k}\}$ are identically distributed.

2. Sender’s Privacy:

- R cannot obtain any information on m_i, $i \notin \{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ for $1 \leq i \leq n$.

- In the half-simulation model, the security of R is defined by the real-world/ideal-world paradigm. In the real world, R and S execute the protocol. In the ideal world, the protocol is implemented with the help of a trusted third party (TTP). S sends all the messages m_1, m_2, \ldots, m_n to the TTP. While R sends his choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ adaptively to the TTP. If $\{\sigma_1, \sigma_2, \ldots, \sigma_k\} \in \{1, 2, \ldots, n\}$ the TTP sends messages $\{m_{\sigma_1}, m_{\sigma_2}, \ldots, m_{\sigma_k}\}$ to the receiver. An OTRRP scheme is said to provide the privacy of the sender if for any receiver R in real world, there exists an probabilistic polynomial-time (PPT) R' in the ideal world such that the output of R and R' are indistinguishable.

3. Retrievability:

If a dishonest receiver R makes $k + 1$ choices $\{\sigma_1, \sigma_2, \ldots, \sigma_k, \sigma_{k+1}\}$ from S, suppose $A = \{A_{\sigma_1}, A_{\sigma_2}, \ldots, A_{\sigma_k}, A_{\sigma_{k+1}}\}$ is the transcript set of the $k+1$ choices, then S is able to trace R’s choices through an efficient PPT algorithm $Reveal$.

8.4 Our First Scheme and Security Analysis

Construction overview

In this section, we present one oblivious transfer scheme that can achieve all the desirable features. To be more specific, in our system, each receiver is associated with a retrievable key pair. During each execution of the OT protocol, the public retrievable key is used to hide the choice of the receiver. Meanwhile, the receiver has to create a share of the secret retrievable key using Shamir’s Secret Sharing scheme and then include the share in the transaction. This is achieved through an efficient Non-interactive Proof of Knowledge which allows the prover to check that a correct share is indeed sent by the receiver. If the receiver performs more than the allowed transactions, then the sender can retrieve the receiver’s secret key and use it to recover the choices the receiver has made in all the transactions. In order to better understand the proposed scheme, we first introduce some notations used in the construction.
8.4.1 The First Proposed OTRRP Scheme

The proposed scheme consists of a tuple of PPT algorithms as follows.

1. **Setup:** Let \(G_q \) denote a subgroup of \(\mathbb{Z}_p \) with prime order \(q \) and \(g, h_1, h_2, \ldots, h_n \) be generators of \(G_q \), where \(p = 2q+1 \) is also prime. Choose two collision resistant hash functions \(H, H_1 \) such that \(H : \mathbb{N} \rightarrow \mathbb{Z}_q^* \) and \(H_1 : G_q \rightarrow G_q \). The system parameters \(\text{params} = (G_q, p, q, g, h_1, h_2, \ldots, h_n, H, H_1) \).

2. **KeyGen:** The receiver \(R \) chooses a random number \(s \in \mathbb{Z}_q^* \) and generates a retrievable key pair \((\text{rpk}, \text{rsk}) = (g^s, s)\). \(R \) chooses \(k \) random numbers \(s_1, s_2, \ldots, s_k \) and computes \(S_1 = g^{s_1}, S_2 = g^{s_2}, \ldots, S_k = g^{s_k} \). \(S \) chooses a random number \(z \in \mathbb{R} \mathbb{Z}_q^* \) and generates a one-time key pair \((\text{opk}, \text{osk}) = (g^z, z)\). \(R \) publishes \(\text{rpk} \) and \(S_1, S_2, \ldots, S_k \) and \(S \) publishes \(\text{opk} \).

3. **Commitment Phase:** \(S \) computes the ciphertext of \(m_1, m_2, \ldots, m_n \) as \(c_i = H_1(\text{rpk} \cdot h_i^{H(i)}z^i) \cdot m_i, \ 1 \leq i \leq n \), \(S \) sends \(c_1, c_2, \ldots, c_n \) to \(R \).

4. **Request:** In the \(i \)-th round,
 - \(R \) chooses \(r_i \in \mathbb{R} \mathbb{Z}_q^* \), and computes \(B_i = g^{r_i}, B_i' = h_i^{r_i} \) and \(A_i = (g^{r_i})s(h_i^{r_i})^{H(\alpha_i)} \), where \(\alpha_i \in \mathbb{R} \{1, 2, \ldots, n\} \) is the receiver’s choice and \(f(B_i) = s + s_1B_i + \ldots + s_kB_i^k \).
 - \(R \) sends \((B_i, B_i', f(B_i), A_i) \) to \(S \), and simultaneously does the following proof of knowledge. \(\text{PoK}\{\{H(\alpha_i), s) : A_i = B_i^*B_i^{H(\alpha_i)} \land \text{rpk} = g^s\} \).

5. **Response:** \(S \) first verifies \(B_i \), the secret share \(f(B_i) \) and the \(\text{PoK} \) by checking:
 - \(S \) checks whether \(B_i \) appears in previous session.
 - \(g^{f(B_i)} \equiv \text{rpk} \cdot S_1^{B_1} \cdot S_2^{B_2} \ldots \cdot S_k^{B_k} \). If this equation holds,
 - \(S \) verifies \(\text{PoK}\{\{H(\alpha_i), s) : A_i = B_i^*B_i^{H(\alpha_i)} \land \text{rpk} = g^s\} \).

If either of the verification fails, \(S \) aborts; otherwise, \(S \) stores \((B_i, B_i', f(B_i), A_i) \) and \(S \) generates \(D_i = A_i^z \) and sends \(D_i \) to \(R \).
6. **Extract**: Upon receiving D_i from S, R computes $K_{a_i} = D_i^{\perp}$ and extracts the intended message $m_{a_i} = c_{a_i}/H_1(K_{a_i})$.

7. **Reveal**: Once R and S execute the OT for $k + 1$ times, S obtains $k + 1$ shares of the secret. S is able to recover s from secret sharing. Once s is calculated, for the previous commitments $A_i = B_i^{s}B_i^{H(a_i)}$, given B_i, B_i' for $1 \leq i \leq k$. S is able to retrieve a_i for $1 \leq i \leq k$.

The proof of knowledge $PoK\{(H(a_i), s) : A_i = B_i^sB_i^{H(a_i)} \land rpk = g^s\}$ can be implemented as follows:

1. R randomly chooses two random numbers $t_1, t_2 \in \mathbb{Z}_p$, computes $T_1 = B_i^{t_1}B_i^{t_2}$, $T_2 = g^{t_1}, c = H(f(B_i), B_i, B_i', T_1, T_2)$, $v_1 = t_1 - cs$ and $v_2 = t_2 - cH(a_i)$. R sends v_1, v_2, T_1, T_2 to S.

2. S accepts if both $A_i^cB_i^{v_1}B_i^{v_2} = T_1$ and $rpk^c g^{v_1} = T_2$ hold.

8.4.2 Security Analysis

Theorem 8.1. The proposed OTRRP scheme is correct.

Proof. The correctness checks of the proposed scheme are as follows:

1. **Correctness of PoK:** If R is honest, then R has knowledge of $H(a_i)$ and s. R computes $v_1 = t_1 - cs$ and $v_2 = t_2 - cH(a_i)$. S can verify correctly that:

 $$A_i^cB_i^{v_1}B_i^{v_2} = B_i^sB_i^{H(a_i)}cB_i^{t_1-cs}B_i^{t_2-cH(a_i)} = B_i^{t_1}B_i^{t_2} = T_1,$$

 and

 $$rpk^c g^{v_1} = g^{sc g^{t_1-cs}} = g^{t_1} = T_2.$$

2. **Correctness of extracting the message**:

 $$m_{a_i} = \frac{c_{a_i}}{H_1(K_{a_i})} = \frac{m_{a_i} H_1(rpk \cdot h_{a_i}^{H(a_i)})}{H_1((g^sz h_{a_i}^{H(a_i)})^{\frac{1}{r_i}})} = \frac{m_{a_i} H_1(g^sz h_{a_i}^{H(a_i)})}{H_1(g^sz h_{a_i}^{H(a_i)})} = m_{a_i}$$

Theorem 8.2. The proposed OTRRP scheme provides receiver’s privacy for honest receivers.

Proof. Suppose an honest receiver runs the OT protocol with the sender for k times. The sender could obtain k pairs of transcripts $\{(A_1, B_1, B'_1), (A_2, B_2, B'_2), \ldots, (A_k, B_k, B'_k)\}$ such that $A_1 = (g^{t_1})^s(h_{a_1}^{r_1})^{H(a_1)}$, $A_2 = (g^{t_2})^s(h_{a_2}^{r_2})^{H(a_2)}$, \ldots, $A_k = (g^{t_k})^s(h_{a_k}^{r_k})^{H(a_k)}$. The sender could not know the intended message m_{a_i} of A_i and B_i. Therefore, the proposed OTRRP scheme provides receiver’s privacy for honest receivers.
transcripts A to decide the masked value equals g. Proof. The security proof is performed using random oracle. Suppose the simulator B chooses a new random $r_k \in \mathbb{Z}_q^*$ to the service provider as long as the DDH problem is hard in G_q, thus for any two transcripts A_j and A_i such that $1 \leq i \neq j \leq k$ from the user, they are computationally indistinguishable to the service provider as long as the DDH problem is hard in G_q.

Claim 1. The proposed encryption scheme is semantic secure.

Theorem 8.3. The proposed OTRRP scheme provides sender’s privacy.

Proof. Suppose an honest receiver runs the OT protocol with the sender k times. For any probabilistic polynomial-time malicious receiver \hat{R} in the real-world model, we are able to construct a probabilistic polynomial-time malicious receiver \hat{R}^* in the ideal model such that the outputs of \hat{R} and \hat{R}^* are indistinguishable.

Briefly, the ideal-world cheating receiver \hat{R}^* can extract α from the proof of knowledge. This enables him to obtain the message m_α form the TTP. \hat{R}^* simulates the honest sender S in the real-world and interacts with \hat{R} as follows:

1. S sends m_1, m_2, \ldots, m_n to the trusted third party TTP.
2. \hat{R}^* sends $c^*_1, c^*_2, \ldots, c^*_n$ to TTP such that $c^*_i \in_R G_q$ for $i = 1, 2, \ldots, n$.
3. \hat{R}^* monitors the outputs $A_{\alpha_1}, A_{\alpha_2}, \ldots, A_{\alpha_k}$ of \hat{R}. \hat{R}^* chooses $A^*_{\alpha_1}, A^*_{\alpha_2}, \ldots, A^*_{\alpha_k} \in_R G_q$.
4. After \hat{R} runs Request protocol, if the verification of PoK fails, \hat{R}^* sends a value $\alpha_i \notin \{1, 2, \ldots, n\}$ to TTP.
Theorem 8.4. The proposed OTRRP provides retrievable privacy for the receiver.

Proof. After running the protocol $k + 1$ times with the receiver, the sender obtains $k + 1$ shares of the retrievable private key s with respect to the unknown integers s_1, s_2, \ldots, s_k such that

$$f(B_i) = s + s_1B_i + s_2B_i^2 + \ldots + s_kB_i^k, 1 \leq i \leq k + 1.$$

The corresponding linear equations in a matrix form are as follows:

$$
\begin{pmatrix}
1 & B_1 & B_1^2 & \cdots & B_1^k \\
1 & B_2 & B_2^2 & \cdots & B_2^k \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & B_{k+1} & B_{k+1}^2 & \cdots & B_{k+1}^k
\end{pmatrix}
\times
\begin{pmatrix}
s \\
s_1 \\
\vdots \\
s_k
\end{pmatrix}
=
\begin{pmatrix}
f(B_1) \\
f(B_2) \\
\vdots \\
f(B_{k+1})
\end{pmatrix}
$$

As we can see the coefficient matrix is a Vandermonde matrix or a non-singular matrix. The determinant of such a matrix is not equal to zero. Thus the equations have a unique solution to s, s_1, s_2, \ldots, s_k.

Once the sender obtains the value of the retrievable private key rsk. For previous commitments on receiver’s choice $A_i = B_i^{rsk}B_i^H(\alpha_i)$ for $1 \leq i \leq k$. Since S has store the values of B_i and B_i' in the i-th round. Thus, the sender could trace the receiver choice $\alpha_i = j$ in the i-th round by checking that $A_i = B_i^{rsk}B_i^H(\alpha_i) = B_i^{rsk}B_i^H(j)$ for $1 \leq j \leq n$.

8.5 Our Second Scheme and Security Analysis

In this section, we propose another oblivious transfer scheme with retrievable receiver’s privacy which we will use together with a blind signature scheme to construct our second e-coupon systems in next chapter.
8.5.1 The Second Proposed OTRRP Scheme

The proposed oblivious transfer scheme consists a tuple of PPT algorithms as follows:

1. **Setup**: On input a security parameter $\kappa \in \mathbb{N}$, a trusted third party generates the system parameters $\text{params} = (G_q, g, h, p, q, H)$, where G_q is the subgroup of \mathbb{Z}_p with prime order q and $p = 2q + 1$ is also prime, g, h are generators of G_q. $H : \{0,1\}^* \rightarrow G_q$ is a collision resistant hash function.

2. **KeyGen**: A user U chooses a random number $x \in \mathbb{Z}_q^*$ and sets the key pair $(rpk, rsk) = (g^x, x)$. U chooses k random numbers $s_1, s_2, \ldots, s_k \in \mathbb{R} \mathbb{Z}_q$ and computes $S_1 = g^{s_1}, S_2 = g^{s_2}, \ldots, S_k = g^{s_k}$. U publishes rpk and S_1, S_2, \ldots, S_k. The service provider S randomly chooses $y \in \mathbb{Z}_q^*$ and sets the public key as $pk = g^y$.

3. **Request**: In the i-th round,
 - R chooses $r_i \in \mathbb{R} \mathbb{Z}_q^*$, and computes $B_i = g^{r_i}$ and $A_i = B_i^x h^{\alpha_i}$ where α_i is its choice, and $f(B_i) = x + s_1 B_i + \ldots s_k B_i^k$.
 - R sends $(B_i, f(B_i), A_i)$ to S, and simultaneously does the following PoK: $\text{PoK}\{(\alpha_i, s) : A_i = B_i^x h^{\alpha_i} \land rpk = g^x\}$.

4. **Response**: S first verifies B_i, the secret share $f(B_i)$ and the PoK by checking:
 - B_i has not been used in a previous session;
 - $g^{f(B_i)} = rpk \cdot S_1^{B_i} \cdot S_2^{B_i^2} \cdot \ldots \cdot S_k^{B_i^k}$; and
 - $\text{PoK}\{(\alpha, x) : A_i = B_i^x h^{\alpha_i} \land rpk = g^x\}$ is valid.

If any verification fails, S aborts; otherwise, S stores $(B_i, f(B_i), A_i)$ and
 - generates $c_i = (\langle rpk \rangle^{k_i}, m_i(A_i/h^i)^{k_i})$ where $k_i \in \mathbb{R} \mathbb{Z}_q$, for $1 \leq i \leq n$; and
 - sends (c_1, c_2, \ldots, c_n) to R.

Then R can obtain $m_{\alpha_i} = m_{\alpha_i}(A_i/h^{\alpha_i})^{k_{\alpha_i}}/(\langle rpk \rangle^{k_{\alpha_i}})^{r_i}$.

5. **Reveal**: Once R and S execute the OT for $k + 1$ times, S obtains $k + 1$ shares of the secret x. Then S is able to calculate x, and retrieve h^{α_i} from $A_i = B_i^x h^{\alpha_i}$.

The proof of knowledge $\text{PoK}\{(\alpha_i, x) : A_i = B_i^x h^{\alpha_i} \land rpk = g^x\}$ can be done non-interactively as follows:
1. R randomly chooses two random numbers $t_1, t_2 \in \mathbb{Z}_p$, computes $T_1 = B^{t_1}t_2, T_2 = g^{t_1}, c_i = H(f(B_i), B_i, T_1, T_2), s'_1 = t_1 - c'_ix$ and $s'_2 = t_2 - c'_i\alpha_i$. R sends s'_1, s'_2, T_1, T_2 to S.

2. S accepts if both $A_i c'_i, B_i s'_1 i h s'_2 = T_1$ and $rpk c'_i g s'_1 = T_2$ hold.

8.5.2 Security Analysis

We analyze the security of the proposed oblivious transfer scheme under half-simulation model [NP05].

Theorem 8.5. The proposed OTRRP scheme is correct.

Proof. The correctness checks of the proposed scheme are as follows.

1. **Correctness of PoK:**

 \[
 A_i c'_i B_i x h s'_2 = B_2^{c'_i} h^{\alpha_i c'_i} B_1^{1 - c'_x} h^{t_2 - c'_i \alpha_i} = B_1^{t_1} h = T_1.
 \]

 and

 \[
 rpk c'_i g s'_1 = g^{c'_x} g^{t_2 - c'_x} = g = T_2.
 \]

2. **Correctness of Extracting the Message:**

 \[
 m_{\alpha_i}(A_{\alpha_i}/h^{\alpha_i})^{k_{\alpha_i}}/(rpk)^{k_{\alpha_i}, r_{\alpha_i}}
 \]

 \[
 = (B_1^{c'_i} h^{\alpha_i}/h^{\alpha_i})^{k_{\alpha_i}}/(rpk)^{k_{\alpha_i}, r_{\alpha_i}}
 \]

 \[
 = m_{\alpha_i} g^{x_{\alpha_i} k_{\alpha_i}}/g^{x_{\alpha_i} k_{\alpha_i}}
 \]

 \[
 = m_{\alpha_i}
 \]

Theorem 8.6. The proposed OTRRP scheme provides receiver’s privacy for honest receivers.

Proof. Suppose an honest receiver runs the OT protocol with the sender for k times. The sender could obtain k pairs of transcripts $\{(A_1, B_1, f(B_1)), (A_2, B_2, f(B_2)), \ldots, (A_k, B_k, f(B_k))\}$ such that $A_1 = g^{\alpha_1 x} h^{\alpha_1}, A_2 = g^{\alpha_2 x} h^{\alpha_2}, \ldots, A_k = g^{\alpha_k x} h^{\alpha_k}$, where $\alpha_1, \alpha_2, \ldots, \alpha_k \in \{1, 2, \ldots, n\}$ are the user’s choice and $r_1, r_2, \ldots, r_k \in R \mathbb{Z}_q^*$. Given $B_j = g^{r_j}, rpk = g^x$ for some random $r_j \in \mathbb{Z}_q^*$, it is computation-infeasible to decide the masked value equals $g^{r_j x}$ or a random value Z in G_q, thus for any two transcripts A_j and A_i such that $1 \leq i \neq j \leq k$ from the user, they are computationally indistinguishable to the service provider as long as the DDH problem is hard in G_q.
Claim 2. The proposed encryption scheme is semantic secure.

Proof. As can be seen in the proposed OT scheme, the ciphertext is
\[c_i = ((rpk)^{k_i}, m_i, (A_i/h^i)^{k_i}) \]
where \(k_i \in \mathbb{Z}_q \) for \(1 \leq i \leq n \). The proposed encryption scheme in our OT scheme is a variant of ElGamal encryption. Therefore the encryption scheme is semantic secure.

Theorem 8.7. The proposed OTRRP scheme provides sender’s privacy.

Proof. Suppose an honest receiver runs the OT protocol with the sender \(k \) times. For any probabilistic polynomial-time malicious receiver \(\hat{R} \) in the real-world model, we are able to construct a probabilistic polynomial-time malicious receiver \(\hat{R}^* \) in the ideal model such that the outputs of \(\hat{R} \) and \(\hat{R}^* \) are indistinguishable.

Briefly, the ideal-world cheating receiver \(\hat{R}^* \) can extract \(\alpha \) from the proof of knowledge. This enables him to obtain the message \(m_\alpha \) from the TTP. \(\hat{R}^* \) simulates the honest sender \(S \) in the real-world and interacts with \(\hat{R} \) as follows:

1. \(S \) sends \(m_1, m_2, \ldots, m_n \) to the trusted third party \(TTP \).
2. \(\hat{R}^* \) sends \(c_1^*, c_2^*, \ldots, c_n^* \) to \(TTP \) such that \(c_i^* \in R G_q \) for \(i = 1, 2, \ldots, n \).
3. \(\hat{R}^* \) monitors the outputs \(A_{a_1}, A_{a_2}, \ldots, A_{a_k} \) of \(\hat{R} \). \(\hat{R}^* \) chooses \(A_{a_1}^*, A_{a_2}^*, \ldots, A_{a_k}^* \in R G_q \).
4. After \(\hat{R} \) runs Request protocol, if the verification of PoK fails, \(\hat{R}^* \) sends a value \(\alpha_i \notin \{1, 2, \ldots, n\} \) to \(TTP \).
5. If the verification of PoK successes, \(\hat{R}^* \) extracts \(\hat{R} \)'s choice \(\alpha_i \) from the PoK and gets back \(c_{\alpha_1}^*, c_{\alpha_2}^*, \ldots, c_{\alpha_k}^* \) such that \(c_{\alpha_i}^* \in R G_q \) for \(i = 1, 2, \ldots, k \).
6. If \(\hat{R} \) can compute \(g^{x_{\alpha_i}} \), \(\hat{R}^* \) sends \(\alpha_i \) to \(TTP \). \(TTP \) returns \(c_{\alpha_i}^* \).
7. \(\hat{R}^* \) outputs \((A_{a_1}^*, A_{a_2}^*, \ldots, A_{a_k}^*; c_1^*, c_2^*, \ldots, c_n^*) \).

We can see from Theorem 8.6 and Claim 2 that \(\{A_{a_1}, A_{a_2}, \ldots, A_{a_k}\} \) and \(\{c_1, c_2, \ldots, c_n\} \) are indistinguishable from random elements in \(G_q \). Therefore, no distinguishers can distinguish the outputs of \(\hat{R} \) and \(\hat{R}' \) with a non-negligible probability.

Theorem 8.8. The proposed OTRRP provides retrievable privacy for the receiver.

Proof. The security proof is similar to that in Theorem 8.4. Thus we omit it.
8.6 Summary

In this chapter, we proposed two novel oblivious transfer schemes that can achieve retrievable receiver’s privacy without the help of a trusted third party. The misbehaving receivers’ choices could be traced while the honest receivers’ privacy is unconditionally protected. We also proved the security of the schemes under the proposed security model.
Chapter 9

Two E-Coupon Systems with Strong User Privacy

In this chapter, we propose another two e-coupon system allowing multiple use of an e-coupon. To be specific, the propose e-coupon systems can achieve the following properties:

1. The coupon issuer (or service provider) can trace the identity of a dishonest user while the identity privacy (or anonymity) of an honest user is still well protected.

2. An honest user’s redemption privacy (i.e., the items chosen when redeeming an e-coupon) is well protected from the service provider.

3. If a dishonest user redeems an e-coupon for more than the pre-determined number of times, then the user will lose the redemption privacy (i.e., all the choices the user has made in the previous redemptions can be revealed).

Our first e-coupon system achieves the first two properties without the involvement of any trusted third party. Then we use a novel oblivious transfer scheme proposed in the previous chapter to construct the second e-coupon system that can achieve all the properties given above. Compared with the e-coupon system in Chapter 7, two major improvements have been made in the proposed e-coupon systems. First, the proposed e-coupon systems allow an honest user to redeem a valid coupon for a fix number of times (more than twice). Besides, the adoption of an OTRRP scheme in the second scheme makes it possible to trace the choices of the dishonest users in addition to their identities. We define the formal security models for these new security requirements, and show that our new e-coupon systems are proven secure in the proposed models.

9.1 Introduction

We have constructed a new e-coupon system with new properties in Chapter 7. The proposed e-coupon system can ensure desired security properties such as unforgeability, anonymity, double-redemption detection and user privacy (redemption privacy). However, it only permits an honest user to spend a valid coupon twice, which might limit its usage in practice. In addition, another interesting feature
that has not been considered in our previous e-coupon system is traceability against user’s choice (redemption privacy). That is, if a user is detected as a malicious user, then all the previous choices related to his coupon could be traced by the coupon issuer.

Though some existing e-coupon systems [CES+05, Ngu06b, CGH06] have already supported multiple use of an electronic coupon, the new properties of redemption privacy and traceability have not been considered in these systems. Chen et al.’s e-coupon system [CES+05] allows a user to redeem a coupon for a predefined number of times. Their system can provide unlinkability among different redemptions performed by a user using the same multi-coupon. Meanwhile, the number of remaining redemptions can also be hidden from the coupon issuer. To reduce the cost for issuing and redeeming coupons, Nguyen [Ngu06b] later presented another more efficient e-coupon system which has constant communication and computation costs. Nguyen’s e-coupon system provides another interesting feature named revocability, which allows the coupon issuer to revoke (i.e., terminate) an e-coupon. In an independent work [CGH06], Canard et al. also proposed another multi-coupon system with a different feature: a coupon holder can transfer some values in his/her multi-coupon to another user.

Our Contributions. In this chapter, we propose two new e-coupon systems, which are based on a blind signature scheme and a new OT scheme. Our first e-coupon system can achieve unforgeability, anonymity for honest users, k-time redemption detection, traceability against dishonest users’ identities, and user privacy. The user privacy in our first e-coupon system is achieved by employing an normal OT scheme in the redemption phase.

In order to trace the items redeemed by a dishonest user, we apply a novel OT scheme proposed in last chapter which has the following properties:

1. The privacy (i.e., choices) of an honest receiver is well protected against the sender.

2. The receiver cannot gain any information other than his choice during the OT protocol.

3. If the receiver runs the OT protocol for more than the pre-determined number of times, then all the previous choices made by the receiver can be revealed by the sender.

As we will show later, our OT scheme incurs very little computation and communication overhead in order to achieve the third (new) property. We then use the new OT scheme to construct the second e-coupon system which allows both the identity and the choices of a dishonest user to be revealed.
Organization of This Chapter. The rest of this chapter is organized as follows. We provide some definitions in Section 9.2. The formal security models for our e-coupon systems are presented in Section 9.3. We then present our first construction with security analysis in Section 9.4. The second construction and its security analysis are presented in Section 9.5. We compare our e-coupon systems with existing systems and analyze the efficiency of them in section 9.6 and this chapter is concluded in Section 9.7.

9.2 Formal Definition

We present the formal definition of our e-coupon system in this section. An e-coupon system involves two participants, namely, a user \(U \) and a coupon issuer \(S \), which is also a service provider. An e-coupon system consists of a tuple of non-interactive or interactive probabilistic polynomial-time (PPT) algorithms as follows.

1. **Setup**: On input of a security parameter \(\kappa \), a trusted third party runs the setup algorithm and generates the system parameters.

 \[
 \text{params} \leftarrow \text{Setup}(1^\kappa).
 \]

2. **KeyGen**: On input of the public parameter \(\text{params} \), the key generation algorithm outputs a key pair for a user or a service provider. It is worth noticing that we assume a public key infrastructure (PKI) binding the public key to user’s identity in our system.

 \[
 (pk_{U,sk_U}), (pk_S, sk_S) \leftarrow \text{KeyGen}(\text{params}).
 \]

3. **Issue**: The issue algorithm is an interactive protocol between the service provider \(S \) and a user \(U \), the output is an e-coupon for the user.

 \[
 C \leftarrow \text{Issue}(S(pk_S, sk_S, \text{params}), U(pk_U, \text{params})).
 \]

4. **Redeem**: The redeem algorithm is an interactive protocol between a user \(U \) and the service provider \(S \), taking as input an e-coupon \(C \), the public key \(pk_S \) of the service provider and the public parameters \(\text{params} \). Suppose \((m_1, m_2, \ldots, m_n)\) is a set of goods or services possessed by \(S \), where \(n \) is the number of services decided by \(S \). The output of this algorithm for the service provider is accept or reject.

 \[
 'accept' \text{ or } 'reject' \leftarrow \text{Redeem}_S(pk_S, \text{params}, C).
 \]
The output of this algorithm for the user is the service \(m_i \) of his choice or a failure symbol.

\[\bot \text{ or } m_i \leftarrow \text{Redeem}_U(pk_S, \text{params}, C). \]

5. **Reveal**: The reveal algorithm is executed by the service provider, taking a sequence of the challenge-response pairs and the corresponding redeemed coupon \(\{(c_1, R_1), (c_2, R_2), \ldots, (c_{k+1}, R_{k+1}); C\} \) and the public parameters \(\text{params} \) as input, and outputs the identity \(ID_U \) of a user or a failure symbol ‘\(\bot \).

\[ID_U \text{ or } \bot \leftarrow \text{Reveal}((c_1, R_1), (c_2, R_2), \ldots, (c_{k+1}, R_{k+1}); C, \text{params}). \]

If the e-coupon system also supports traceability of items against dishonest users, then the reveal algorithm returns \((ID_U, \{m_1, m_2, \ldots, m_{k+1}\}) \) or ‘\(\bot \).

Correctness: We require that for any security parameter \(\kappa \in \mathbb{N} \), if \(\text{params} \leftarrow \text{Setup}(1^\kappa) \), \((pk_U, sk_U) \leftarrow \text{KeyGen}(\text{params}) \), \((pk_S, sk_S) \leftarrow \text{KeyGen}(\text{params}) \), \(C \leftarrow \text{Issue}(S(pk_S, sk_S), U(pk_U, \text{params})) \), then

- \(\Pr(\text{accept} \leftarrow \text{Redeem}_S(pk_S, \text{params}, C, (c, R))) = 1 \)

and

\[\Pr(\text{item}_i \leftarrow \text{Redeem}_U(pk_S, \text{params}, C, (c, R))) = 1. \]

- If the user redeems the coupon for at most \(k \) times, then the service provider cannot obtain any private information about the user.

\[\Pr(\bot \leftarrow \text{Reveal}((c_1, R_1), (c_2, R_2), \ldots, (c_\delta, R_\delta); C; \text{params}) | \delta \leq k) = 1. \]

- If the user redeems the coupon more than \(k \) times, then the service provider can trace the identity (and all the choices, if supported) of the user.

\[\Pr(ID_U \leftarrow \text{Reveal}((c_1, R_1), (c_2, R_2), \ldots, (c_\delta, R_\delta); C; \text{params}) | k < \delta) = 1 \]

or

\[\Pr((ID_U, \{m_1, m_2, \ldots, m_\delta\}) \leftarrow \text{Reveal}((c_1, R_1), (c_2, R_2), \ldots, (c_\delta, R_\delta); C; \text{params}) | k < \delta) = 1. \]
CHAPTER 9. TWO NOVEL E-COUPON SYSTEMS

9.3 Security Model

We formalize four security requirements for our e-coupon system, that are unforgeability, user anonymity, k-time redemption detection, and user privacy.

Unforgeability

The adversarial game of unforgeability is same as that in Section 7.3, thus we omit it. Define the advantage of an adversary \(\mathcal{A} \) in winning the unforgeability game as

\[
\text{Adv}_{\mathcal{A}}^{unf}(\kappa) = \Pr[\mathcal{A} \text{ wins the game}]
\]

Definition 9.1. An e-coupon system is said to be unforgeable if \(\text{Adv}_{\mathcal{A}}^{unf}(\kappa) \) is negligible for any PPT adversary \(\mathcal{A} \).

Anonymity

The adversarial game regarding anonymity is same as that in Section 7.3, thus we omit it. Define the advantage of an adversary \(\mathcal{A} \) in winning the game as

\[
\text{Adv}_{\mathcal{A}}^{Ano}(\kappa) = \Pr[\mathcal{A} \text{ wins the game}] - \frac{1}{2}
\]

Definition 9.2. An e-coupon system is said to provide anonymity if \(\text{Adv}_{\mathcal{A}}^{Ano}(\kappa) \) is negligible for any PPT adversary \(\mathcal{A} \).

k-time Redemption Detection

Detection of over spending is a major concern for any digital coupon system. An e-coupon system is said to provide k-time redemption detection if one user cannot redeem one coupon more than pre-determined number of times with the same service provider without being caught. The adversarial game for k-time redemption detection is defined as follows:

1. **Setup:** The simulator \(\mathcal{B} \) runs algorithm \textbf{Setup} to generate public parameters \(\text{params} \).

2. **KeyGen:** The simulator \(\mathcal{B} \) generates two key pairs \((pk_U, sk_U)\) and \((pk_S, sk_S)\), \(\mathcal{B} \) sends \((pk_U, sk_U)\) and \(pk_S \) to \(\mathcal{A} \).

3. **Issue queries:** Assume \(\mathcal{A} \) makes \(q_d \) coupon issuing queries. \(S \) runs the \textbf{Issue} algorithm with \(\mathcal{A} \) to issue a sequence of coupons \(\{C_1, C_2, \ldots, C_{q_d}\} \) for \(\mathcal{A} \).
4. **Redeem queries**: \mathcal{A} runs the redeem protocol with S with any coupon of his choice.

5. **Challenge**: \mathcal{A} outputs a sequence $(C^*, (c_1^*, R_1^*), (c_2^*, R_2^*), \ldots, (c_\delta^*, R_\delta^*))$ such that $k < \delta$. We say \mathcal{A} wins the game if

- Redeem$_S(pk_S, params, C^*, (c_i^*, R_i^*)) = 1$ for $1 \leq i \leq \delta$.
- $\bot \leftarrow$ Reveal$((c_1^*, R_1^*), (c_2^*, R_2^*), \ldots, (c_\delta^*, R_\delta^*), C^*, params)$

Define the advantage of \mathcal{A} in winning the adversarial game above as

$$\text{Adv}^{krd}_A(\kappa) = \Pr[\mathcal{A} \text{ wins the game}]$$

Definition 9.3. An e-coupon system is said to provide k-time redemption detection if $\text{Adv}^{krd}_A(\kappa)$ is negligible for any PPT adversary \mathcal{A}.

User privacy

The adversarial game regarding user privacy is same as that in Section 7.3, thus we omit it. Define the success probability of the adversary \mathcal{A} in breaking users’ privacy as

$$\text{Adv}^{up}_A(\kappa) = \Pr[\mathcal{A} \text{ wins the game}] - \frac{1}{n}$$

Definition 9.4. An e-coupon system is said to provide user privacy if $\text{Adv}^{up}_A(\kappa)$ is negligible for any PPT adversary \mathcal{A}.

9.4 Our First Privacy-preserving E-coupon System

We apply a blind signature scheme that involves a challenge-response verification to ensure that if a coupon is redeemed more than pre-determined number of times then the identity of the misbehaving user could be traced. We combine the proposed blind signature with the oblivious transfer scheme in [CT05] to construct the first e-coupon system with user privacy.

9.4.1 PPE-COUPON-I

We denote in our system the service provider by S and a user by U. Denote $\{m_1, m_2, \ldots, m_n\}$ the set of items that can be redeemed. A user with a valid coupon is allowed to make $k < n$ choices from them. The detailed description of our e-coupon system is as follows.
CHAPTER 9. TWO NOVEL E-COUPON SYSTEMS

1. **Setup:** On input of a security parameter $\kappa \in \mathbb{N}$, a trusted party generates the system parameters $\text{params} = (G_q, g, p, q, H_1, H_2)$, where G_q is the subgroup of \mathbb{Z}_p with prime order q and g is a generator of G_q, where $p = 2q + 1$ is also prime. $H_1 : \{0,1\}^* \rightarrow G_q$ and $H_2 : G_q \rightarrow \{0,1\}^\kappa$ are two collision-resistant hash functions.

2. **KeyGen:** A user \mathcal{U} chooses a random number $x \in \mathbb{Z}_q^*$ and sets the key pair $(pk_\mathcal{U}, sk_\mathcal{U})$. \mathcal{U} publishes $pk_\mathcal{U} = g^x$ and keeps $sk_\mathcal{U} = x$ secret. The service provider \mathcal{S} randomly chooses $y \in \mathbb{Z}_q^*$ and sets the public key as $pk_\mathcal{S} = Y = g^y$.

3. **Issue:** The issue protocol is performed by interactive communications though a secure channel between the service provider \mathcal{S} and a user \mathcal{U}. The result of the issue protocol is that \mathcal{S} generates a valid coupon for a user \mathcal{U}. We assume there exists a PKI binding the public keys to the identities of users in the system.

 - On receiving a request from \mathcal{U}, \mathcal{S} chooses a random number $k' \in_R \mathbb{Z}_q^*$ and computes $\delta_1 \leftarrow pk_\mathcal{U}^{k'}$ and $\delta_2 \leftarrow g^{k'}$ sends (δ_1, δ_2) to \mathcal{U}.

 - After receiving (δ_1, δ_2) from \mathcal{S}, \mathcal{U} checks whether $\delta_1 = \delta_2^{sk_\mathcal{U}}$. If the verification fails, \mathcal{U} stops; otherwise, \mathcal{U} chooses $x_1 \in \mathbb{Z}_q^*$ and computes $\alpha \leftarrow (g^x)^{x_1}$, $\beta \leftarrow (g^y)^{x_1}$, $\lambda = g^{x_1}$ and $m \leftarrow H_1(\alpha, \beta, \lambda)$. \mathcal{U} chooses two different random number $a, b \in \mathbb{Z}_q^*$ and computes $r \leftarrow m_1^{a^{b}} \delta_1^{a^{b}}$ and $m' \leftarrow \frac{aH_1(m,r)}{b}$, \mathcal{U} sends m' to \mathcal{S}.

 - \mathcal{S} computes $s' = m'y + k'$ and sends s' to \mathcal{U}.

 - \mathcal{U} verifies if $g^{s'} \equiv Y^{m'} \delta_2^2 \mod p$, if the equation holds, \mathcal{U} removes the blind factor b by calculating $s = \frac{s'h}{a} + a$; otherwise, abort. \mathcal{U} stores $(\alpha, \beta, \lambda, r, s)$ and the secret x_1 in a safe place (i.e. tamper proof memory).

4. **Redeem:** At the start of the redeem phase, \mathcal{U} chooses k random numbers $s_1, s_2, \ldots, s_k \in_R \mathbb{Z}_q$ and computes $S_1 = g^{s_1}, S_2 = g^{s_2}, \ldots, S_k = g^{s_k}$. \mathcal{U} sends S_1, S_2, \ldots, S_k to the service provider \mathcal{S}. \mathcal{S} stores these commitments S_1, S_2, \ldots, S_k. In the i-th round, the redeem protocol is performed as follows:

 - After receiving a redeem request from the user, \mathcal{S} generates a challenge $c_i = H_1(ID_\mathcal{S} | | \text{Date} | | \text{Time})$ and sends c_i to \mathcal{U}, where $ID_\mathcal{S}$ is the identity of the service provider.

 - After receiving the challenge c_i from the service provider and \mathcal{U} computes $R_i = x_1 + s_1c_1 + s_2c_2^2 + \ldots + s_kc_k^k$ and choose $\sigma_i \in \{1, 2, \ldots, n\}$, where σ_i is the index of the service, and a random number $b_i \in \mathbb{Z}_q^*$, \mathcal{U} computes $w_{\sigma_i} = H_1(\sigma_i)$ and $A_{\sigma_i} = w_{\sigma_i}g^{b_i}$. \mathcal{U} sends $(c_i, R_i, \alpha, \beta, \lambda, r, s)$ and A_{σ_i} to \mathcal{S}.

• S checks if

 $- (c_i, R_i)$ has appeared in a previous session.

 $- H_1(\alpha, \beta, \lambda) \overset{?}{=} \beta^{-s}^{-s} H_1(H_1(\alpha, \beta, \lambda), r)_Y$.

 $- g^{R_i} \overset{?}{=} \lambda S_1^c S_2^c \ldots S_k^c$.

If either of the check fails, abort; Otherwise, S computes $D_{\sigma_i} = A_i^y$, $w_j = H_1(i)$ and $c_j = m_i \oplus H_2(w_i^y)$, $i = 1, 2, \ldots, n$. S sends D_{σ_i} and c_1, c_2, \ldots, c_n to U.

• U computes $K_{\sigma_i} = D_{\sigma_i}/Y_{b_i}$ and recover $m_{\sigma_i} = c_{\sigma_i} \oplus H_2(K_{\sigma_i})$.

5. **Reveal**: Assume the coupon $C = (\alpha, \beta, \lambda, r, s)$ is redeemed by a dishonest user U' for $k' + 1$ times, S could obtain $k' + 1$ shares about the secret x_1. Once S obtains the value of x_1, S could trace the identity of U' by making an exhaustive search in his database to determine the public key of the misbehaving user such that $pk_{x_1}^{x_1} = \beta$.

6. **Correctness**: The correctness check for validity of the coupon is as follows:

$$
\beta^{-s} \alpha H_1(H_1(\alpha, \beta, \lambda), r)_Y
= (pk_{x_1}^{x_1})^{-s} (g^{x_1 y_1})^Y
= (pk_{x_1}^{x_1})^{-H_1(H_1(\alpha, \beta, \lambda), r)Y - \frac{k_b}{a}} (pk_{x_1}^{x_1})^{H_1(H_1(\alpha, \beta, \lambda), r)Y}
= m (pk_{x_1}^{x_1})^{\frac{k_b}{a}}
= m
= H_1(\alpha, \beta, \lambda)
$$

The correctness check for a user U to recover the correct message is as follows:

$$
c_{\sigma_i} \oplus H_2(K_{\sigma_i})
= m_{\sigma_i} \oplus H_2(w_{\sigma_i}^y) \oplus H_2(A_{\sigma_i}^y/Y_{b_i})
= m_{\sigma_i} \oplus H_2(w_{\sigma_i}^y) \oplus H_2((w_{\sigma_i} g_{b_i}^y)/Y_{b_i})
= m_{\sigma_i} \oplus H_2((w_{\sigma_i})^y)
= m_{\sigma_i}
$$

9.4.2 Security Analysis

In this section, we prove the security of PPE-COUPON-I under the proposed security models.

Theorem 9.1. The proposed PPE-COUPON-I system is unforgeable.
Proof. The security analysis is similar as that in theorem 7.1, thus we omit it.

Theorem 9.2. The proposed PPE-COUPON-I system provides anonymity.

Proof. The security analysis is similar as that in 7.2, thus we omit it.

Theorem 9.3. The proposed PPE-COUPON-I system provides k-time redemption detection.

Proof. According to our e-coupon system, if \(U \) has redeemed a coupon \((\alpha, \beta, \lambda, r, s)\) for \(k + 1 \) times, then \(B \) obtains \(k + 1 \) different challenge-response pairs \((c_1, R_1), (c_2, R_2), \ldots, (c_{k+1}, R_{k+1})\) where

\[
R_i = x_1 + s_1 c_i + s_2 c_i^2 + \ldots + s_k c_i^k, 1 \leq i \leq k + 1.
\]

We can represent these linear equations in the matrix form as follows:

\[
egin{pmatrix}
1 & c_1 & c_1^2 & \cdots & c_1^k \\
1 & c_2 & c_2^2 & \cdots & c_2^k \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & c_{k+1} & c_{k+1}^2 & \cdots & c_{k+1}^k
\end{pmatrix}
\begin{pmatrix}
x_1 \\
s_1 \\
\vdots \\
s_k
\end{pmatrix}
=
\begin{pmatrix}
R_1 \\
R_2 \\
\vdots \\
R_{k+1}
\end{pmatrix}
\]

Since the challenges \(c_1, c_2, \ldots, c_{k+1} \) are random integers, the coefficient matrix is a Vandermonde matrix. Thus the equations have a unique solution for \(x_1, s_1, s_2, \ldots, s_k \). Once \(x_1 \) is calculated by \(S \), \(S \) could trace the identity of the misbehaving user \(U' \) by making an exhaustive search in his database to determine the public key of the misbehaving user such that \(pk_{U'}^{x_1} = \beta \).

It remains to show that the public key revealed in such a method is the correct public key of the misbehaving user. The proof is straightforward. Since the coupon issuer has specified the public key \(pk_{U'} \) in the pair \((\delta_1, \delta_2)\). Only the user \(U' \) possessing the corresponding private key \(sk_{U'} \) can obtain a valid coupon (A cheating user without knowledge of \(sk_{U'} \) can not compute the component \(\alpha \) of a coupon). In this way, it can be ensured that a public key revealed through this method is indeed the public key of the misbehaving user.

Theorem 9.4. The proposed PPE-COUPON-I system provides unconditional user privacy.

Proof. The security analysis regarding user privacy is similar as that in theorem 7.4, thus we omit it.
9.5 Our Second Privacy-Preserving E-coupon System

We construct the second e-coupon system that can achieve traceability against a misbehaving user’s choices in addition to all the security properties mentioned above. Since the user’s privacy relies on oblivious transfer in our construction, in order to reveal a misbehaving user’s privacy, we apply one of the new OT schemes with retrievable receiver’s privacy proposed in last chapter.

9.5.1 PP-ECOUPON-II

We combine the proposed blind signature and oblivious transfer schemes to construct the second e-coupon system that can achieve all the desirable properties.

1. Setup: On input a security parameter \(\kappa \in \mathbb{N} \), a trusted third party generate the system parameters \(\text{paras} = (G_q, g, h, p, q, H_1) \), where \(G_q \) is the subgroup of \(\mathbb{Z}_p \) with prime order \(q \) and \(p = 2q + 1 \) is also prime, \(g, h \) are generators of \(G_q \), and \(H_1 : \{0, 1\}^* \rightarrow G_q \) is a collision-resistant hash function.

2. KeyGen: On input a security parameter \(\kappa \in \mathbb{N} \) and the public parameter \(\text{params} \), randomly choose \(x,y \in \mathbb{Z}^*_q \) and calculate \(g^x, g^y \) and output the private and public key pairs \((sk_U = x, pk_U = g^x) \) and \((sk_S = y, pk_S = Y = g^y) \) for the user and service provider respectively.

3. Issue: The issue protocol is performed through interactive communications between the service provider \(S \) and a user \(U \). The result of the issue protocol is that \(S \) generates a valid coupon for a user \(U \).

- On receiving a request from \(U \), \(S \) chooses a random number \(k' \in \mathbb{Z}^*_q \) and computes \(\delta_1 \leftarrow pk_U^{k'} \) and \(\delta_2 \leftarrow g^{k'} \) sends \((\delta_1, \delta_2) \) to \(U \).
- After receiving \((\delta_1, \delta_2) \) from \(S \), \(U \) checks whether \(\delta_1 = \delta_2^{sk_U} \). If the verification fails, \(U \) stops; otherwise, \(U \) chooses \(x_1 \in \mathbb{Z}^*_p \) and computes \(\alpha \leftarrow (g^{xy})^{x_1}, \beta \leftarrow (g^x)^{x_1} \) and \(\lambda = g^{x_1}, m \leftarrow H_1(\alpha, \beta, \lambda) \). \(U \) chooses two different random number \(a, b \) and computes \(r \leftarrow m\beta^a\delta_1^{\frac{b}{x_1}} \) and \(m' \leftarrow \frac{aH_1(m, r)}{b} \), \(U \) sends \(m' \) to \(S \).
- \(S \) computes the signature \(s' = m'y + k' \) on the blinded message \(m' \) and sends \(s' \) to \(U \).
- \(U \) verifies if \(g^{s'} \equiv Y^{m'} \delta_2 \mod p \), if the equation holds, \(U \) removes the blind factor \(b \) by calculating \(s = \frac{b}{a} + a \). Otherwise, abort. \(U \) stores \((\alpha, \beta, \lambda, r, s) \) and \(x_1 \) in a safe place (i.e. tamper proof memory);
4. **Redeem**: U chooses k random number $s_1, s_2, \ldots, s_k \in R \mathbb{G}_q$ and computes $S_1 = g^{s_1}, S_2 = g^{s_2}, \ldots, S_k = g^{s_k}$. U sends S_1, S_2, \ldots, S_k to S at the start of the redeem phase. S stores these commitments S_1, S_2, \ldots, S_k. In the i-th round, the redeem protocol is performed as follows:

- After receiving a redeem request from the user, S generates a challenge $c_i = H_1(ID_S||Date||Time)$ and sends c_i to U.
- After receiving c_i, U computes $R_i = x_1 + s_1c_i + s_2c_i^2 + \ldots + s_kc_i^k$ and chooses $\alpha_i \in \{1, 2, \ldots, n\}$ and a random number $r_{\alpha_i} \in \mathbb{Z}_q^*$, U computes $A_i = g^{r_{\alpha_i}}$ and $A_i = B_i^{x_1}h^{\alpha_i}$. U sends $(c_i, R_i, \alpha, \beta, \lambda, r)$ and (A_i, B_i) to S.
- S checks if
 - R_i has not been used in a previous session.
 - $H_1(\alpha, \beta, \lambda) = \beta^{-s_\alpha}H_1(H_1(\alpha, \beta, \lambda), r)r$.
 - $g^{R_i} = \lambda S_1^{c_i} S_2^{c_i^2} \ldots S_k^{c_i^k}$.
 - The proof of knowledge $PoK\{(x_1, \alpha_i) : A_i = B_i^{x_1}h^{\alpha_i} \land \lambda = g^{x_1}\}$ is valid.

If any of the checks fails, aborts; otherwise, S chooses n different random number $k_1, k_2, \ldots, k_n \in R \mathbb{Z}_q^*$ and computes $c_i = (c_{i,1}, c_{i,2}) = (\lambda^{k_i}, m_i \cdot (A_i/h^i)^{k_i})$. S sends c_1, c_2, \ldots, c_n to U.
- U extracts the intended message $m_{\alpha_i} = c_{\alpha_i,2}/c_{\alpha_i,1}$.

5. **Reveal**: Assume the coupon $C = (\alpha, \beta, \lambda, r, s)$ is redeemed by a dishonest user U' for $k + 1$ times, the S could obtain $k + 1$ shares about the secret x_1. Once S obtains the value of x_1,

- S could trace the identity of U' by making an exhaustive search in his database to determine the public key of the misbehaving user such that $pk_{U'}^{x_1} = \beta$.
- For all the previous transcripts $B_1^{x_1}h^{\alpha_1}, B_2^{x_1}h^{\alpha_2}, \ldots, B_k^{x_1}h^{\alpha_k}$, given B_1, B_2, \ldots, B_k, then all the previous choice $\alpha_1, \alpha_2, \ldots, \alpha_k$ could also be decided.

6. **Correctness**:

- The correctness check for validity of the coupon is same as that in PPE-COUPON-I.
- The correctness check for a user U to extract the correct message is as
follows:

\[m_{\alpha_i} = c_{\alpha_i,2}/c_{\alpha_i,1} = m_{\alpha_i}(A_i/h^{\alpha_i})^{k_{a_i}}/(\lambda^{k_{a_i}})^{r_{a_i}} = m_{\alpha_i}(B_i^{x_1}h^{\alpha_i}/h^{\alpha_i})^{k_{a_i}}/(g^{x_1k_{a_i}})^{r_{a_i}} = m_{\alpha_i}g^{r_{a_i}x_1k_{a_i}}/g^{x_1k_{a_i}r_{a_i}} = m_{\alpha_i} \]

9.5.2 Security Analysis

Theorem 9.5. The proposed PPE-COUPON-II system is unforgeable.

Proof. The security proof for unforgeability is same as the security proof for PP-COUPON-I.

Theorem 9.6. The proposed PPE-COUPON-II system provides anonymity.

Proof. The security proof for anonymity is same as the security proof for PP-COUPON-I.

Theorem 9.7. The proposed PPE-COUPON-II system provides k-time redemption detection.

Proof. The security proof for anonymity is same as the security proof for PP-COUPON-I.

Theorem 9.8. The proposed PPE-COUPON-II system provides user privacy for honest users.

Proof. For the transcripts received by the service provider \(A_1 = (g^{\alpha_1})^{x_1}h^{\alpha_2}, A_2 = (g^{\alpha_2})^{x_1}h^{\alpha_3}, \ldots, A_k = (g^{\alpha_k})^{x_1}h^{\alpha_k} \), where \(\alpha_1, \alpha_2, \ldots, \alpha_k \in \{1, 2, \ldots, n\} \) are the user’s choice and \(r_1, r_2, \ldots, r_k \in R Z_q^* \). Given \(B_j = g^{\lambda_j}, \lambda = g^{x_1} \) for some random \(r_j \in Z_q^* \), it is computation-infeasible to decide the masked value \(A_j \) equals \(g^{r_jx_1} \) or a random value \(Z \) in \(G_q \), thus for any two transcripts \(A_j \) and \(A_i \) such that \(1 \leq i \neq j \leq k \) from the user, they are computationally indistinguishable to the service provider as long as the DDH problem is hard in \(G_q \).

Theorem 9.9. The proposed e-coupon system provides retrievable user privacy for dishonest users.
Proof. As we have demonstrated in previous security proof, once a malicious user \(U' \) tried to redeem a coupon for \(k + 1 \) times, then the service provider can reconstruct the secret \(x_1 \). For all the previous choice of \(U' \), given the transcripts \(A_j = B_j^{x_1} h^{\alpha_j} \) and \(B_j = g^{r_j} \) where \(1 \leq j \leq k \), once \(x_1 \) be revealed, each \(\alpha_j \) could also be decided. In order to increase the computation speed, the service provider could pre-compute the set \(\{h^1, h^2, \ldots, h^n\} \).

9.6 Efficiency Analysis

We compare the proposed e-coupon systems with existing e-coupon systems in the literature in terms of computation efficiency and security properties.

Comparison in terms of Security Properties

We can see in Table 9.1 that our e-coupon systems provide traceability and privacy of purchase, which have not been considered in previous e-coupons systems. However, our e-coupon systems only achieves anonymity, which is weaker than unlinkability in \([\text{CES}^+05, \text{Ngu06b}]\). We leave the construction of e-coupon systems with both traceability and unlinkability as future work. In order to save space, in Table 9.1, the abbreviations ‘DM’ denotes ‘Detection of Misuse’ while ‘PP’ is short for ‘Privacy of Purchase’.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Security Properties</th>
<th>Unforgeability</th>
<th>DM</th>
<th>Anonymity</th>
<th>PP</th>
<th>Traceability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1 ([\text{CES}^+05])</td>
<td>√</td>
<td>√</td>
<td></td>
<td>strong</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Scheme 2 ([\text{Ngu06b}])</td>
<td>√</td>
<td>√</td>
<td></td>
<td>strong</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>PPE-COUPON-I</td>
<td>√</td>
<td>√</td>
<td>weak</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>PPE-COUPON-II</td>
<td>√</td>
<td>√</td>
<td>weak</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

Efficiency Analysis

We present a detailed analysis regarding the computation efficiency of our e-coupon systems and present the comparison with existing e-coupons systems in Table 9.2. In the table, \(E \) represents an exponentiation operation, \(P \) refers to a pairing operation; \(n \) is the number of goods or services from the service provider and \(k \) is the number of choices that could be made by a user. From the efficiency analysis, we can see that the computation cost of our e-coupon systems is quite low. Specially, our second e-coupon system achieves traceability against misbehaving users’ choices without introducing significant computation cost.
Table 9.2: Comparison with Other E-Coupon Systems in terms of Computation Cost

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Computation cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KeyGen</td>
</tr>
<tr>
<td></td>
<td>U</td>
</tr>
<tr>
<td>Scheme 1 [CES⁺05]</td>
<td>0</td>
</tr>
<tr>
<td>Scheme 2 [Ngu06b]</td>
<td>0</td>
</tr>
<tr>
<td>PPE-COUPON-I</td>
<td>((k + 1)E)</td>
</tr>
<tr>
<td>PPE-COUPON-II</td>
<td>((k + 1)E)</td>
</tr>
</tbody>
</table>

9.7 Summary

In this chapter, we formalized the notion of user privacy for e-coupon systems. We proposed two practical e-coupon systems that can maintain anonymity and user privacy for honest users, while the identity (and also the choices in the second system) of a misbehaving user could be traced by the service provider. We achieved these without requiring any third party in the system. In addition, we formalized the security models for our e-coupon systems and proved that our new e-coupon systems are proven secure under the proposed security models.
Chapter 10

Conclusion

In this chapter, we present the summary of our contributions in this thesis and some potential directions of future work.

10.1 Summary of Contributions

In this thesis, we investigate several cryptographic primitives including proxy signature, oblivious transfer and e-coupon system, in which the users only have restricted capabilities. The contributions of this thesis can be summarized in the following six aspects: k-time proxy signature that only allows a proxy signer to generate a constant number proxy signatures in the name of an original signer; attribute-based signing right delegation benefiting from both attribute-based signature and proxy signature; we identify a practical attack that has been neglected in one type of delegation-by-warrant proxy signature scheme and propose one generic solution to thwart the attack; a practical e-coupon system is proposed which enables the coupon issuer to trace the identities of misbehaving users without involvement of a trusted third party; an OT scheme with retrievable receiver’s privacy; and another multiple-use e-coupon system which is based on our OT scheme and allows the coupon issuer to trace both the identities and choices of dishonest users. The specific contributions in each aspect listed above are summarized as follows.

In chapter 4, we propose a k-time proxy signature scheme, in which a legitimate proxy signer is only able to issue a pre-determined number of signature in the name of an original signer. The proposed scheme performs better than existing proxy signature schemes in prevent proxy signers from misusing their delegated signing ability. Since in conventional delegation-by-warrant proxy signature schemes, the only trick used in restricting the proxy signers’ signing ability is that the original signers specify the valid time period in the warrants. We define the formal definition and security model for such a type of proxy signature. We analyse the security of the proposed k time proxy signature scheme and prove that it is secure under the proposed security model.

In chapter 5, we construct an attribute-based proxy signature scheme, in which the original signers are legitimate users with a valid set of attributes delegate the signing right to the proxy signers with normal public keys. The proposed ABPS scheme benefits from both proxy signature and attribute-based signature. By verifying an attribute-based proxy signature, a public verifier can be convinced that the
proxy signature is generated by the proxy signer who has obtained the delegation from the original signer whose attributes satisfy a pre-claimed predicate. However, the verifier cannot tell from the signature who is the original signer. Thus, the proposed scheme ensures an enhanced privacy for the original signer. We provide the formal definition and adversarial models for attribute-based proxy signature and prove the security of the proposed scheme using random oracle model.

In chapter 6, we present a practical attack that has been neglected in one type of delegation-by-warrant proxy signature schemes. By launching the attack to an identity-based proxy signature scheme [WMS+07], We demonstrate that a malicious adversary can successfully forge a proxy signature without being noticed by the original signer or proxy signer. We revise the existing security model to capture this attack. Then one solution is proposed to resist this attack. We prove the security of the revised identity-based proxy signature scheme under the revised security model. Though we work on one concrete scheme, the weakness in some other proxy signature schemes can also be fixed by applying the same method.

In chapter 7, we construct an efficient privacy-preserving e-coupon system. Besides all the desirable properties (unforgeability, anonymity and double redemption detection), we formalize a new property of e-coupon system named user privacy (privacy of purchase). Another new feature of the proposed e-coupon system is achieving traceability against dishonest users without involvement of trusted third party in the tracing phase. We prove the security of the e-coupon system under the proposed security model and show that the proposed e-coupon system meets all the secure requirements.

In chapter 8, we propose two novel oblivious transfer schemes, which can be applied in privacy-sensitive systems to trace the dishonest users’ choices, while the privacy of honest users is well protected. We revise the half-simulation model [NP05] to evaluate the security of the proposed OT schemes. Detailed security analysis is presented to show that the proposed OT schemes are secure under the proposed security model.

In chapter 9, two novel privacy-preserving e-coupon systems supporting multiple use of an electronic coupon are proposed. We use our new oblivious transfer scheme with retrievable receiver’s privacy together with a new blind signature in designing the e-coupon systems. Besides the basic desirable security properties, the first e-coupon system allows the coupon issuer to trace the identities of misbehaving users while the second e-coupon system permits the coupon issuer to reveal both the identities and choices of the dishonest users. In both e-coupon systems, the privacy of honest users is well protected. We prove the security of proposed e-coupon systems under the defined security model and compare them with existing e-coupon systems. The efficiency analysis shows the proposed e-coupon systems provide comparable
10.2 Future Work

Though all the proposed schemes have achieved the pre-claimed goals, our work in this thesis could be further extended in the following aspects.

1. The security of the proposed k-time proxy signature and attribute-based proxy signature schemes are based on random oracles. Though random oracle has been proved to be practical in [BR93], there is still controversy in using random oracle in cryptographic constructions. In fact, there have been some artificial cryptographic schemes proven secure using random oracles but are trivially insecure when any real function is substituted for the random oracle [CGH98, GR04]. Thus, it is of independent interesting to design k-time proxy signature and attribute-based signature schemes without random oracles to ensure an enhanced security.

2. We propose an OTRRP scheme and analyse its security under the half-simulation model [NP05]. In half-simulation model, the security of the sender and receiver is considered separately. An OT scheme proven secure under the half-simulation model achieves simulatable security for sender privacy and computationally indistinguishability for receiver privacy. Recently, the full-simulation model achieving simulatable security for both the receiver and sender has been proposed in [CNS07, KN09]. We leave the work of constructing OTRRP schemes that could be proven secure under full-simulation model as one of our future work.

3. We can see in the comparison between our proposed e-coupon systems with existing e-coupon systems [CES+05, Ngu06b] that our e-coupon systems provide traceability and privacy of purchase, which have not been considered in previous e-coupons systems. However, our e-coupon systems only achieves anonymity, which is weaker than unlinkability in [CES+05, Ngu06b]. It has been an open problem to achieve traceability and unlinkability simultaneously in one scheme. We leave the construction of e-coupon systems with both traceability and unlinkability as another future work.
Bibliography

[CES+05] Liquin Chen, Matthias Enzmann, Ahmad-Reza Sadeghi, Markus Schneider, and Michael Steiner. A privacy-protecting coupon system. In

[XZF05] Jing Xu, Zhenfeng Zhang, and Dengguo Feng. Id-based proxy signature using bilinear pairings. In Parallel and Distributed Processing and

