Adiposity and attained height in adolescents: A longitudinal analysis from the LabMed Physical Activity Study

Rafaela Rosario
University of Minho

Cesar A. Agostinis-Sobrinho
University of Porto

Luis Carlos Oliveira Lopes
University of Porto, luisl@uow.edu.au

Pedro Moreira
University of Porto

Patricia Padrao
University of Porto

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/sspapers

Part of the Education Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Rosario, Rafaela; Agostinis-Sobrinho, Cesar A.; Oliveira Lopes, Luis Carlos; Moreira, Pedro; Padrao, Patricia; Oliveira, Andre; Moreira, Carla; Povoas, Susana; Mota, Jorge; and Santos, Rute, "Adiposity and attained height in adolescents: A longitudinal analysis from the LabMed Physical Activity Study" (2019).
Faculty of Social Sciences - Papers. 4579.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Adiposity and attained height in adolescents: A longitudinal analysis from the LabMed Physical Activity Study

Abstract
To investigate the associations between adiposity and attained height over a 2-year period in healthy adolescents. One thousand and seventeen adolescents aged 12-18 years participated in this cohort study; 893 (87.8%) were reevaluated 1 year later (T2) and 734 (72.2%) subjects 2 years later (T3). Body fat and anthropometry were measured according to standardized procedures. Socioeconomic status, pubertal stage and lifestyles determinants were gathered and used as confounders. Prospective associations between adiposity and height were examined using generalized linear models. Greater adiposity at T1 was significantly associated with a lower attained height over time, when adjusting for confounders, which varied between 0.03 and 1 cm in T2 and 0.1 and 1 cm in T3. Excess of adiposity in early adolescence may exert an effect on attained height in late adolescence. This study supports future lifestyles intervention studies aiming at preventing overweight and obesity and improving attained height.

Disciplines
Education | Social and Behavioral Sciences

Publication Details

Authors
Rafaela Rosario, Cesar A. Agostinis-Sobrinho, Luis Carlos Oliveira Lopes, Pedro Moreira, Patricia Padrao, Andre Oliveira, Carla Moreira, Susana Povoas, Jorge Mota, and Rute Santos

This journal article is available at Research Online: https://ro.uow.edu.au/sspapers/4579
Adiposity and attained height in adolescents: a longitudinal analysis from the LabMed Physical Activity Study

https://doi.org/10.1515/jpem-2019-0193
Received April 24, 2019; accepted August 2, 2019; previously published online September 2, 2019

Abstract

Background: To investigate the associations between adiposity and attained height over a 2-year period in healthy adolescents.

Methods: One thousand and seventeen adolescents aged 12–18 years participated in this cohort study; 893 (87.8%) were reevaluated 1 year later (T2) and 734 (72.2%) subjects 2 years later (T3). Body fat and anthropometry were measured according to standardized procedures. Socioeconomic status, pubertal stage and lifestyles determinants were gathered and used as confounders. Prospective associations between adiposity and height were examined using generalized linear models.

Results: Greater adiposity at T1 was significantly associated with a lower attained height over time, when adjusting for confounders, which varied between 0.03 and 1 cm in T2 and 0.1 and 1 cm in T3.

Conclusions: Excess of adiposity in early adolescence may exert an effect on attained height in late adolescence. This study supports future lifestyles intervention studies aiming at preventing overweight and obesity and improving attained height.

Introduction

Obesity is a serious health condition for youth and adults and is increasing all worldwide [1]. The etiology of obesity is multifactorial and is beyond the simple equation of energy intake and expenditure [2]. Other factors, such as the pre-natal or neonatal conditions [3, 4], as well as rapid growth [5, 6] might contribute to obesity. On the other hand, children with obesity tend to be taller than their normal-weight peers [7], because they have an acceleration of height velocity and a bone age advancement [8–10]. Additionally, several hormones such as insulin-like growth factor 1 and their binding proteins [11], insulin [12] are elevated in children with obesity and have been suggested as having a role in linear growth. Despite the initial acceleration of bone age and linear growth, children with obesity have an earlier pubertal development [13–15], which might be associated with a loss of growth spurt during adolescence [5] and leading to a tendency of attaining similar height as normal weight adolescents [16, 17].
Most of the studies that reported associations between weight status and height gain in childhood and adolescence used body mass index (BMI) to represent weight status [7, 16–19]. However, there is documented evidence that this index has limitations in the estimation of body fat levels [20]. Additionally, some of these studies had samples of obese subjects [17, 18], are cross-sectional [7] and are from low/middle income countries [19]. The present study further explores the prospective associations between different measures of adiposity besides BMI and attained height during adolescence. Therefore, we investigated the associations between adiposity and attained height over a 2-year period, in healthy adolescents.

Materials and methods

Study design and participants

The present study was derived from a school-based prospective research, developed in the North Region of Portugal, named the Longitudinal Analysis of Biomarkers and Environmental Determinants of Physical Activity (LabMed Physical Activity Study). The study aimed to analyze the independent and combined associations of dietary intake and fitness levels on adolescents’ cardiometabolic risk over a 3-year period. The full description of the research is reported elsewhere [21, 22].

Baseline (T1) data collection occurred in the fall of 2011 with 1017 adolescents, belonging to five urban schools and aged 14.6 (±1.8) years. Of those 893 were reevaluated (T2, with 87.8% of the sample) and 734 subjects 2 years later (T3, with 72.2% of the sample). A power calculation for the LabMed Study was based on the exposure of combined healthy diet and physical activity pattern with a prevalence of 16% [23]. A sample of 754 would provide an 80% power to detect 15% difference between exposed and unexposed at 5% significance. Taking into account an expected dropout rate of about 20% at each time-point, the sample size was increased to 1086.

Ethical and legal requirements

The adolescents and their parents or guardians filled in the written informed consent, in agreement with the World Medical Association’s Helsinki Declaration for Human Studies [24]. The Portuguese Data Protection Authority (#11124/34/2011), the Portuguese Ministry of Science and Education (0246200001/2011) and the Faculty of Sport, University of Porto, approved the study. We did not have exclusion criteria during the longitudinal data collection, in order to avoid discriminations. Nonetheless, we considered only apparently healthy adolescents in the present analysis, those without any medical diagnoses of physical or mental impairment.

Assessments

Anthropometrics: Anthropometric assessment followed standardized procedures [25]. Percentage (%) of body fat was measured with bioimpedance (Tanita Inner Scan BC 532, Tokyo, Japan). Adolescents had an overnight fasting of at least 10 h, stood on the scale with light clothes and with no shoes. Weight was measured with the same digital scale, to the nearest 0.10 kg. A portable stadiometer (Seca 213, Hamburg, Germany) was used for height measurement, with the adolescent in the Frankfort plane to the nearest 0.1 cm and with no shoes. BMI was computed as weight (kg)/height (m)².

Waist circumference (WC) was measured with the adolescent in a standing position, to the nearest 0.1 cm. An inextensible tape was used, midway between the lower rib margin and the anterior superior iliac spine, at the end of a normal expiration [25].

A skinfold caliper was used to measure triceps and subscapular skinfolds, with a constant pressure of 10 g/mm² (Harpenden Skinfold Caliper Model HSB-BI, West Sussex, UK) according to standard procedures. The participant stood comfortably, with the upper extremities relaxed at the sides of the body. The subscapular was measured in the inferior angle of the scapula and the triceps skinfold on the half distance between the acromion and the olecranon. Both of the measures were performed twice on the non-dominant side of the body and in non-consecutive moments; the mean value was recorded to the nearest 0.1 mm.

Other measurements

Socioeconomic status was assessed with the family affluence scale, a tool that was developed specifically to measure children and adolescents socioeconomic status in the context of the Health Behaviour in School-aged Children Study [26].

Adolescents self-rated their pubertal development, according to their secondary sex characteristics, breasts in females, genitals in males and pubic hair in both sexes. The stages ranged from stage I (prepubertal) to V (postpubertal) [27].

Adherence to the Mediterranean Diet Quality Index for children and adolescents (Kidmed) was used to assess the degree of adherence to a Mediterranean diet [28]. Participants filled the 16-questions index, which sustain the principles of Mediterranean dietary patterns as well as those that undermine it, according to standardize criteria [28]. The final sum of the index ranged from 0 to 12 and the participants were classified into three levels: (i) ≥8, optimal Mediterranean diet; (ii) 4–7, improvement needed to adjust intake to Mediterranean patterns; (iii) ≤3, very low diet quality.

Cardiorespiratory fitness was measured with the 20-m Shuttle Run Test (20 m SRT) and maximal oxygen consumption (VO₂max) was calculated [29] at T1 and T3. A detailed description of this test protocol can be seen elsewhere [30].

Statistical analysis

Descriptive statistics are presented as means and standard deviations (SDs) and percentages according to the type of variables. Differences between and within subjects over time were tested using repeated measures analysis of variance (ANOVA) for normally distributed variables, chi-squared for percentages and the Friedman test for ordinal and non-normally distributed variables.

Associations between adiposity, i.e. % of body fat, BMI, WC triceps and subscapular skinfolds at T1 (predictors) and attained height at T1, T2 and T3 (dependent variables) were performed using generalized linear models. The models were further adjusted for baseline
measures of age, socioeconomic status, pubertal stage, cardiorespiratory fitness, adherence to a Mediterranean diet categories and height. As there was significant interaction between sex and anthropometry, the results were further stratified by sex. Drop out analysis showed that adolescents lost to follow-up are not significantly different from those that were retained throughout the study.

The data analysis was performed using SPSS, version 23.0 (SPSS Inc., Chicago, IL, USA), with a 0.05 level of significance considered.

Results

Table 1 reports the characteristics of the sample at T1, T2 and T3. At baseline, 1017 adolescents (53.4% boys) participated in the study; at T2 893 adolescents (53.1% boys); and at T3 734 adolescents (52.5% boys). There were significant differences regarding pubertal development (breasts/genitalia) in girls and boys, at baseline. Of the boys 45.6% and 51% of girls were in Tanner stage 4 for breasts and genitalia, respectively, whereas 52.9% of boys and 49.7% of girls were in Tanner stage 4 for pubic hair. No differences were found in T2 and T3.

Anthropometric variables were significantly different over time within subjects and between sexes. Skinfolds increased over time and were significantly higher in girls when compared to boys, whereas height and weight increased over time and were significantly higher in boys. The % of body fat was significantly higher in girls in each time of evaluation (T1, T2 and T3; please see Table 1).

Looking at cross-sectional data (T1) from Table 2, in the full adjusted model, boys with higher measures of adiposity (% body fat, BMI, WC and skinfolds) had a significantly higher height between 0.2 cm in triceps skinfolds and 2 cm associated with a higher 10% body fat. In girls there were associations between both WC and triceps and attained height. An increase of 1 cm in both measures was significantly associated with 0.1 cm higher height.

In the full-adjusted model, a 10% higher body fat at T1 was significantly associated with a lower height of 1 cm both at T2 (1 cm in boys and 0.4 cm in girls) and T3 (1 cm in boys and girls). Conversely, a 1 kg/m² higher in BMI at baseline was significantly associated with a lower height of 0.1 cm at T2 (0.2 cm in boys and 0.05 cm in girls) and 0.2 cm T3 (0.2 cm in boys and 0.1 cm in girls). Regarding WC, an increase of 1 cm at baseline was significantly associated with a lower attained height, only in boys, of 0.05 cm at T2 and 0.1 cm at T3. Similar results were found for skinfolds thickness; in boys, an increase of triceps skinfolds was associated with a significantly lower height of 0.04 cm at T2. An increase in subcapular skinfolds at baseline was associated with a significantly lower attained height of 0.04 cm in T2 (0.1 cm in boys) and 0.1 cm in T3 (0.1 cm both in boys and girls) (Table 2).

Discussion

In this prospective study, we documented that higher % body fat, BMI, WC, triceps and subcapular skinfolds thickness were associated with a decrease in attained height during adolescence, after adjusting the analysis for socio-economic status, pubertal stage, adherence to a Mediterranean diet, cardiorespiratory fitness, age and baseline measure of height. This is particularly important because anthropometry is considered a proxy-measure of biological welfare [31] and height might be a variable of interest when analyzing obesity status in adolescents. Notwithstanding, height might be to some extent genetically determined [32], attained adult height is a marker of early exposures affecting growth [33], which may include adiposity.

We know that excess in adiposity is a result of several determinants of lifestyles, such as unhealthy eating patterns, sedentary behavior and lack of physical activity [34]. In our cross-sectional data, there are positive associations between adiposity and height. It is possible that energy intake is enough not only to achieve rapid linear growth, but also to store the excess as subcutaneous fat. We are aware that, besides height and adiposity, other associations might exist between lifestyles and height, and future studies should consider them. In addition, we observe a change in the association of % body fat and triceps skinfolds with height from negative in unadjusted, to positive in the full adjusted model. There is a strong impact of the adjustment to cardiorespiratory fitness itself. This is in accordance with previous studies where fitness performance is positively associated with bone mass [35] and mediated by lean mass [36].

In T2 and T3, there is a change in the direction of the association between BMI, WC and height from positive to negative, while in T1 the association remained positive. In the present report young adolescents with higher adiposity, including BMI and WC, are taller, but in late adolescence (in T2 and T3), they have a lower attained height. In agreement with our findings, it has been reported that children with obesity have a higher growth velocity during childhood [16] and tend to have bone ages older than their chronological ages [8, 9], leading to a relatively higher height before and during early puberty. Furthermore, children with obesity have a reduced production of growth hormone, whereas the synthesis of insulin-like
Table 1: Participants characteristics.

Age, years	14.6 (1.8)	15.4 (1.8)	16.6 (1.8)	14.7 (1.9)	15.5 (1.9)	16.7 (1.9)	14.4 (1.8)	15.2 (1.7)	16.4 (1.8)
Pubertal stage (Tanner A)	3 (0.3)	-	-	2 (0.4)	-	-	1 (0.2)	-	-
2	304 (29.9)	128 (14.3)	45 (6.1)	164 (30.0)	72 (15.2)	21 (5.5)	160 (29.7)	56 (13.4)	24 (6.9)
3	489 (48.1)	515 (57.7)	376 (51.2)	249 (45.6)	262 (48)	192 (49.9)	240 (51)	253 (60.4)	184 (52.7)
4	151 (14.8)	242 (27.1)	312 (42.5)	78 (14.3)	132 (27.8)	171 (44.4)	73 (15.5)	110 (26.3)	141 (40.4)
Pubertal stage (Tanner B)	68 (6.7)	46 (8.4)	22 (4.7)	550 (54.1)	294 (53.8)	256 (54.4)	399 (39.2)	206 (37.7)	193 (41.0)
Socioeconomic status	6.3 (1.6)	6.3 (1.6)	6.4 (1.6)	6.3 (1.6)	6.3 (1.6)	6.4 (1.6)	6.3 (1.6)	6.3 (1.6)	6.4 (1.6)

Portugal 2011–2013. All variables are expressed as mean (SD) except for pubertal stage, adherence to a Mediterranean diet that are expressed as n (%). Results from ANOVA for repeated measures. (a) Significant differences over time in total sample (p < 0.05); (b) significant differences over time between sex (p < 0.05); (c) significant differences at T1 between sex (p < 0.05); (d) significant differences at T2 between sex (p < 0.05); (e) significant differences at T3 between sex (p < 0.05). ANOVA, analysis of variance; BMI, body mass index; WC, waist circumference; VO2max, maximal oxygen consumption.
Table 2: Results of generalized linear models for the association anthropometric measures at T1 and height (m) in T1, T2 and T3.

<table>
<thead>
<tr>
<th></th>
<th>T1 (n=1017)</th>
<th></th>
<th></th>
<th>T2 (n=893)</th>
<th></th>
<th></th>
<th>T3 (n=734)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% Body fat</td>
<td>−0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>−0.003</td>
<td>−0.001</td>
<td>−0.001</td>
<td>−0.004</td>
<td>−0.001</td>
</tr>
<tr>
<td></td>
<td>(−0.003;</td>
<td>(0.0003;</td>
<td>(0.001;</td>
<td>(−0.00004;</td>
<td>(−0.004;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.005;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>−0.002)</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
<td>(−0.0003)</td>
<td>(−0.0003)</td>
<td>(−0.0003)</td>
<td>(−0.0003)</td>
<td>(−0.00005)</td>
</tr>
<tr>
<td></td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>0.001)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.0001;</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(−0.001;</td>
<td>(0.001;</td>
<td>(0.002;</td>
<td>(−0.0004;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>0.0001)</td>
<td>0.004</td>
<td>0.004</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>0.0001)</td>
<td>0.003</td>
<td>0.004</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(−0.00004;</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
</tr>
<tr>
<td></td>
<td>−0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>−0.002</td>
<td>−0.0003</td>
<td>−0.0004</td>
<td>−0.0002</td>
<td>−0.0003</td>
</tr>
<tr>
<td></td>
<td>(−0.003;</td>
<td>(0.001;</td>
<td>(0.001;</td>
<td>(−0.001;</td>
<td>(−0.003;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.004;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>−0.001)</td>
<td>0.002</td>
<td>0.003</td>
<td>0.002</td>
<td>−0.001</td>
<td>−0.0009</td>
<td>−0.0009</td>
<td>−0.0009</td>
<td>−0.0009</td>
</tr>
<tr>
<td></td>
<td>0.0002</td>
<td>0.002</td>
<td>0.003</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(−0.001;</td>
<td>(0.001;</td>
<td>(0.002;</td>
<td>(−0.0004;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>0.0001)</td>
<td>0.004</td>
<td>0.004</td>
<td>0.002</td>
<td>0.001</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(−0.001;</td>
<td>(0.001;</td>
<td>(0.002;</td>
<td>(−0.0004;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
<td>(−0.001;</td>
</tr>
<tr>
<td></td>
<td>0.0001)</td>
<td>0.003</td>
<td>0.004</td>
<td>0.002</td>
<td>0.001</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0006</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(−0.00004;</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.0004)</td>
<td>(−0.00009)</td>
</tr>
</tbody>
</table>

Portugal 2011–2013. *p < 0.001. p < 0.05. Model adjusted for socioeconomic status, pubertal stage, adherence to Mediterranean diet, cardiorespiratory fitness, age and baseline measure of height. BMI, body mass index, WC, waist circumference.
growth factor 1 is normal [37, 38]. Despite the abnormality in this axis, during childhood, subjects with obesity have a normal or an accelerated growth, possibly explained by the availability of insulin, insulin-like growth factors and their binding proteins [10]. Moreover, rapid growth and rapid increase in BMI in childhood predict earlier initiation and faster tempo for pubertal trajectory classes [39], which have been associated with short adult stature [16, 40]. During adolescence, subjects with obesity experience a lower growth spurt than do thinner adolescents, having a lower attained height in late adolescence and adulthood [9, 16, 17]. In the current report, and in agreement with previous studies [7], the observed associations were independent of sexual maturation.

This study has several strengths that should be emphasized. First, its longitudinal design allowed an analysis of the associations between adiposity and height over time. Second, we included different measures of adiposity (% body fat, BMI, WC and skinfolds), emphasizing their relevance in growth and height attainment over time in adolescents. Third, the adjustment for major potential confounders including cardiorespiratory fitness, socioeconomic status, age, pubertal stage, adherence to a Mediterranean diet, which can account for part of the determinants of attained height. To the best of our knowledge, this is the first study that accounted for all of these variables in adolescence, including a valid and accurate cardiorespiratory fitness field test [30], which offers evidence about the independent impact of adiposity on attained height.

The present study also has limitations. We gathered adherence to a Mediterranean diet through the KidMed questionnaire. Although it is the most widely used instrument to score a Mediterranean diet in children and adolescents, further validations would be interesting [41]. While we adjusted for multiple potential confounders, others might exist, such as income and parents’ height. Nonetheless, we used a tool to characterize the sociodemographic profile developed for adolescents and school-based studies [26].

Despite the increasing trends of overweight and obesity all over the world [1], Western populations who are taller still have high obesity prevalence. Height is a simple indicator of health and welfare [31] and to achieve the maximum of its potential, seems to be important in preventing adiposity during adolescence.

Acknowledgments: This study was supported by the Research Centre on Physical Activity Health and Leisure (CIAFEL) of the Faculty of Sport, University of Porto and by FCT grant BD88984/2012 (J. Oliveira-Santos); The Research Centre on Physical Activity Health and Leisure (CIAFEL) is supported by UID/DTP/00617/2013 (FCT); the author C. Agostinis-Sobrinho was given Doctoral scholarship from the Brazilian government by CAPES (Coordination of Improvement of Higher Education Personnel) (Proc: 9588:13-2). R. Santos has a Discovery Early Career Research Award from the Australian Research Council (DE150101921). The authors gratefully acknowledged the participation of all adolescents and their parents, teachers and schools of the LabMed Study. They also acknowledge the cooperation of volunteer’s subjects and the Research Centre in Physical Activity, Health and Leisure (University of Porto) for the sponsoring the LabMed Study. The Research Centre on Physical Activity Health and Leisure is supported by FCT/UID/00617/2019.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

