Evolutionary modeling for streamflow forecasting with minimal datasets: a case study in the West Malian River, China

Qingwei Ni
Dalian University of Technology Dalian China

Li Wang
Shenyang University of Chemical Technology, Shenyang, China.

Renzhen Ye
Agricultural University of Huazhong

Fenglin Yang
Dalian University of Technology Dalian China

Muttucumaru Sivakumar
University of Wollongong, siva@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/engpapers

Part of the Engineering Commons

Recommended Citation
Ni, Qingwei; Wang, Li; Ye, Renzhen; Yang, Fenglin; and Sivakumar, Muttucumaru: Evolutionary modeling for streamflow forecasting with minimal datasets: a case study in the West Malian River, China 2010, 377-385.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Evolutionary Modeling for Streamflow Forecasting with Minimal Datasets: A Case Study in the West Malian River, China
Qingwei Ni,1 Li Wang,2,* Renzhen Ye,3 Fenglin Yang,1 and Muttucumaru Sivakumar4
1School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, China.
2College of Environmental & Biological Engineering, Shenyang University of Chemical Technology, Shenyang, China.
3Department of Mathematics, Agricultural University of Huazhong, Wuhan, China.
4School of Civil, Mining, and Environmental Engineering, University of Wollongong, Wollongang, New South Wales, Australia.
Received: March 1, 2009 Accepted in revised form: March 7, 2010

Abstract
A large dataset is generally needed when modeling hydrological processes. However, for developing countries such as China, datasets are often unavailable in remote areas. An attempt to apply a novel genetic programming (GP) technique was made to model the relationship between streamflow of the West Malian River and the impact of climate change in the northeastern part of China. Available annual streamflow and climatic data were used for training and testing of the GP model. Data from the years between 1982 and 2002 were used for automatic selection of the model relationship. Prediction of the model was undertaken for the period 2003–2006 and the results were compared with measured data. Predicted annual streamflow of the West Malian River agreed with measured data to an acceptable degree of accuracy even with a small amount of dataset. For comparison, a multilayer perceptron method with back propagation algorithm, a gray theory model, and a multiple linear regression model were selected to conduct the prediction with the same dataset. Results showed that the performance of GP method was generally better than other statistical methods such as multilayer perceptron, gray theory model, and multiple linear regression model. Further, the results also showed that the GP method is a useful tool for water resource management, especially in developing countries, to evaluate the potential impacts of climate change on the streamflow when large datasets are unavailable.

Key words: annual streamflow; evaporation; GP algorithm; precipitation; statistical methods; West Malian River

Introduction
Global climate is changing because of anthropogenic activities (Lošićiga et al., 2000; IPCC, 2001a, 2001b; Corfee-Morlot and Höhne, 2003). From the present time to 2050, the average global air temperature could rise by 1.2°C or more, and during this same period, in eastern and entire northern region in China, the increase in temperature could reach between 1.0°C and 2.0°C by 2050 (Yang, 1999). The direct effect of a global rise in average temperature will be the redistribution of surface water resources on the earth (Waggoner, 1990). Therefore, understanding and assessing the impact of climate change and its effect on hydrological systems is critical for sustainable water resource management. Streamflow is a fundamental component of the water cycle, and it is often related to fresh water availability for human and natural ecosystems (Makkeasorn et al., 2008).

*Corresponding author: College of Environmental & Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China. Phone: 86-24-81839602; Fax: 86-24-89389166; E-mail: wanglijohn@hotmail.com

Hence, measurement of annual streamflow, its variability due to climate change, and its prediction will provide crucial information for adaptive water resource management.

Hydrological models are useful tools that have been widely applied in investigating streamflow. Researchers have used different timescales for streamflow estimation, such as real-time prediction (Deo and Thirumalaiah, 2000), hourly prediction (García-Bartual, 2002), daily prediction (Coulibaly et al., 2000; Legesse et al., 2003; Collischonn et al., 2005), weekly prediction (Zealand et al., 1999), and monthly prediction (Castellano-Méndez et al., 2004; Amisigo et al., 2008). Generally, the mathematical models used for modeling hydrological processes require relatively long-time series of historical data (Trivedi and Singh, 2005). However, availability of large amount of data for model’s training and validation is not a problem in the developed countries as their hydrological data banks are relatively massive. On the contrary, in the developing countries, such as China, large hydrological dataset is often unavailable, especially in remote areas. Therefore, choosing a suitable approach for streamflow prediction with relatively few available datasets will be of much practical importance.
Genetic programming (GP) (Koza, 1992) is an extension of genetic algorithms, which has been considered as one of the best methods for searching, optimization, and modeling of complex natural systems (McKay, 2001; Whigham and Crapper, 2001; Kamal and Eassa, 2002; Duyvesteyn and Kaymak, 2005; Muttil and Lee, 2005; Lopes, 2007). Nath et al. (1997) and Muttil and Lee (2005) found that GP has good forecasting ability even when the amount of dataset is relatively small. Moreover, GP can capture the relationship between the inputs and the outputs automatically without the need of prior knowledge of the underlying physics.

Compared with three other popular forecasting methods, namely the multilayer perceptron (MLP), gray theory model (GM), and multiple linear regression model (MLR), a novel GP method was applied in this study to predict the annual streamflow response to the climate change in the West Malian River in the northeast China with relatively small datasets. With real coding mode, a specific and simple prediction model automatically evolved from the GP with good performance. This article is organized as follows: in the next section, a description of the study area and dataset is presented so as to allow readers to understand the background of the application. In the Genetic Programming section, the key principles of GP are outlined. In the Methods section, applications of GP, MLP, GM, and MLR for streamflow prediction are carried out. In the Results and Discussion section, the results from GP method and other methods are compared and discussed. And finally, the conclusions are drawn in the Conclusions section.

Study Area and the Datasets

The research was carried out in the West Malian River basin, which is located at the remote northern part of the Liaoning province in northeast China. The annual mean precipitation and evaporation of this region are 514 and 1933.2 mm, respectively, and the annual mean air temperature is 7.6°C. The West Malian River originates from the Keerqin desert region of Inner Mongolia and runs about 30 km southeast and finally flows east and joins the Wolonghu wetland, as shown in Fig. 1. The West Malian River is the primary source of recharge to the Wolonghu wetland. The Wolonghu wetland is the largest natural inland–wetland in the Liaoning province, and its area is covered with large biodiversity, which has to be preserved as a significant provincial natural reserve. Because of the semiarid climate and limited water availability for recharge, the wetland has developed serious loss of biodiversity in the recent past, which greatly impeded the sustainable development of the ecosystem. To restore this important ecosystem, certain amount of water, the so-called environmental flow, should be guaranteed in the wetland. Therefore, correct estimation of the fluctuations of the West Malian River streamflow will help the local managers in making the plan of adaptive water resource allocation for the wetland.

The West Malian River watershed is a rural area, where the streamflow gauging station is sparse and its records are typically short owing to the cost difficulties. Thus, 25 (1982–2006) available annual streamflow records of the West Malian River from the local hydrological gauging station and the corresponding climatic data from the only local weather station were collected and used for the GP model development.

Genetic Programming

GP (Koza, 1992), a member of evolutionary algorithms, is a relatively new approach to model the inputs and the outputs automatically. It conducts its research in the space of computer programs (solutions of a problem) whose structures are represented by varying size and shape binary trees. For example, an expression of $x_1 \cdot \ln(x_2) + \cos(x_3)$ is represented by the program (Fig. 2). The computer programs consist of an internal node $F = \{\text{arithmetical functions, relation functions, etc.}\}$ and a terminal node $T = \{\text{numerical constants, variables, etc.}\}$. GP starts by randomly creating a population of com-
puter programs consisting of the available nodes from F and T, and each population represents a function $f(x)$ of the given data. And then, GP genetically evolves the population by using the Darwinian principle of natural selection in which the selection, crossover, and mutation are the main operations. Thus, GP provides a way to find a suitable solution to a problem. The primary operators in GP are as follows:

1. Selection: Pairs of parent trees are selected based on their fitness values for reproduction.
2. Crossover: This process is performed by selecting a node randomly and then exchanging the associated subtrees to produce a pair of offspring trees (Fig. 2b).
3. Mutation: This process is performed by replacing a node selected at random with a newly created subtree (Fig. 2a). This process can prevent the GP model from falling into the local optima.

More information about the selection, crossover, and mutation can be found in Wang and Cao (2002).

Before running a GP algorithm, the following five steps should be adopted:

1. Determining the terminal node set, T;
2. Determining the internal node set, F;
3. Determining the fitness function;
4. Parameters and variables for controlling the run; and
5. Criterion for terminating the GP algorithm.

Methods

In this section, the GP algorithm for streamflow prediction is elaborated and this is followed by three other methods (including the MLP, GM, and MLR) that are used for comparison.

Application

GP algorithm for streamflow prediction. The main task here is to evolve a model automatically capable of simulating the annual streamflow response to the climate change with a small amount of datasets. The real values have been used here as the elements of the terminal node set T. Ten functions were used in the internal node set F for the purpose of the complex nonlinear relationship between streamflow and the climatic data. Of the F, four are arithmetic operators ($+, -, *, /$) and the rest are functional ones ($\exp, \ln, \cos, \sin, \tan, \cot$).

In GP, the fitness function was used to estimate the solutions in terms of the problem. The final optimal model was obtained based on the fitness function. In this study, the function f was used as the measure of the fitness function:

$$f = \left\| y^{(0)}(x) - \hat{y}^{(0)}(x) \right\|^2$$

where the $y^{(0)}(x)$ represents the measured streamflow value, $\hat{y}^{(0)}(x)$ the simulated value, and x the input variable. The optimal model derived from the GP method is the one which has the relatively least f value.

As described by researchers and in some textbooks in the area of river hydrology, precipitation (Collischonn et al., 2005; Chen, 2006) or both precipitation and evaporation (Li, 1992) are the main factors that affect the streamflow in a river, especially in the arid and semiarid regions. The fluctuations of the streamflow are also related to soil moisture, length of stream, elevation, geography of the catchment, and others. Owing to the limitation of the dataset, the available datasets of precipitation and evaporation were used to be the inputs for GP algorithm to capture the relationship with the output (streamflow). Figure 3 shows a plot of streamflow,
precipitation, and evaporation data from 1982 to 2002. This figure shows that the streamflow had a declining trend since 1992 along with the declining precipitation and rising evaporation. This trend is particularly striking between 1998 and 2002. Simple statistical analysis by using SPSS tool showed that annual streamflow was correlated to precipitation with $r = 0.537$, and to precipitation and evaporation ($|P/ET|$) with a higher correlation ($r = 0.624$). The results indicated that the streamflow changes had close relationship with the joint effect of precipitation and evapotranspiration. Therefore, the values of $|P/ET|$ was chosen as the input and the annual streamflow as the output. The relationship can be expressed mathematically in Eq. (2):

$$y^{(o)}(x) = U(|P - ET|)$$

where t refers to time of year, P and ET represent the annual precipitation and annual evapotranspiration of the tth year, respectively. The value of $|P - ET|$ is equal to x in Eq. (1).

The steps involved in setting up the GP algorithm are as follows:

1. Generate an initial population of models randomly for the streamflow;
2. Run a tournament, which picks two models randomly out of the population; then apply the search operators (selection, crossover or mutation) to produce an offspring (new model) in the following way:
 (a) with crossover frequency, apply crossover operation to produce offspring,
 (b) with mutation frequency, mutate the models;
3. Compare all of the models and remove the loser based on the fitness measure function f;
4. Repeat the above procedures 2 and 3 until the termination criterion has been satisfied;
5. Display the model with the best fitness evolved from the GP.

The terminal criterion in this study is that the least fitness function value is unchanged after 50 repeats of procedure 4. Otherwise, the program will perform the procedure continuously. The parameters used in this GP algorithm are given in Table 1.

Streamflow and climatic data covering the years 1982–2006 were divided into two parts, of which 21-year data (1982–2002) was used during the training phase and the rest 4-year data for the testing phase.

The program of the GP algorithm was developed in language C and was run on a PC with a 1.74 GHz and 512 MB RAM memory, and the running time was within 10 min.

MLP for streamflow prediction. Artificial neural network (ANN) techniques are popular methods capable of identifying correlated patterns between the input data and the corresponding target values. Therefore, they have been widely and successfully applied in hydrological modeling systems (Abrahart and Kneale, 1997; Dawson and Wilby, 1998; Imrie et al., 2000; Baratti et al., 2003; Castellano-Méndez et al., 2004; Riad et al., 2004; Valença et al., 2005; Aqil et al., 2007). Here, the MLP method, as one of the most popular ANN architectures for hydrological simulations (Castellano-Méndez et al., 2004), was chosen for streamflow prediction and for comparing its prediction ability with the GP method.

In MLP, the first layer i is called the input layer and the last one k is called output layer, whereas the layer j between them is named the hidden layer, where the x_i ($i = 1, \ldots, n$), y_j ($j = 1, \ldots, m$), and o represent the input variables, the hidden variables, and the output, respectively (Fig. 4). In this

![FIG. 3. Time series of the estimated streamflow and recorded precipitation and evaporation.](image-url)

Table 1. Parameters Used in the Genetic Programming Algorithm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial population creation method</td>
<td>Grow method</td>
</tr>
<tr>
<td>Maximum tree depth size</td>
<td>6.0</td>
</tr>
<tr>
<td>Crossover rate</td>
<td>0.6</td>
</tr>
<tr>
<td>Mutation rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Population size</td>
<td>100</td>
</tr>
</tbody>
</table>
study, two types of architecture of MLP have been used. One has one node in the input layer, the other has two nodes. The MLP is trained using the error back propagation learning algorithm. The appropriate number of nodes in the hidden layer was determined by the rule of from 2n^1/2 + m to 2n + 1 (Fletcher and Goss, 1993), which is helpful to prevent the MLP algorithm from overfitting the data (Huang and Foo, 2002), where n is the number of input nodes and m is the number of output nodes.

To ensure that the MLP can generalize and will perform well when confronted with fresh data, the available data were also divided into two groups (data 1 and data 2) for model cross-validation procedure. The data 1 with 21-year data (1982–2002) was used to train the parameters in the MLP network. Data 2 with 4-year data (2003–2006) was used to verify the MLP performance.

GM for streamflow prediction. Gray system theory (Deng, 1989) provides a way to investigate the relationship of input–output process with relatively little data (as low as four), and it has been successfully applied in the fields of finance, engineering, economics, and hydrology (Chen and Lin 1996; Chiao et al., 1997; Hao et al., 2006). In this article, the GM (1, 2) model was used as another comparative tool to forecast the annual streamflow of the West Malian River. [Detailed construction process of the gray model is given by Hao et al. (2006).] For the GM (1, 2) model, 1 represents the data that need to be predicted (streamflow), and 2 represents the data series that was mainly impacted by 1. Two groups of dataset have been used to set up the GM (1, 2) model. One group is from 1982 to 2002 and the other group of data is from 1993 to 2002.

MLR for streamflow prediction. MLR model was the third comparative method used for streamflow prediction. The significant advantage of the MLR is the fact that it is easy to calculate and it is also very robust (Geladi et al., 1999). The common pattern of the model is as follows:

\[Y_t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon \]

where \(Y_t \) represents the streamflow to be modeled; \(x_1 \) the evapotranspiration; \(x_2 \) the precipitation; \(\beta_0 \) a constant; \(\beta_1, \beta_2 \) the linear regression coefficient; and \(\epsilon \) a residual, often assumed to contain the noise. A simple MLR for the prediction of streamflow is given by Eq. (4).

\[\hat{Y_t} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \]

where \(\hat{Y_t} \) is the predicted value of \(Y_t \), and \(\beta_0, \beta_1, \beta_2 \) are the estimated values of \(\beta_0, \beta_1, \beta_2 \) respectively, described above.

Performance evaluation

In this study, two criteria were used to evaluate the performances of the forecasting models. The first measurement is the mean absolute percent error (MAPE):

\[\text{MAPE} = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{A_t - \hat{A}_t}{A_t} \right| \times 100 \]

where \(\hat{A}_t \) is the predicted value at time \(t \), \(A_t \) is the actual value at time \(t \), and \(n \) is the number of predictions.

The second criterion is the correlation coefficient \(r \).

Results and Discussion

The model derived automatically from the GP algorithm is given in Eq. (6).

\[y^{(o)}(x) = \tan(g((tg(x) + 441.071x) + 257.391x)) \]
\[-x/(\sin((\ln((|x|)/(((-102.483)/x) + 4.994)))) \]

where \(x \) represents \(|P - E_1| \) and \(y^{(o)}(x) \) represents the predicted values of the streamflow in the West Malian River. Through Eq. (6), once the precipitation and evaporation values of a given year is known, we can use \(|P - E_1| \) as the \(x \) to calculate the corresponding value of \(y^{(o)}(x) \), which is the total amount of annual streamflow of the West Malian River. The results of streamflow calculated from Eq. (6) are presented in Table 2 and Fig. 5.

In Table 2, the minimum average relative error is 0.25% in 1994 and the maximum average relative error is 9.65% in 1992 during the training phase. Table 3 shows that GP had a good performance with relatively small MAPE (5.48) and high correlation (\(r = 0.88 \)) during the training phase. Also, the simulation curve is in substantial agreement with the measured data as shown in Fig. 5. Using the data of \(|P - E_1| \) from 2003 to 2006 (the black bold numbers in Table 2) as input to Eq. (6), the predicted annual streamflows of the West Malian River are calculated to be 48.57, 54.63, 69.36, and 106, respectively, as shown in Table 3 and Fig. 6.

In Table 3, the MLP method has the lowest MAPE (0.67, 0.85) and the highest correlation coefficient \(r (0.96, 0.93) \) in the training phase. The MAPE and correlation for the GP,
GM (1, 2) with data 1, GM (1, 2) with data 2, and MLR methods are (5.48, 0.88), (34.16, 0.45), (26.79, 0.30), and (9.90, 0.66), respectively. The results of the training phase showed that the GP method outperformed other methods except for the MLP. In the testing phase, however, GP method showed the best performance among all the methods compared. The MAPE and r of GP method are 8.89 and 0.99, respectively. However, the MAPE and r of the MLP with one input node and two input nodes are 12.18, 0.33 and 14.31, 0.16, respectively. The MAPE and r for the GM (1, 2) with data 1, GM (1, 2) with data 2, and MLR are (38.97, −0.98), (20.55, −0.98), and (13.00, 0.70), respectively.

It is difficult to model hydrological and hydraulic processes in river catchment with limited data scenarios. Using the GP algorithm, it is shown here that it is possible to simulate the changes of streamflow at the West Malian River with readily available but limited dataset. From Figs. 5 and 6, it can be seen that the simulation and prediction curves matched well with the measured ones, particularly during the periods from 2001 to 2003 and from 2004 to 2006 during which the studied area

| Year | $y^{(o)}_t(x)$ (×10^6 m³) | $\hat{y}^{(o)}_t(x)$ (×10^6 m³) | $\varepsilon(x) = y^{(o)}_t(x) - \hat{y}^{(o)}_t(x)$ | $\Delta(x) = \frac{|\varepsilon(x)|}{y^{(o)}_t(x)} \times 100$ |
|------|-----------------|-----------------|-----------------|-----------------|
| 1982 | 64.25 | 61.70 | 2.55 | 3.97 |
| 1983 | 70.23 | 68.07 | 2.16 | 3.08 |
| 1984 | 74.65 | 76.43 | −1.78 | 2.38 |
| 1985 | 71.35 | 68.07 | 3.28 | 4.60 |
| 1986 | 79.13 | 71.90 | 7.23 | 9.14 |
| 1987 | 68.22 | 67.13 | 1.09 | 1.60 |
| 1988 | 73.66 | 68.58 | 5.08 | 6.90 |
| 1989 | 67.84 | 61.43 | 6.41 | 9.45 |
| 1990 | 65.67 | 65.25 | 0.42 | 0.64 |
| 1991 | 74.49 | 72.88 | 1.61 | 2.16 |
| 1992 | 70.26 | 63.48 | 6.78 | 9.65 |
| 1993 | 74.09 | 69.14 | 4.95 | 6.68 |
| 1994 | 71.32 | 71.14 | 0.18 | 0.25 |
| 1995 | 60.15 | 63.74 | −3.59 | 5.97 |
| 1996 | 61.26 | 65.84 | −4.58 | 7.48 |
| 1997 | 63.03 | 68.94 | −5.91 | 9.38 |
| 1998 | 66.13 | 69.23 | −3.10 | 4.69 |
| 1999 | 61.07 | 65.18 | −4.11 | 6.73 |
| 2000 | 60.12 | 65.04 | −5.92 | 8.18 |
| 2001 | 45.16 | 46.68 | −1.52 | 3.37 |
| 2002 | 46.25 | 42.20 | 4.05 | 8.76 |
| 2003 | 52.23 | 48.57 | 3.66 | 7.01 |
| 2004 | 59.98 | 54.63 | 5.35 | 8.92 |
| 2005 | 74.66 | 67.27 | 7.39 | 9.89 |
| 2006 | 76.82 | 69.36 | 7.46 | 9.71 |

FIG. 5. Results of the simulated streamflow by GP.
experienced a 3-year period of drought and a 3-year period of relatively heavy rainfall, respectively. The combined effects of annual precipitation and evaporation obviously affected the fluctuation of annual streamflow. Based on the statistic analysis and the results of the estimation from the GP model, it can be concluded that as expected the streamflow is positively correlated with precipitation and negatively correlated with evapotranspiration. The rise in annual average temperature in the northern China due to climate change will affect both precipitation and evaporation, and hence, the West Malian River annual flow will likely to be significantly affected by climate variability.

The poor performance of the MLP model most probably is due to overfitting. This usually occurs when the network is not fully trained and large amounts of datasets are unavailable. For a common MLP model, more training always makes the network memorize detail features of the dataset. Moreover, one of ANN’s defects is that it is easy to run around the local optimal. In this study, Fig. 6 showed that the MLP had good simulation performance during the training phase with high correlation and the least error. However, in the testing phase, the performances were poor with relatively large errors and low correlations because of overfitting. On the contrary, the GP method, taking the errors as its inner motivation, is able to obtain as close to the global optimal solution as possible. Compared with the MLP, the GP method emphasizes the integrated characteristics of the dataset, which will reduce overfitting significantly. Table 3 shows that the GP method has good simulation ability during training phase (MAPE = 5.48, $r = 0.88$) and good prediction ability during testing phase (MAPE = 8.89, $r = 0.99$). Hence, based on the results of the GP method during the training phase and testing phase the overfitting problem was able to be determined.

Figure 6 indicates that the GM (1, 2) models did not perform as desirable as other case studies have reported (Hao et al., 2006). Despite the fact that they showed high correlation ($r = 0.98$) during the testing phase, the MAPE values of the GM (1, 2) models were the largest compared with other methods (Table 3). As indicated earlier, the GM model is a potential tool for modeling with less dataset (as few as four). However, the data quality often affected the outcomes of the method. The GM often performed well when the data series satisfied the gray exponential law (Fu, 1992). It also meant that peaks in the dataset often led to poor performance. In this study, we had peaks in the data of streamflow even though we have divided the dataset into two parts (data 1 and data 2). Therefore, high accuracy of prediction could not be anticipated by this model (Wu and Chen, 2005). In the case of Hao et al. (2006), their data used for prediction were much smooth and this could have accounted for their good forecasting. For the MLR model, the results were also not as good as that of the GP model. The MAPE and r of the MLR model are 9.90 and

![Figure 6](image-url)
0.66 during the training phase and 13.00 and 0.70 during the testing phase, respectively. The reason for the poor performance is probably due to the complex nonlinear relationship that exists between the streamflow and climatic variables and the MLR method may not pick up the correct relationship.

In this study, three possible reasons may cause the discrepancy between the observed data and the predicted ones for the GP model. First, some calculation errors were from the data standardization process and their amplificatory response of noise. And second, inaccuracy may occur because of the improper choice of the input variables. Here, the precipitation and evaporation were chosen as the inputs for the GP model. As mentioned earlier, these are the main factors that affect the streamflow of the West Malian River, and more importantly, these data were readily available. In fact, other factors, such as the soil moisture, length of stream, elevation, and geography of the catchment, also impacted the streamflow. A lack of a comprehensive dataset surely would have affected the accuracy of prediction by the GP method. However, the GP model was able to provide good results because GP can capture the relationship between the inputs and the outputs automatically without the need of prior knowledge of the underlying physics. The final reason is probably due to the use of a small amount of data. Although GP can perform well in capturing the underlying relationship between the inputs and the outputs even with less datasets, use of a large amount of data is expected to increase its accuracy of prediction.

Conclusions

Streamflow is one of the most critical variables that influence the dynamics of any river ecosystem. Accurate estimation of annual streamflow fluctuation in response to climate change will be helpful for adaptive regional water resource management. It is shown here that the GP algorithm provided a quick and flexible means of creating a model automatically between the inputs and the outputs and was successfully applied to predict the annual streamflow fluctuations of the West Malian River in China with a small amount of dataset. Using climatic data of 1P–ET | as the input, and annual streamflow as the output, a simple but specific model was set up automatically by the GP algorithm. Using this model, the predicted annual streamflows of the West Malian River were 48.57 × 10^6, 54.63 × 10^6, 67.27 × 10^6, and 69.36 × 10^6 m³ in the years 2003–2006, respectively. The predicted results from the GP model were in substantial agreement with the measured data (MAPE = 8.89, r = 0.99) (Table 3, Fig. 6). Comparison of the results from various models such as the MLP, GM, and MLR indicated that GP’s prediction is superior to other methods despite the fact that the dataset used was small. Hence, the GP algorithm can be a cost-effective and easy-to-use alternative tool for the estimation of annual streamflow fluctuation. In particular, this model can be a useful tool for managers in the developing countries to evaluate the potential impacts of climate changes on the streamflow where long-term dataset is unavailable.

In this case, the traditional agriculture with small industries is the main economic activity in the research area. On the basis of the analysis of the local water resource protection plan from the local environmental protection agency and the field investigation, the water intake of agriculture is the main part but the amount is relatively a constant. Therefore, streamflow prediction is able to be made in an acceptable accuracy through the model without the data on water intake from the river because the data have partly included the water intake for agriculture. However, with the local economic development, the amount of water intake from the river will surely increase. To achieve the accuracy of streamflow prediction, data on the amount of water intake from the river for agriculture and industry should be collected accordingly to improve the prediction by auto water resource monitoring systems in the future.

Acknowledgments

This work was supported by the National Water Special Project of China (no. 2009ZX07528-006-02) and the National Education Ministry Foundation of China (no. 705011).

Author Disclosure Statement

No competing financial interests exist.

References

