Cyclotron electron beam excited surface plasmon polaritons coherent radiation

Sen Gong
Cooperative Innovation Centre Of Terahertz Science, University of Electronic Science and Technology of China

Tao Zhao
Cooperative Innovation Centre Of Terahertz Science, University of Electronic Science and Technology of China

Min Hu
University of Electronic Science and Technology of China, Cooperative Innovation Centre Of Terahertz Science

Renbin Zhong
University of Electronic Science and Technology of China, Cooperative Innovation Centre Of Terahertz Science

Xiaoxing Chen
University of Electronic Science and Technology of China, Cooperative Innovation Centre Of Terahertz Science

See next page for additional authors
Cyclotron electron beam excited surface plasmon polaritons coherent radiation

Abstract
A physical mechanism of electron beam excitation of surface plasmon polaritons (SPPs) on the circular cylindrical structure and transformation into coherent radiation is proposed. Here SPPs on the circular cylindrical structures are excited by a cyclotron electron beam (CEB) rather than by the linearly moving electron beam (LEB). This change leads to an essential consequence due to the natural periodicity of 2π in structure and CEB, and this dual natural periodicity makes the SPPs transformation possible and brings significant excellences. HEM hybrid modes and TM$_{0n}$ modes SPPs can be excited and propagate along a cyclotron trajectory together with the CEB to attract energy from CEB continuously to compensate the energy loss; the phase velocity of SPPs synchronizes the CEB; the process of the excitation and transformation is longer. Therefore, the transformed power density is enhanced and reaches up to 10^{10} W/cm2. The cyclotron frequency of the electron beam is 1THz, but the frequency regime of the SPPs and the radiation are much higher, up to hundreds of terahertz. The mechanism presented in this letter opens the way for developing the desired room temperature, powerful and coherent light radiation sources from the infrared to the ultraviolet frequency regime.

Keywords
plasmon, polaritons, coherent, cyclotron, radiation, electron, beam, excited, surface

Disciplines
Engineering | Science and Technology Studies

Publication Details

Authors
Sen Gong, Tao Zhao, Min Hu, Renbin Zhong, Xiaoxing Chen, Diwei Liu, Ping Zhang, C Zhang, Jian Chen, Biaobin Jin, Huabing Wang, Peiheng Wu, and Shenggang Liu

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/4453
Cyclotron electron beam excited surface plasmon polaritons coherent radiation

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 EPL 111 24004
(http://iopscience.iop.org/0295-5075/111/2/24004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.130.37.85
This content was downloaded on 31/08/2015 at 07:16

Please note that terms and conditions apply.
Cyclotron electron beam excited surface plasmon polaritons coherent radiation

Gong Sen1,2, Zhao Tao1,2, Hu Min1,2, Zhong Renbin1,2, Chen Xiaoxing1,2, Liu Diwei1,2, Zhang Ping1,2, Zhang Chao2,3, Chen Jian2,4, Jin Biaobin2,4, Wang Huabing2,4, Wu Peiheng2,4 and Liu Shenggang1,2

1Terahertz Research Centre, School of Physical Electronics, University of Electronic Science and Technology of China Chengdu, Sichuan 610054, China
2Cooperative Innovation Centre of Terahertz Science - Chengdu, Sichuan 610054, China
3School of Physics and Institute for Superconducting and Electronic Materials, University of Wollongong Wollongong, New South Wales 2522, Australia
4Research Institute of Superconductor Electronics, Nanjing University - Nanjing 210008, China

received 21 May 2015; accepted in final form 13 July 2015
published online 4 August 2015

PACS 42.72.-g – Optical sources and standards
PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)
PACS 41.60.-m – Radiation by moving charges

Abstract – A physical mechanism of electron beam excitation of surface plasmon polaritons (SPPs) on the circular cylindrical structure and transformation into coherent radiation is proposed. Here SPPs on the circular cylindrical structures are excited by a cyclotron electron beam (CEB) rather than by the linearly moving electron beam (LEB). This change leads to an essential consequence due to the natural periodicity of 2π in structure and CEB, and this dual natural periodicity makes the SPPs transformation possible and brings significant excellences. HEM hybrid modes and TM$_{0n}$ modes SPPs can be excited and propagate along a cyclotron trajectory together with the CEB to attract energy from CEB continuously to compensate the energy loss; the phase velocity of SPPs synchronizes the CEB; the process of the excitation and transformation is longer. Therefore, the transformed power density is enhanced and reaches up to 10^{10} W/cm2.

The cyclotron frequency of the electron beam is 1 THz, but the frequency regime of the SPPs and the radiation are much higher, up to hundreds of terahertz. The mechanism presented in this letter opens the way for developing the desired room temperature, powerful and coherent light radiation sources from the infrared to the ultraviolet frequency regime.

Copyright © EPLA, 2015

Introduction. – In this letter, a physical mechanism of electron beam excitation of surface plasmon polaritons (SPPs) on the circular cylindrical structure and the transformation of the excited SPPs into enhanced coherent radiation are proposed and investigated. Here the cyclotron electron beam (CEB) excitation of SPPs on the circular cylindrical structures is used to replace the linearly moving electron beam excitations, which many literatures have been published [1–9]. We have found that this change leads to the essential consequence in physics for which there is a natural periodicity of 2π in both circular cylindrical structure and CEB, and the combination of this dual natural periodicities not only makes the excited SPPs transformation possible, but also brings many significant excellences to the mechanism. The results of the theoretical analyses and numerical calculations show that both the HEM hybrid modes and the TM$_{0n}$ modes of SPPs can be excited by CEB. And the excited SPPs propagate along a 3-dimensional cyclotron trajectory inside or outside the circular cylindrical structure together with the CEB. So the cyclotron SPPs can attract energy from the electron beam continuously to compensate the energy loss due to the radiation and decay of propagation. The physics is that the phase velocity of the excited SPPs is in synchronization with the CEB, so the process of the excitation and transformation is longer. The impressive results of investigation show that the power density of the radiation transformed from the cyclotron SPPs reaches up...
to 10^{10} W/cm2. Therefore, the mechanism presented in this letter may open the way for developing the desired room temperature, powerful and coherent light radiation sources.

Electromagnetic fields produced by CEB. In this letter, CEB is used to excite the cyclotron SPPs on the circular cylindrical structures, and the schematic is shown in Fig. 1(a). To deal with the CEB excitation of cyclotron SPPs, at first we study the electromagnetic fields produced by CEB, as shown in Fig. 1(b) and (c).

The electron beam moves along a 3-dimensional cyclotron trajectory with radius r_0, the velocity along the Z-direction and the cyclotron frequency of the electron beam are u_z and ω_c, respectively. The cyclotron velocity and charge quantity of CEB are $u_{\perp} = \omega_c r_0$ and q, respectively. The permittivity and permeability in vacuum are ε_0 and μ_0, respectively.

We have considered the spread of the electron beam along the parallel direction, and the velocity distribution function of the electron beam is [10]

$$
(f_0(\vec{u}))_{\text{spread}} = \frac{1}{\sqrt{\pi \Delta u_z}} \delta(u_{\perp} - u_{\perp,0}) e^{-\frac{(u_z - u_{z,0})^2}{\Delta u_z^2}}.
$$

Then the current density of the CEB along the Z-direction is

$$
(J_z)_{\text{spread}} = q \int_0^\infty u_z f_0(\vec{u}) d\vec{u} = q \int_0^\infty \frac{1}{\sqrt{\pi \Delta u_z}} e^{-\frac{(u_z - u_{z,0})^2}{\Delta u_z^2}} du_z.
$$

The integral of eq. (2) could not be completed analytically, but we can do it by means of numerical calculations. Without consideration of the spread, the velocity distribution function and the current density of CEB along the Z-direction can be written as

$$
(f_0(\vec{u})) = \delta(u_{\perp} - u_{\perp,0}) \delta(u_z - u_{z,0}),
$$

$$
(J_z) = q \int_0^\infty u_z f_0(\vec{u}) d\vec{u} = qu_z.
$$

The results of the numerical calculations of $(J_z)_{\text{spread}}$ and J_z (for the case $u_{z,0} = 0.55c$ and $\Delta u_z = 0.02c$) show that the influence of the velocity spread is very small, less than $1/1000$. Similarly, it can be shown that the influence of the perpendicular velocity u_{\perp} spread is also quite small [10]. So we use the velocity distribution function in eq. (3) to simplify the mathematical manipulation in this letter. By solving the Maxwell equations together with the boundary conditions, the electromagnetic fields produced by CEB can be obtained.

In the region $r < r_0$, the electromagnetic fields are

$$
E_z' = \frac{1}{2\pi} \sum_m (j \omega \mu_0 q - \frac{jk_c q}{\omega_0 \epsilon_0 r} (\frac{m}{u_z} + k_z)) I_m(k_c r) \times K_m(k_c r_0) e^{jk_z z},
$$

$$
H_z' = \frac{1}{2\pi} \sum_n q u_{\perp} (I_m(k_c r) + r I'_m(k_c r)) K_m(k_c r_0) \times \epsilon_0^{j m \theta} e^{jk_z z}.
$$

In the region $r \geq r_0$, they are

$$
E_z' = \frac{1}{2\pi} \sum_m (j \omega \mu_0 q - \frac{k_z}{\omega_0 \epsilon_0 r} (\frac{m}{u_z} + k_z)) I_m(k_c r_0) K_m(k_c r) e^{jm \theta} \times \epsilon_0^{jk_z z},
$$

$$
H_z' = \frac{1}{2\pi} \sum_n q u_{\perp} (I_m(k_c r_0) K_m(k_c r) + r K'_m(k_c r)) \times \epsilon_0^{jm \theta} e^{jk_z z},
$$

where $k_c = \sqrt{k_z^2 - k_{\perp0}^2}$, $r = k_c u_{\perp} - \omega_c z = 0$, $I_m(k_c r)$ and $K_m(k_c r)$ are the m order modified Bessel functions. It can be seen that the electromagnetic fields produced by CEB contain plenty of modes, including TM mode ($m = 0$) and HEM modes ($TM_{mn} + TE_{mn}$) with $m \neq 0$. And they are evanescent waves, which decay exponentially along the R-direction without phase delay.

Now we should notice how to produce the CEB. It is well known that the electron cyclotron resonance stimulated...
emission of radiation has been investigated, and high-power microwave-millimeter wave generators (so-called gyrotrons) have been developed and applied intensively by using the CEB [10]. With an adiabatic varying magnetic field in a uniform longitudinal section, the CEB can be produced [10]. The energy of the electron beam used in this letter is rather low, so the direct radiation by the CEB is neglected [10,11]. In this letter, the permanent magnetic field used to produce CEB is only a few tesla.

The electron beam of the scanning electron microscopy (SEM) is often used as the electron beam source to excite SPPs [1,12,13]. Due to the excellent electro-optical system in SEM, the electron beam is very good, and it can be focused by the external magnetic field B_{ext}, to guarantee that CEB moves in the structure.

Excitation of SPPs on circular cylindrical structure by CEB. – Now we deal with the CEB excitation of cyclotron SPPs on circular structure. The schematic is shown in the inset of fig. 2(a), and CEB moves along the structure with radius r_0. In the presence of the external permanent magnetic field B_{ext}, the dielectric function of the metal is a tensor [10,14–16]. But in our letter, the external magnetic field B_{ext} is parallel to the Z-direction of the structure, as shown in the inset of fig. 2(a), and the cyclotron frequency ω_0^e of the free electron in the metal is much smaller than the operating frequency ω, $\omega_0^e \ll \omega$. In this case, the metal can be considered as an isotropic medium, and its dielectric function can be described by the modified Drude model, for Ag, which is [17–20]

$$\varepsilon_{Ag}(\omega) = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 - j\gamma \omega}, \quad (7)$$

where ε_{∞} is 5.3, ω_p is $1.39 \times 10^{16} \text{rad/s}$ and γ is $3.21 \times 10^{13} \text{Hz}$. Also the size quantization due to the only 20nm thick Ag tube will not affect the dielectric function within the application range of the operating frequency ω, since the size quantization energy is only of the order of 1meV.

Making use of the boundary conditions of the continuity of the tangential components of electric and magnetic fields at $r = r_{a}$, the dispersion equation and the excited cyclotron SPPs can be obtained. The dispersion curve of the cyclotron SPPs for hybrid modes ($m = 1$) on an Ag wire excited by CEB is shown in fig. 2(a). The operating frequencies and other behaviours of the excited cyclotron SPPs are determined by the working points, which are the intersection points of the dispersion curve and beam lines. The equation of the beam line is $\omega - k_z u_z - \omega_c = 0$, the physics of this equation shows the phase of the SPPs propagation is synchronized with the excitation electron beam. As shown in fig. 2(a), the working points for $\beta = 0.4$ and $\beta = 0.6$ ($\beta = u_z/c$, c is the light speed in vacuum) are A and B, respectively. Figure 2(b) shows that for spectra of E_z and H_z, the corresponding operating frequencies are 862THz and 831THz, respectively. This indicates that the cyclotron SPPs excited by CEB are coherent and the operating frequency can be tuned by adjusting the energy of CEB. The excited cyclotron SPPs propagate along a 3-dimensional cyclotron trajectory around the Ag wire together with the CEB. So the cyclotron SPPs can attract energy from CEB continuously to compensate the energy loss due to the radiation and decay of propagation. It also can be seen from the spectra that the excited cyclotron SPPs contain both HEM modes and TM ($m = 0$) modes, as shown in fig. 2(b) and (c).

Radiation transformation of cyclotron SPPs. – Now we move on to the radiation transformation of the excited cyclotron SPPs. Two kinds of structures, structure I and structure II, are proposed. By matching the boundary conditions at $r = r_a$ and $r = r_b$ in structures I and II, the dispersion curves and the transformed radiation in the two structures can be obtained.

In structure I, the CEB is moving outside the Ag film, and the loading dielectric is inside, as shown in the inset of fig. 3(a). The dispersion curves of structure I for $m = 1$ are shown in fig. 3(a). The outer radius r_a is 120nm, the inner radius r_b is 100nm, and the permittivity of the loading
Fig. 3: (Colour on-line) (a) The dispersion curves of structure I excited by CEB, and the inset is the schematic of this structure. (b) The dispersion curves of structure I excited by the hollow electron beam. (c) The spectra of the radiation fields, the red line is for CEB excitation, the blue line is for hollow electron beam excitation, and the insets are the contour maps of the radiation fields excited by CEB.

dielectric is 4. Due to the dual natural periodicity of 2π of the structure and CEB, some dispersion curves lie in the shaded region (radiation region), in which the excited cyclotron SPPs can be transformed into radiation [1]. For the CEB with $\beta = 0.65$ and $\omega_c = 1\text{THz}$, the working points C, D and G in fig. 3(a) are within the radiation region, and the field spectrum is illustrated by the red line in fig. 3(c). This shows that there are three operating modes, and their frequencies are 405 THz, 805 THz and 906 THz corresponding to the three working points C, D and G, respectively. The contour maps for these operating frequencies in the insets of fig. 3(c) show that the radiation fields are confined in the dielectric.

For making a comparison, the radiation transformation of SPPs excited by hollow LEB in structure I is also studied. For CEB excitation, there are many SPPs modes, but for hollow LEB excitation, only TM$_{0n}$ SPPs modes can be excited. So their dispersion curves are different. Consequently, the working points are different at different frequencies. The essential difference is that the radiation density transformed from the cyclotron SPPs gets the largest amplitude at the operating frequency equal to 906 THz (working point G), and it is much higher (more than 10 times) than that by hollow LEB in fig. 3(c), reaching up to 10^{10} W/cm2 with the charge quantity of 0.1 pC.

In the structure II, the CEB is moving inside the Ag film, and the loading dielectric is outside, as shown in the inset of fig. 4(a). The dispersion curve of structure II for $m = 3$ is shown in fig. 4(a). The outer radius r_a is 500 nm, the inner radius r_b is 480 nm, and the permittivity of the loading dielectric is 6. For $\beta = 0.45$ and $\omega_c = 1\text{THz}$, the working point K is located in the shaded region, and the excited cyclotron SPPs can be transformed into coherent radiation. The radiation-field spectrum (red line) and its contour map are shown in fig. 4(b) and its inset, respectively. It can be seen that the transformed radiation propagates in the loading dielectric. For making a comparison, the radiation transformation of SPPs excited by hollow LEB in structure II is also studied, and its radiation field spectrum at the same parameters as CEB.

Fig. 4: (Colour on-line) (a) The dispersion curve of the SPPs transformation into radiation in structure II, and the inset is the schematic of this structure. (b) The spectra of the radiation field excited by CEB and hollow electron beam, and the inset is the contour map of the radiation field excited by CEB. (c) The spectra of the radiation field by CEB and hollow beam when r_a is 1000 nm, the inset is the contour map of the radiation field by CEB.
excitation is illustrated by the blue line in fig. 4(b). The result in fig. 4(b) shows that the radiation density transformed from cyclotron SPPs is much higher than that by hollow LEB, reaches up to 10^9 W/cm2 with the charge quantity of 0.1 pC.

The spectra of the radiation fields transformed from SPPs excited by CEB and the hollow beam in structure II with inner radius r_a 1000 nm are shown in fig. 4(c). This shows that the high mode $m = 8$ for cyclotron SPPs can also be excited by CEB and transformed into radiation. And the amplitude of the radiation field is still much higher than that by the hollow electron beam. This indicates that the geometrical size of structure II in this mechanism can be much larger than a nano-meter, and this is of significance from the viewpoint of practical manufacture.

A more interesting phenomenon is that the electron cyclotron frequency is just about 1 THz, but the frequency region of the excited SPPs and the transformed radiation are much higher, up to hundreds of THz. The physics is that the radiation frequency mainly depends on the frequency of the free-electron gas in the metal film, and the role of the electron cyclotron frequency is to keep the synchronization of the excited SPPs and the electron beam over all the interaction time to guarantee that the excitation and transformation process goes on.

Summary. – The dual nature periodicity of 2π of both the circular structure and CEB not only makes the immediate transformation of the excited SPPs into radiation possible, but also brings significant excellences to the mechanism as follows:

1) the hybrid modes of SPPs can be excited by CEB, and the excited SPPs propagate along a 3-dimensional trajectory together with the CEB;

2) the density of the radiation transformed from cyclotron SPPs is stronger than that by hollow LEB, and up to 10^{10} W/cm2 can be achieved;

3) it is very interesting that the electron cyclotron frequency is just about 1 THz, but the frequency regime of the excited SPPs and the transformed radiation is much higher, up to hundreds of THz;

4) the size of the structures becomes much larger than a nano-meter, this is of significance from the viewpoint of practical manufacture and applications.

Therefore, the mechanism presented and investigated in this letter opens a promising way for developing the desired room temperature coherent radiation sources in the frequency regime from infrared to ultraviolet.

This work is supported by the National Basic Research Program under Grant No. 2014CB339801, the Natural Science Foundation of China under Grant No. 612111076, and National High-Tech Research and Development Project under contract No. 2011AA010204.

REFERENCES