A Self-Assembled CO2 Reduction Electrocatalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite

Amruthalakshmi Vijayakumar
University of Wollongong, av644@uowmail.edu.au

Yong Zhao

Jinshuo Zou
University of Wollongong, jz940@uowmail.edu.au

Kezhong Wang
University of Wollongong, kw743@uowmail.edu.au

Chong Yong Lee
University of Wollongong, cylee@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation
https://ro.uow.edu.au/aiimpapers/4279

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
A Self-Assembled CO2 Reduction Electrocatalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite

Abstract
© 2020 Wiley-VCH GmbH Here it was demonstrated that the decoration of gold (Au) with polyaniline is an effective approach in increasing its electrocatalytic reduction of CO2 to CO. The core-shell-structured gold-polyaniline (Au−PANI) nanocomposite delivered a CO2-to-CO conversion efficiency of 85% with a high current density of 11.6 mA cm⁻². The polyaniline shell facilitated CO2 adsorption, and the subsequent formation of reaction intermediates on the gold core contributed to the high efficiency observed.

Keywords
cO2, reduction, electrocatalyst, self-assembled, posy-bouquet-shaped, nanocomposite, gold-polyaniline, core-shell

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Amruthalakshmi Vijayakumar, Yong Zhao, Jinshuo Zou, Kezhong Wang, Chong Yong Lee, Douglas MacFarlane, Caiyun Wang, and Gordon G. Wallace

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/4279
A Self-Assembled CO₂ Reduction Electro catalyst: Posy-Bouquet-Shaped Gold-Polyaniline Core-Shell Nanocomposite

Amruthalakshmi Vijayakumar [a], Yong Zhao [a], Jinshuo Zou [a], Kezhong Wang [a], Chong-Yong Lee [a], Douglas R. McFarlane [b], Caiyun Wang *[a], Gordon G. Wallace *[a]

[a] A. Vijayakumar, Dr. Y. Zhao, J. Zou, K. Wang, Dr. C.Y. Lee, A./Prof. C. Wang, Prof. G. G. Wallace
ARC Centre of Excellence for Electromaterials Science,
Intelligent Polymer Research Institute
AIIM Facility, University of Wollongong,
North Wollongong, NSW 2500, Australia
E-mail: caiyun@uow.edu.au; gwallace@uow.edu.au
[b] Prof. D. R. McFarlane
School of Chemistry,
Monash University,
Clayton, VIC 3800, Australia

Supporting information for this article is given via a link at the end of the document.

Abstract: Here we demonstrate that the decoration of gold (Au) with polyaniline is an effective approach in increasing its electrocatalytic reduction of CO₂ to CO. The core-shell structured gold-polyaniline (Au-PANI) nanocomposite delivers a CO₂-to-CO conversion efficiency of 85% with a high current density of 11.6 mA cm⁻². The polyaniline shell facilitates CO₂ adsorption and the subsequent formation of CO intermediates on the gold core contributes to the high efficiency observed.

Introduction

Carbon dioxide (CO₂), a by-product from fossil fuel combustion, is regarded as the primary greenhouse gas causing global warming. Currently, atmospheric CO₂ concentration has reached its highest level in recorded history at 410 ppm. [1] There is an urgent need to reduce CO₂ emissions, as well as recycle it as a source for producing valuable fuel and chemical feedstocks via photochemical,[2] biochemical,[3] thermochemical,[4] and electrochemical methods. [5] Among them, the CO₂ electrochemical reduction (CO₂ER) is promising when considering its scalability and operation at ambient conditions. [6] Moreover, this process may be realized by utilizing renewable power sources from solar, wind and tide, which offers the potential for it to be part of a carbon-neutral energy cycle when combined with a carbon capture process. [7] Scalable and efficient electrocatalysts hold the key for the practical implementation of CO₂ER, in particular to overcome the challenges of sluggish kinetics and poor selectivity versus the H₂ evolution reaction (HER) that arises from the thermodynamic stability of CO₂. [8]

Gold is one of the best catalysts for the electrochemical CO₂-to-CO conversion, which is attributed to the fast conversion of CO₂ to *COOH via the strong *COOH binding, and the weak binding of *CO reaction intermediate facilitates the desorption of CO from its surface. [10] Different strategies have been employed to enhance its catalytic performance such as tuning the surface morphology [10], engineering the surface [9,11], and alloying with other metals. [12] The integration of Au with a functional conductive support to form a composite is an efficient surface engineering approach, as the synergistic interaction between the metallic catalytic centre and conductive support facilitates charge transfer and promotes CO₂ activation and conversion. [13]

Nanocarbons and conducting polymers are two of the most commonly used supports for metal-based catalysts. For example, copper nanoparticles on pyridinic N-rich graphene (p-NG-Cu) displayed a 19% Faradaic Efficiency (FE) with respect to the formation of C₂H₄ at -0.9 V vs. RHE (Reversible Hydrogen Electrode). [14] The presence of Lewis base in the p-NG-Cu catalyst structure prompted proton/hydrogen aggregation around Cu, facilitating the conversion of CO₂ to C₂H₄. The use of silver nanowires (Ag NWs) as part of a carbon composite enabled a tunable production of H₂/CO for syngas generation. [15] Ultra-small gold nanoparticles (Au NPs) supported on reduced graphene oxide (rGO) nanosheets demonstrated an improved CO₂-to-CO conversion efficiency compared to pristine Au NPs. [16] Cobalt-poly pyrrole particles immobilized on carbon black have been shown to utilize the hybridization of metal and organic materials to enhance the catalytic activity of the electroactive metallic centre in the conversion of CO₂-to-CO. [13c]

Polyaniline (PANI) is a common conducting polymer having strong electron donating amine groups and pi-conjugation across the polymer backbone. [17] Nanostructured PANI possesses the properties of a low-dimensional organic conductor with high surface area. Incorporating PANI with metal NPs can lower the activation energy for CO₂ reduction by effectively trapping the reactant due to the Lewis acid-base interaction between metal NPs/PANI and CO₂. [18] For example, the use of a Pd/PANI catalyst demonstrated a CO₂-to-HCOOH conversion with a FE of 22% in 0.5 M H₂SO₄ (-1.1 V vs. RHE). [19] Introducing a third component, carbon nanotubes (CNT), to form Pd-PANI/CNT composite further improved this conversion efficiency to 83% at -0.163 V vs. RHE, as CNT promoted charge transport. [20] The use of Cu₂O NPs immobilized on PANI enabled conversion of CO₂ to formic acid and acetic acid in 0.1 M tetrabutylammonium perchlorate and methanol electrolyte. [21] The Sn-PANI film coated on nickel foam
demonstrated a good conversion of CO$_2$ to formate in 0.1 M potassium bicarbonate.[22] All these composites take advantage of the role that PANI can play in proton shuttling and outer sphere co-ordination effects through the conjugated backbone and the amino groups present. Au-PANI nanocomposites have demonstrated good catalytic capability for oxygen reduction reaction due to the enhanced oxophilicity of Au.[23] However, the use of Au-PANI nanocomposites as a catalyst for the CO$_2$ER has not been reported yet.

The syntheses of metal-PANI nanocomposites commonly involve multi-step processes and/or the use of strong reducing agents and surfactants that may affect the catalytic activity.[24] Herein we adopt a single-step ecofriendly approach that does not use any reducing agents or surfactants.[25] The direct redox reaction between aniline and gold salt at ambient conditions creates shape-tailored Au-PANI nanocomposites. These nanocomposites exhibit posy-bouquet-like morphology with excellent catalytic capability for the CO$_2$-to-CO conversion: a FE of 85% with a high partial current density of 11.6 mA cm$^{-2}$ (mass activity = 23.2 A g$^{-1}$) at -0.9 V vs. RHE in 0.1 M KHCO$_3$; which is much higher than that of Au NPs. The selectivity dropped to only 23% after carbonizing the PANI layer to amorphous carbon. This work clearly demonstrates the active role of PANI layer in the Au-PANI composite on the catalytic ability for the CO$_2$ER. Also, it highlights the influence of gold content on the morphology of composite and the CO$_2$ER performance.

Results and Discussion

The formation of Au-PANI nanocomposites is illustrated schematically in Figure 1a. HAuCl$_4$ enables dissolution of aniline with subsequent oxidation to polyaniline with consistent reduction of AuCl$_4^-$ to Au0. Nanoparticles consisting of polyaniline and Au0 are formed. Anisotropic growth of Au branches proceeded to form buds on the posy bouquet due to the different diffusion rates of Au through PANI and partial dissolution of PANI oligomer on Au promotes the faster growth of stems. Further agglomeration was prevented by the diffusion controlled mechanism through π-π interaction between the PANI aromatic rings on the Au.[23b] The newly formed nuclei underwent Ostwald ripening in the following stages as part of the surface energy minimization, and formed the self-assembled 3D hierarchical structure of Au-PANI nanocomposites through the molecular interaction between early formed nuclei.[26] The redox processes between aniline monomer and chloroauric acid were responsible for the self-assembly forming Au-PANI nanocomposites.

![Figure 1. Synthesis and morphology of Au-PANI nanocomposite. a) Schematic illustration of the formation process of Au-PANI nanocomposite; b-f) SEM and TEM images of Au-PANI nanocomposite; g) HAADF-STEM and STEM elemental mapping results of Au-PANI nanocomposite; h-i) SEM and TEM images of Au-NC nanocomposite.](image)

The Au-PANI composite displayed a posy bouquet like morphology for Au-PANI$_1$ (a molar ratio of 1:1 between HAuCl$_4$ and aniline monomer) (Figure 1b, c). This structure was further confirmed by high magnification TEM images (Figure 1c-f). It had a flowery head with a diameter of ~320 nm along with a stem of ~510 nm. The flowery head contained many fluffy buds with an average length of 15 nm. PANI uniformly wrapped the gold core in bouquet structure with well-defined boundary. The co-existence of Au nanostructures and PANI was confirmed by the HRTEM image (Figure 1e). The spacing between lattice fringes was 0.233
nm, attributing to the (111) plane of face-centred cubic (fcc)-Au (Figure 1f). The uniform distribution of elements Au, C and N along the posy bouquet structure was revealed by the STEM energy-dispersive X-ray spectroscopy (EDS) mapping (Figure 1g). The influence of the molar ratio of reactants on the morphology of Au-PANI nanostructures was also investigated. Au-PANI nanocomposites with different compositions were synthesized by keeping the same content of aniline monomer but changing the molar concentration of HAuCl₄. These products were referred to as Au-PANI₁, Au-PANI₂, and Au-PANI₃, and those numbers indicated the molar ratio between gold and aniline. When the ratio of HAuCl₄ to aniline increased from 1:1 to 2:1 and 3:1, the produced nanocomposites retained similar posy bouquet morphology (Figure SI 1a-f, Supplementary Information) with similar head size but with elongated stem: it was 0.6 ± 0.02 µm, 1.3 ± 0.03 µm and 2.3 ± 0.01 µm for Au-PANI₁, Au-PANI₂ and Au-PANI₃, respectively. This may be attributed to the fast growth of Au nanostructures that arose from dissolution of PANI oligomer at low concentration of aniline[27]. More fluffy buds were observed on Au-PANI₁ (Figure 1g). These results clearly demonstrate that the ratio between HAuCl₄ and aniline did impact on the formation of Au-PANI nanocomposites. After the annealing treatment, the same morphology of bouquet was retained for Au-NC but, the fluffy buds on the flowery head became shrunken as revealed in the SEM and TEM images (Figure 1h, i.). This may be explained by the carbonisation of PANI. Pure gold nanoparticles and polyaniline were synthesized as control samples. Those Au NPs were almost spherical with an average diameter of ~10 nm (Figure SI 1g), and the 0.233 nm spacing of fringes corresponds to the (111) plane of face-centred cubic (fcc)-Au (Figure SI 1h). PANI showed a nanoribbon morphology with an average width of 30 nm (Figure SI 1i).

The crystallinity and chain packing of Au-PANI composites were examined by XRD analysis, and the formation of Au-PANI composite was confirmed (Figure 2a, Figure S2a). Four sharp diffraction peaks appeared at 38°, 44°, 65° and 78° corresponding to the Bragg’s reflections from (111), (200), (220) and (311) planes of Au (JCPDS 04-0784). They reveal the formation of fcc crystalline structure of Au in the composite. The highest intensity diffraction peak of Au (111) plane suggests the prominent growth of Au nanostructure along the lowest energy (111) facet. Pristine PANI and Au-PANI composite all displayed a peak at around 26° (inset of Figure 2a), which can be ascribed to the periodicity in parallel and perpendicular directions of the polymer chains of PANI,[28]
Elemental composition and the electronic state of Au in Au-PANI nanocomposites were analyzed by high resolution XPS. The XPS spectra (Figure 2b, Figure S2b) confirmed the presence of elements Au, C and N as expected. Compared with the spectrum of pure PANI, a new peak at 86.8 eV corresponding to Au 4f was observed on Au-PANI and Au-NC nanocomposites. The core level spectra (Figure 2c) of Au 4f showed two peaks at binding energies of 83.92 eV and 87.62 eV, assigned to the doublets of 4f7/2 and 4f5/2, respectively. This confirms the presence of zero valent gold (Au0) in Au-PANI nanocomposite. The N1s core level spectrum (Figure 2d) revealed the presence of three different electronic states: quinoid imine (=N=), benzenoid amine (–NH–) and nitrogen cationic radical (N+) at binding energies of 398.4 eV, 399.5 eV and 401.1 eV, respectively; which matches well with the previous reports for PANI. [29] The core level spectrum of N1s in PANI-Au displayed a higher binding energy peak (400.6 eV) in comparison to that in PANI (400 eV) (Figure S2c). While the Au 4f spectrum in shifted to a lower binding energy compared to pure gold (Figure S2d). These results revealed a significant chemical interaction between gold and polyaniline where a strong bond was formed via the charge transfer process with PANI and gold nanoparticles as donor and acceptor, respectively. [30]

Raman spectra of PANI, Au-NC and different Au-PANI nanocomposites over the range of 2000 cm⁻¹ to 200 cm⁻¹ are shown in Figure 2e. For PANI, peaks at 1589 cm⁻¹ and 1554 cm⁻¹ represent the C-C stretching vibration in quinonoid ring and N-H deformation vibration in semi-quinonoid units, respectively. Peaks at 1456 cm⁻¹ and 1340 cm⁻¹ can be attributed to the C-N stretching vibration in the quinonoid structure, the C=N- vibration of delocalized polaronic structure[31] respectively. The C-N stretching vibrations of different benzenoid, quinoid or polaronic forms and benzene ring deformations can be matched to the peak at 1241 cm⁻¹. Raman intensities of all these characteristic peaks of Au-PANI were significantly increased when compared to pure PANI. This can be attributed to the surface enhanced Raman scattering (SERS) effect due to the increased roughness of Au NPs and the enabling of easy charge transfer after forming nanocomposites[32]. For Au-NC, the peaks at 1350 cm⁻¹ and 1580 cm⁻¹ represent the disorder band (D) and graphitic band (G), respectively.

Thermal stability of Au-PANI nanocomposite, Au, Au-NC and PANI was analyzed by using TGA in air atmosphere (Figure 2f). For PANI and Au-PANI composites, a small weight loss was observed below 100 °C due to the expulsion of absorbed water; the slow weight loss from 100 to 250 °C can be attributed to the removal of PANI oligomers. Over the range from ~360 to 420 °C, they all displayed a rapid weight loss process, which may be caused by the oxidative decomposition of polymer backbone. The negligible weight loss for Au-NC and Au indicates their thermal stability in the air. Based on the thermal stability profile, the content of Au in Au-PANI, Au-PANI2, Au-PANI3 were estimated as 82%, 88%, and 91% respectively. These contents were higher than the theoretical values of 52%, 69% and 77% calculated from the reactants in the reaction. This may be explained by the dissolution of short chain PANI oligomers in the reaction mixture and the limited growth of PANI chain at relatively low Au content[33]. The amount of Au in Au-NC composites was 97%. Moreover, for those Au-PANI composites, the onset temperature of thermal degradation shifted to a higher degree by ~60 °C compared to that of pure PANI, indicating a higher thermal stability due to the strong interaction between PANI and Au nanoparticles[33].

The CO₂ER performance on Au, PANI, Au-PANI and Au-NC catalysts were first assessed by linear sweep voltammetry (LSV) studies (Figure 3a). All the Au containing catalysts exhibited much higher current densities and more positive onset potentials compared to PANI in CO₂-saturated 0.1 M KHCO₃, much higher LSV currents compared to that in argon (Ar)- saturated electrolyte (Figure S3). Specifically, all Au-PANI nanocomposites show low onset potentials of ~0.3 V vs. RHE, which was favorable compared to Au (~0.4 V) and Au-NC (~0.5 V). These results give an initial indication about the positive impact of the interaction between Au and PANI and influencing the CO₂ER ability.

We further examined the CO₂ER performance by a series of controlled-potential electrolysis experiments. The iR-corrected total current densities showed similar trends to the LSV results (Figure 3b, Figure S4). Au-PANI, Au-PANI2 and Au-PANI3 displayed similar total current densities during the CO₂ reduction process; they were all higher than that of Au NPs and Au-NC. It confirms that PANI played an important role in the CO₂ reduction on these composite electrodes. The products generated were H₂ and CO. The faradaic efficiency (FE) of CO on all Au-PANI electrodes displayed a volcano-like behavior in the applied potential range. It reached a maximum FE at ~0.9 V (corresponding to an overpotential of 790 mV for CO formation) (Figure 3c).

Au NPs displayed a different trend from those for Au-PANI samples. A higher FE of CO was observed from ~0.5 V to ~0.6 V due to high intrinsic activity of Au nanoparticles for CO₂-to-CO conversion. This may be ascribed to the strong binding of reaction intermediate COOH* at the catalytic sites. The decreased CO formation efficiency from ~0.7 V to ~1.1 V (Figure S5a) may be attributed high coverage of *H intermediate and poor stability of *COOH intermediate on the catalytic sites under more negative cathodic potential. Such phenomenon has been previously reported.[10a, 34] The catalyst PANI alone merely generated H₂ over the whole range of applied potentials, consistent with the previous reports.[19] Au-PANI composites showed enhanced CO₂ER performance at the more negative potential range, from ~0.7 to ~1.1 V, and reached a maximum faradaic efficiency of CO formation at ~0.9 V. This may be attributed to the increased stability of reaction intermediate. Influence of PANI was further confirmed by the controlled potential experiments on Au-NC, a carbonized PANI structure. It displayed a faradaic efficiency of only 23% for CO formation at ~0.9 V, much lower than that of 85% on Au-PANI2. Therefore, this confirms that the presence of PANI on gold improved the CO₂ electroreduction performance.

Among all the examined Au-PANI composite electrodes, Au-PANI2 exhibited the highest FE of CO by over ~10% compared to Au-PANI1 at the potentials more negative than ~0.7 V. Specifically, at ~0.9 V the FE was 85% higher than that for Au-PANI1 (70%) and Au-PANI3 (70%) At ~0.7 V, Au-PANI2 displayed a FE of 68%, higher or comparable to that exhibited (~60%) by carbon black-AuNP composite electrodes[10d] and ultrathin Au nanowires (~65%) with dominant edge reactive sites.[10d] The difference in catalytic performance on these three Au-PANI electrodes may be attributed to the utilization of an optimal Au and PANI content in
the composite. As the molar ratio of gold to aniline increased from 1 to 2, the composite showed a FE$_{\text{CO}}$ increase by ~15%. The increased FE$_{\text{CO}}$ may be explained by the effective interaction between Au and PANI, which is responsible for the absorption of CO$_2$ molecules and the subsequent conversion and product desorption. It may also explain the decreased FE$_{\text{CO}}$ by 5% when the molar ratio was further increased to 3.

The excellent electrocatalytic ability of Au-PANI electrodes for reducing CO$_2$ was further verified by the increased geometric CO partial current density (j_{CO}) compared to Au NPs and Au-NC (Figure 3d). At -0.9 V, Au-PANI exhibited a j_{CO} of 11.6 mA cm$^{-2}$, which was about four times higher than that of Au-NC (2.18 mA cm$^{-2}$) and seven times higher than that of Au NPs (1.4 mA cm$^{-2}$). The synthesized Au NPs with an average size of ~10 nm displayed a low current density may be attributed to the low number of active sites available. It has been reported that Au NPs in size of more than 8 nm exhibit a low current density$^{[34]}$. Our results are comparable to the reported current density of 0.35 mA cm$^{-2}$ at -0.5 V for Au NPs with an average size of more than 20 nm$^{[35]}$ and -1.3 mA cm$^{-2}$ at -0.7 V for Au NPs with an average size of more than 9 nm.$^{[36]}$ It further evidences the critical role of PANI in the Au-PANI composite for CO$_2$ reduction. More specifically, PANI can effectively trap gaseous CO$_2$ by interaction to the amine groups in PANI through interaction with the N lone pair to create a new σ-electron bond.

![Figure 3](image-url)
Figure 3. Electrochemical CO$_2$ reduction performance in CO$_2$-saturated 0.1 M KHCO$_3$. (a) LSV scans of PANI, Au, Au-NC and Au-PANI at a scan rate of 1 mVs$^{-1}$; (b-d) Geometric total current densities (b), FE$_{\text{CO}}$ (c) and j_{CO} (d) at various potentials for all Au-PANI, Au-NC and Au catalysts; (e-f) FE$_{\text{CO}}$ (column) and CO mass activity at -0.8 V (e) and Tafel plots (f) of Au-PANI, Au and Au-NC catalysts for CO production.

The synergistic interaction between Au and PANI promotes the catalytic activity of Au-PANI nanocomposites for CO$_2$ reduction via facilitating CO$_2$ adsorption and stabilizing reaction intermediate (*COOH) on negatively charged Au center, which is realized through the direct axial coordination of amino groups to the gold catalytic centre via strong σ-electron donation. As a result, the CO$_2$ activation on the metal centre is facilitated, and the formation of CO follows the metal centred reaction mechanism via nucleophilic attack of the centre on the CO$_2$ molecule due to the higher electron density on the metal centre provided by PANI.$^{[18]}$

Mass activity is one of the most influential parameters for noble metallic catalysts in terms of their feasibility for large-scale application. Figure 3e highlights the FE$_{\text{CO}}$ and CO mass activities
of all Au-PANI nanocomposites, Au-NC and Au at -0.8 V. Au-PANi2 showed a 76% faradaic efficiency for CO production whereas Au and Au-NC displayed a 53% and 23%, respectively. It further distinctly unveils the promoted catalytic effect of PANI on Au. Au-PANi2 displayed high mass activities for the CO2-to-CO conversion at moderate overpotentials ranging from -0.7 to -0.9 V. For example, a mass activity of 14.2 A g⁻¹ at -0.8 V outperformed that reported (6 A g⁻¹) on 4 nm Au NPs on carbon black.[10a]

To gain an understanding about the underlying mechanism of CO formation on these electrodes, Tafel plots were performed (Figure 3f, Figure S5b). Au-PANi2 exhibited a slope of 168 mV dec⁻¹, which indicates that the initial single-electron transfer forming CO₂⁻ intermediates is the rate-determining step for CO2-to-CO conversion. In contrast, Au NPs and Au-NC respectively demonstrated a much higher slope of 288 mV dec⁻¹ and 345 mV dec⁻¹, evidencing their sluggish kinetics. The improved kinetics for CO formation on Au-PANI may be mainly attributed to the enhanced adsorption of CO₂ from the support of polyaniline and subsequently the formation of *COOH intermediates and fast desorption of CO due to the weak binding of CO.[18]

The stability of the best performing Au-PANI2 nanocomposite for CO₂ER was investigated at -0.65 V (Figure S6a). It showed a stable current density during the 8 h electrolysis with a slightly increased FE of 18% in the first 2 h from 68% to 70%. This slight increase may be ascribed to the improved accessibility of electrolyte containing reactants (proton and CO₂) to the active sites. The increased concentration of cations (H⁺ and K⁺) generated by the electric field during the CO₂ reduction process may contribute as well.[37] Whereas, Au-NC and Au displayed a descending current density and FE of CO₂ throughout 5 h and 6 h electrolysis (Figure S6a), respectively. The initial current density of Au-NC was 3 mA cm⁻² and dropped to 2.3 mA cm⁻²; while the FE of CO₂ decreased from 27% to 20%. Au NPs exhibited an initial current density and FE of 0.37 mA cm⁻² and 57%, and dropped to 0.29 mA cm⁻² and 50%. These results clearly demonstrate the influence of polyaniline on the stability of the composite catalysts as well. PANI layer on the gold core facilitates the charge transfer and improve the stability of the metallic centre via weakened binding of CO. It should be noted that the Au-PANI catalyst did not exhibit good stability at a more negative potential of -0.90 V (Figure S6b), suggesting the instability of such small Au NPs under high overpotentials; this phenomenon has been reported for different catalysts including Au NPs stabilized with citrate.[18, 38]

Conclusion

In summary, a shape tailored gold-polyaniline nanocomposite electrocatalyst is synthesized via a single-step method. It is in a core-shell structure with gold as the core and PANI as the shell. The formation of this nanocomposite proceeds through the redox reaction between aniline monomer and gold salt; and is influenced by the ratio between reactants. This catalyst has been used to catalyse CO₂ reduction with high selectivity and activity. The interaction between Au NPs and amine links in PANI through σ electron donation facilitates CO₂ desorption and stabilizes the reaction intermediate *COOH. Hence, the introduction of PANI on Au NPs significantly promotes conversion of CO₂-to-CO. The soft nature of PANI with excellent tenability facilitates the formation of composites with a variety of metals.[39] Therefore, this work may motivate the development of core-shell structured conducting polymer/metal nanoparticles as catalysts for CO₂ER.

Experimental

Materials: Aniline monomer (≥ 99.5%, ACS reagent), gold (III) chloride trihydrate (HAuCl₄·3H₂O, ≥ 99.9%), potassium bicarbonate (KHCO₃, ≥ 99.9%), ammonium peroxodisulfate (APS), sodium borohydride (NaBH₄) and Nafion® 117 solution (5 wt%) were purchased from Sigma–Aldrich. Carbon paper (SIGRACET® GDL 38AA, 225 ± 30 µm) was purchased from SGL Carbon GmbH. Ultrapure Mill-Q water (18.2 MΩ-cm) was used in this work.

Materials synthesis and electrode fabrication

Synthesis of gold nanoparticles (Au NPs): This synthesis was performed by adopting a previously reported method.[40] Typically, HAuCl₄ solution (200 µL, 0.1 M) was added into Milli-Q water (100 mL) and mixed. Then these two solutions were quickly mixed and kept in an ice bath (0 °C) for 24 h under continuous stirring at 1000 rpm. The colour of the solution changed from light yellow to dark green. After the reaction, the solution was filtered and solids were collected, followed by a rinsing process with water and a drying process in a vacuum oven at 60 °C overnight.

Synthesis of PANI: A common chemical synthesis method was applied. Briefly, aniline monomer (16 mmol) and ammonium persulfate (APS, 4 mmol) were separately dispersed in a HCl aqueous solution (1 M, 50 mL). Then these two solutions were quickly mixed and kept in an ice bath (0 °C) for 24 h under continuous stirring at 1000 rpm. The colour of the solution changed from light yellow to dark green. After the reaction, the solution was filtered and solids were collected, followed by a rinsing process with water and a drying process in a vacuum oven at 60 °C overnight.

Synthesis of gold-polyaniline (Au-PANI): The reported procedure by Wang et al.[29] was adopted. Briefly, aniline monomer (0.18 ml) was added into Milli-Q water (20 ml), followed by the addition of HAuCl₄ aqueous solution (0.1 M, 0.2 ml). This mixture was kept under stirring for 16 h at room temperature. The formed product was collected by filtration and washed with deionized water and ethanol until the filtrate became colourless, and then vacuum-dried at 60 °C for 24 h to obtain gold nanoparticles (Au NPs).

Carbonisation of Au-PANI nanocomposites: Au-PANI nanocomposites were heated to 800 °C at a rate of 5 °C/min and held at 800 °C for 3 hours in N₂ atmosphere to form Au-N-doped carbon composite (Au-NC).

Fabrication of working electrode. Catalyst inks were prepared by mixing the catalysts (Au-PANI, Au-NC and Au NPs; 60 wt%) and carbon black (Vulcan XC72, 40 wt%) with Nafion solution as the binder in a 50/50 solvent mixture of water and isopropanol. The above mixture was sonicated for 30 min, and then drop cast onto carbon paper (1 cm × 1 cm). Au-PANI electrodes were kept at 60 °C for 20 h in a vacuum oven. The loading mass of Au-PANI composite catalyst was about 0.5 mg cm⁻².
Materials Characterisation

Structural Characterization: Crystal structure was analysed by X-ray diffraction (XRD, GBC MTA diffractometer) with Cu Kα radiation at a scan rate of 3 degrees min⁻¹. Morphology was investigated by field emission scanning electron microscopy (FESEM, JEOL JSM-7500FA) and transmission electron microscopy (TEM, JEOL 2010). Dark field STEM imaging was performed on a JEOL JEM-ARM200F. X-ray photoelectron spectroscopy (XPS) spectra were collected by an SES2002 analyser (Scienta) with X-ray excitation from Al Kα radiation (hv = 1486.6 eV). The XPS binding energy spectra were recorded in the fixed analyzer transmission mode at a pass-energy of 20 eV. All the spectra were calibrated by C1s = 284.6 eV. Raman spectra were performed with a confocal Raman spectrometer (Jobin Yvon HR800, Horiba) using a 632.8 nm diode laser. Thermal gravimetric analysis (TGA) was performed using a Pyris Diamond thermogravimetric/differential thermal analyzer at a heating rate of 10 °C min⁻¹ in air flow.

Electrochemical Measurements: All the experiments were carried out in a gas-tight two-compartment glass H-cell. The cathodic and anodic compartments were separated by Nafion membrane. Each compartment of the cell held 30 mL of electrolyte with a headspace of ~20 mL. A piece of platinum gauze (1.5 cm × 1.5 cm) and an Ag/AgCl (3 M NaCl, BASI) electrode served as counter electrode and reference electrode. A 0.1 M KHCO₃ aqueous solution was used as electrolyte directly without any purification. Automatic IR compensation function on the potentiostat (CHI 650D) was used to correct all the potentials. The potentials measured against Ag/AgCl reference electrode were converted to the reversible hydrogen electrode (RHE) scale using the following equation, E_RHE = E_AgAgCl + 0.21 + 0.0591 × pH. The pH of the CO₂-saturated 0.1 M KHCO₃ was 6.8. The current density reported in this work was normalized to geometric area.

Prior to the CO₂ reduction reaction, the catholyte was saturated with CO₂ (99.99%, BOC Australia) for at least 30 min under a constant stirring rate of 700 rpm at a flow rate of 20.0 mL min⁻¹ controlled by a mass flow controller (GFC17, Aalborg®). Gas CO was continuously bubbled into the cathodic compartment and controlled by a constant stirring rate of 700 rpm at a flow rate of 20.0 mL min⁻¹. Gas CO reduction reaction, the catholyte was saturated with CO₂ for at least 30 min under a constant stirring rate of 700 rpm at a flow rate of 20.0 mL min⁻¹ controlled by a mass flow controller (GFC17, Aalborg®). Gas CO was continuously bubbled into the cathodic compartment and controlled by a constant stirring rate of 700 rpm at a flow rate of 20.0 mL min⁻¹. Gas CO was continuously bubbled into the cathodic compartment and controlled by a constant stirring rate of 700 rpm at a flow rate of 20.0 mL min⁻¹.

Acknowledgements

Funding from the Australian Research Council Centre of Excellence Scheme (CE 140100012) is acknowledged. The authors thank Australian National Fabrication Facility-Materials Node (ANFF) and UOW Electron Microscopy Centre for equipment use.

Keywords: Carbon Dioxide Reduction • Catalyst • Gold • Nanocomposite • Polyamine

References:
Core-shell structured gold-polyaniline nanocomposite in shape tailored posy bouquet morphology is synthesized via a self-induced redox reaction. It demonstrates an excellent electrocatalytic activity towards the CO$_2$-to-CO conversion. The PANI shell plays a critical role in catalysing the CO$_2$ reduction.