Ferroelectrically tunable magnetism in BiFeO3/BaTiO3 heterostructure revealed by the first-principles calculations

Wenxuan Wang
Wei Sun
Guangbiao Zhang
Fengzhu Ren
Yuanxu Wang

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Ferroelectrically tunable magnetism in BiFeO3/BaTiO3 heterostructure revealed by the first-principles calculations

Abstract
© 2020 The perovskite oxide interface has attracted extensive attention as a platform for achieving strong coupling between ferroelectricity and magnetism. In this work, robust control of magnetoelectric (ME) coupling in the BiFeO3/BaTiO3 (BFO/BTO) heterostructure (HS) was revealed by using the first-principles calculation. Switching of the ferroelectric polarization of BTO induce large ME effect with significant changes on the magnetic ordering and easy magnetization axis, making up for the weak ME coupling effect of single-phase multiferroic BFO. In addition, the Dzyaloshinskii-Moriya interaction (DMI) and the exchange coupling constants J for the BFO part of the HSs are simultaneously manipulated by the ferroelectric polarization, especially the DMI at the interface is significantly enhanced, which is three or four times larger than that of the individual BFO bulk. This work paves the way for designing new nanomagnetic devices based on the substantial interfacial ME effect.

Keywords
tunable, magnetism, bifeo3/batio3, heterostructure, revealed, first-principles, ferroelectrically, calculations

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Wenxuan Wang, Wei Sun, Guangbiao Zhang, Fengzhu Ren, Yuanxu Wang, Caiyin You, and Zhenxiang Cheng

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/4168
Ferroelectrically tunable magnetism in BiFeO$_3$/BaTiO$_3$ heterostructure revealed by the first-principles calculations

Wenxuan Wanga, Wei Suna, Guangbiao Zhanga, Fengzhu Rena, Yuanxu Wanga,b, Caiyin Youc, Zhenxiang Chenga,d,*

aInstitute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China
bNational Demonstration Center for Experimental Physics and Electronics Education, School of Physics, Henan University, Kaifeng 475004, People's Republic of China
cSchool of Materials Science & Engineering, Xi'an University of Technology, Xi'an 710048, People's Republic of China
dInstitute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia

ARTICLE INFO

Article history:
Received 19 January 2020
Revised 22 April 2020
Accepted 23 April 2020
Available online 5 May 2020

Keywords:
First-principles
Multiferroic heterostructure

ABSTRACT

The perovskite oxide interface has attracted extensive attention as a platform for achieving strong coupling between ferroelectricity and magnetism. In this work, robust control of magnetoelectric (ME) coupling in the BiFeO$_3$/BaTiO$_3$ (BFO/BTO) heterostructure (HS) was revealed by using the first-principles calculation. Switching of the ferroelectric polarization of BTO induce large ME effect with significant changes on the magnetic ordering and easy magnetization axis, making up for the weak ME coupling effect of single-phase multiferroic BFO. In addition, the Dzyaloshinskii-Moriya interaction (DMI) and the exchange coupling constants J for the BFO part of the HSs are simultaneously manipulated by the ferroelectric polarization, especially the DMI at the interface is significantly enhanced, which is
Among all single phase multiferroic materials, BiFeO₃ (BFO) take to be realized at room temperature for practical application. The multiferroics lies in the ability to control magnetism by using ferromagnetism (FM) and ferroelectricity (FE) of epitaxial BFO films on the SrTiO₃ (STO) substrate. The epitaxial growth process, the in-plane lattice constant of the BFO/SrRuO₃ (BTO) heterostructures is constrained to the value of the BTO (both are P4mm space group) [38-40], e.g. the recently reported of BaTiO₃ (BTO)/SrRuO₃ (BTO) HSs [41]. The investigation of these epitaxial systems suggest greater flexibility and possibility of coupling between ferroelectricity and ferromagnetism via DMI effect in artificially designed HSs interfaces. In addition, the interfacial DMI magnitude of the HSs is three or four times larger than that of the BFO bulk with the presence of the switchable ferroelectric polarization. The ability to comprehend and control the sign and strength of DMI by ferroelectric polarization will be a new mechanism to design future nanoscale magnetic devices.

Material and methods

Our first-principles calculations were performed within the framework of Perdew-Burke-Ernzerhof function revised for solids (PBEsol) [52]. The exchange and correlation terms was described by general gradient approximation (GGA) using the Vienna ab initio Simulation Package (VASP) [53]. The core electrons were replaced by the projector augmented wave (PAW) method [54]. The plane-wave kinetic-energy cutoff was 500 eV and the Brillouin zone was sampled on 8 × 8 × 8 and 5 × 5 × 1 Monkhorst-Pack k-points [55] for bulks and HSs, respectively. The criteria of atom force convergence were less than 0.001 eV/Å. The model was described using a periodically repeated in-plane supercells of \(\sqrt{2} \times \sqrt{2} \) to explore the magnetic properties and the magnetic exchange coefficient \(J \). A vacuum space of 15 Å along the z direction was adopted to avoid periodic interaction, and it is thick enough to avoid electrostatic interaction (See Supplementary Information). To properly account for the strong Coulomb interaction on the 3d orbitals of Fe ions, the effective onsite Hubbard \(U \) correction are set as 5 eV with the Dudarev implementation [56]. Moreover, we consider the spin–orbit coupling during the calculation of the magnetic anisotropy energy (MAE) and DMI. MAE is calculated by the total energy difference between the out-of-plane and the in-plane spontaneous polarization was observed in one-unit-cell-thick BFO films on SrTiO₃ substrate [63]. During the simulated epitaxial growth process, the in-plane lattice constant of the BFO/BTO HSs is constrained to the value of the BTO \((a = b = \sqrt{2}a_{BTO} = 5.65 \text{ Å}) \) substrate to simulate epitaxial growth, where BFO \((\sqrt{2}a_{BFO} = 5.45 \text{ Å}) \) contains a 3.5 % tensile strain in the xy-plane. The ionic coordinates are completely relaxed to reach equilibrium. In our calculation, we simulated an idealized abrupt (hard) electric field on the substrate, thus achieving effective control of the magnetic properties, including the DMI. Here, we designed a BTO/BFO HSs using first-principles calculations to explore ME coupling effect by the tunable ferroelectric polarization of BTO. Such HSs demonstrate ferroelectrically controllable magnetism, i.e. the tuning of antiferromagnetism (AFM) to FM, as well as the switching of easy magnetization between the in-plane and out-of-plane axes. In addition, the interfacial DMI magnitude of the HSs is three or four times larger than that of the BFO bulk with the presence of the switchable ferroelectric polarization. The ability to comprehend and control the sign and strength of DMI by ferroelectric polarization will be a new mechanism to design future nanoscale magnetic devices.
interface without any defects and atoms diffusion in the HS. Artificial stacking was performed along the (0 0 1) direction for the HSs construction. The BFO/BTO HSs contain 4 monolayers (MLs) of the BTO part, and the bottom two 2 MLs were fixed during the relaxation to simulate a very thick substrate. Note that we would not focus on the properties of these two fixed MLs in the following paper. The FE polarization of the BFO and BTO parts are all assumed to be along the [0 0 1] direction, as shown in Fig. 1. We calculated the interface energy to determine the stability of the HSs, which is defined as the difference between the total energy of HSs (E_{HS}) and the energy of BTO (E_{BTO}) and BFO (E_{BFO}) part with the same supercell constant, i.e., $E_{\text{ad}} = (E_{\text{BTO/BFO}} - E_{\text{BTO}} - E_{\text{BFO}})/A$. Moreover, the area of the interface in the HSs is indicated by $A = 31.92 \, \text{Å}^2$. The aforementioned equation can describe the thermodynamic stability of the interface when the energy released by combining the BTO and BFO parts into a HS. The calculated results show that the E_{ad} values of HSs in +z and −z states are $-0.097 \, \text{eV/Å}^2$, $-0.081 \, \text{eV/Å}^2$, respectively, and these negative values indicates that BFO can be epitaxial grown on the BTO substrate stably. It is worth noting that the process of polarization reversal needs to overcome an energy barrier, thus, it will not make the heterostructure spontaneously switch from the one state to the other, even if $P_\text{(+z)}$ state is more energetically favorable than the other. External electric field as driving force is needed to help the BTO cross the energy barrier, so as to realize the polarization reversal. In addition, the most stable magnetic structure of BFO is determined by collinear magnetic calculation.

Results and discussion

Prior to investigating the controllable magnetic properties by polarization, we first relaxed the bulk structure of BFO and BTO, and calculated the total and the projected density of states (DOS), as shown in Fig. 2. The results show that the bulk BTO is a non-magnetic insulator, as shown in Fig. 2 (a). While for the bulk BFO, the adjacent Fe spins are antiparallel, indicating that the bulk BFO is insulating with G-AFM ordering, as shown in Fig. 2 (a), which are in line with the experiments. In addition, the magnetic moment of Fe ion is 4.15 μ_B, which is close to the experimental value of 4.34 μ_B, indicating the rationality of the calculation parameters we used. We then built HS with different polarization states, as shown in Fig. 1. Since we assume that the in-plane lattice parameters of the HSs are the same as those of the BTO substrate, we only analyze the effect of polarization on the lattice parameters of the c direction. We show the change in the lattice parameter of the BFO and BTO part that relative to the bulk in c direction, that is $\Delta c = c_{\text{HS}} - c_{\text{bulk}}$, as shown in Fig. 4 (b–d). As expected, a comparatively decrease of Δc occurs on the BFO part rather than the BTO part when they form a HS. Such a reduction can lead to electron reconstruction, then further affecting the properties of BFO part with the presence of substrate polarization.

The calculated various physical properties of the HSs are shown in Table I. It can be clearly seen from the table that the magnetic properties of the BFO can be reversibly switched between AFM and FM ordering with the changing of the BTO two oppositely ferroelectric polarized states. Subsequently, the change between the in-plane and out-of-plane of easy axis occurs simultaneously, indicating that there is a strong and effective ME coupling in the HSs. Experimentally, we can apply an external electric field to drive the polarization reversal, and even if the electric field is removed, the polarization can exist stably. It means that the magnetic properties and the easy magnetization axis can be changed steadily between the two states. Therefore, such a two-dimensional (2D) multiferroic HSs have a promising future as nonvolatile storage material. The way in which materials are electrically write while magnetically read is expected to achieve low power consumption and to greatly improve the storage density of devices. In addition, we compare the anisotropic energy of the HSs with the bulk. Intriguingly, the magnetic anisotropy of the HSs in both polarization states of BTO is greater than the bulk value of BFO, which greatly improves the magnetic stability of the BFO part in the HSs.

In addition, the electrical conductivity of the HS has also changed and a two-dimensional electron gas is formed on the surface of the BFO part. For the perovskite materials, the conductivity and magnetic properties are always coupled together (i.e. coupling between metallicity and FM, insulation and AFM) affected by the indirect exchange between the magnetic atoms. The indirect exchange here refers to the FM double-exchange mediated by itinerant e_g electrons and AFM superexchange mediated by core spins [53]. It is noteworthy that the conductivity always exist in the BFO/BTO HSs in the form of 2D electron gas and do not affected by the appearance of AFM state, which makes the HS a metallic AFM. This provide a greater potential for the application of functional devices based on oxide perovskite materials.

To ensure that the tuning of the properties were not only occurring in the BFO film with specific thickness, we calculated the HSs systems containing different BFO layer thicknesses, and we labeled them as $1n$, $2n$, $3n$, $4n$ for simplicity according to the number of BFO layers contained in the HSs. The results show that the corresponding properties tuning are all the same as those summarized in Table 1. This indicated that the nonvolatile magnetic control induced by the polarization would not disappear without being affected by the thickness of the BFO layer (for thickness
polarization tuning of the magnetism of BFO part, role in determining BFO properties. Therefore, considering the interfacial properties of the HSs fabrication. Such a polarization switching results in the opposite sign of the DMI value, indicating that there is a magnetic transition between FM and AFM ordering in this layer, which further verifies that the coupling occurs between the polarization and interfacial magnetic ordering. In addition, the change of BTO polarization also led to a 180° switching of the D vector. Therefore, besides the manipulation of magnetic ordering and easy magnetization axis, the polarization can also control the DMI, especially the switching of the D vector at the surface. This greatly enriches the adjustable properties of BTO/BFO HSs with significance for the advancement of the new generation of magnetic devices.

To illustrate the underlining physical mechanism of ME coupling, we take 2n HSs as an example to analyze the system in details from an orbital perspective, as shown in Fig. 3. As can be seen intuitively in Fig. 3 (a), 2D electron gas appears on the surface layer of the HSs, which can be interpreted as the FE polarization competition between BFO and BTO part of the HSs. Such a polarization of BFO and BTO part is determined by the displacement between the anions and cations, as shown in Fig. 4. Moreover, this changing regularity of polarization has been confirmed to be applicable to all the HSs with different BFO thickness, as shown in Fig. 4(e–g). The polarization competition shows that, the BFO polarization is always along the –z direction due to the influence of the surface effect. Such a polarization in the –z direction results in the reduction of the electric potential at the surface, which leads to the DOS of the surface layer to pass through the Fermi level, then further facilitating the electrons transfer from the surface to the interior. In addition, the electron transfer is also affected by the polarization of the BTO part. In the P+ state, the polarization direction of the BTO is opposite to that of the BFO part, which weakens the number

$<16.32 \text{Å}$). Such a result greatly simplify the technological requirements of the HSs fabrication.

The magnetic moments of the HSs with different BFO thicknesses was given in Table 2. The HSs exhibit AFM ordering under the P+ states. While, when it switched to P– states, the local FM ordering appears on the surface of the HSs. This phenomenon applies to all of our BFO/BTO HSs with different BFO thicknesses. Unlike the regular interfacial properties in most other HSs, the change of the magnetic properties in the HSs are directly exposed to the external surface, which makes the device more sensitive to the detection and utilization of magnetism.

The BFO multiferroic material have intrinsic DM interaction (DMI) due to the ferroelectric structure distortion. Such an interaction enables the FM and FE to coupling together, playing a crucial role in determining BFO properties. Therefore, considering the polarization tuning of the magnetism of BFO part, D vector of DMI is an important parameter as well as magnetic exchange J. While J can be determined by mapping the calculated total energies for each magnetic state $E_{AFM1}, E_{AFM2}, E_{AFM3}$, as shown in Fig. 4 (a), to the Heisenberg model. (See the Supplementary Information). The exchange coupling constants are then given by the following equation:

$$J_1 = \frac{2E_{AFM1} - E_{AFM2} - E_{FM}}{16S^2}$$

$$J_2 = \frac{2E_{AFM1} - E_{AFM2} - E_{FM}}{16S^2}$$

$$J_3 = \frac{E_{AFM1} - E_{FM}}{4S^2}$$

where J_1 and J_2 is the intralayer nearest neighboring exchange coupling parameter, and J_3 are the interlayer nearest neighboring exchange coupling parameters, $S = 5$ is the moment. We calculated J and D both for bulk and the HSs, as shown in Table 3. On the one hand, for the interfacial layer of the HSs, we found that the interfacial J value was decreased slightly, while the D vector was greatly enhanced by more than three times compared to the bulk. Especially for the scenarios of P– state, the decrease rate of J value and the increase rate of D vector all are greater than those in the P+ state. This result is expected to provide the D vector a beneficial advantage in the competition with J under polarization tuning, thus possibly inducing the generation of magnetic skyrmion. On the other hand, for the surficial layer of the HSs, the polarization switching results in the opposite sign of the J value, indicating that there is a magnetic transition between FM and AFM ordering in this layer, which further verifies that the coupling occurs between the polarization and interfacial magnetic ordering. In addition, the change of BTO polarization also led to a 180° switching of the D vector. Therefore, besides the manipulation of magnetic ordering and easy magnetization axis, the polarization can also control the DMI, especially the switching of the D vector at the surface. This greatly enriches the adjustable properties of BTO/BFO HSs with significance for the advancement of the new generation of magnetic devices.

<table>
<thead>
<tr>
<th>P+</th>
<th>P–</th>
<th>2DMG</th>
<th>magnetic ordering</th>
<th>spin polarizability</th>
<th>MAE (meV)</th>
<th>easy axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>G-AFM</td>
<td>0%</td>
<td>2.74</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>local FM</td>
<td>74%</td>
<td>−2.06</td>
<td>001</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>P+</th>
<th>P–</th>
<th>2DMG</th>
<th>magnetic ordering</th>
<th>spin polarizability</th>
<th>MAE (meV)</th>
<th>easy axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>G-AFM</td>
<td>0%</td>
<td>2.74</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>local FM</td>
<td>74%</td>
<td>−2.06</td>
<td>001</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th></th>
<th>Interfacial-layer (meV)</th>
<th>Surficial-layer (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J Bulk</td>
<td>−2.40</td>
<td>−2.40</td>
</tr>
<tr>
<td>$P+$</td>
<td>−1.56</td>
<td>−0.58</td>
</tr>
<tr>
<td>$P–$</td>
<td>−1.44</td>
<td>0.87</td>
</tr>
<tr>
<td>D Bulk</td>
<td>−0.24</td>
<td>−0.24</td>
</tr>
<tr>
<td>$P+$</td>
<td>−0.71</td>
<td>0.15</td>
</tr>
<tr>
<td>$P–$</td>
<td>−0.82</td>
<td>−0.05</td>
</tr>
</tbody>
</table>
of electron transfer for the BFO part to some extent. While for the P-state, the two identical polarization direction greatly enhance the capability of the electron transfer. These results can also be verified by the calculation of the Bader charge.

Different electronic structures at the surface layer affect the magnetic properties of Fe ions under different polarized states. Further analysis were performed on the change of the magnetic ordering from an orbital perspective. As shown intuitively from Fig. 3 (b), the t_{2g} orbitals of the Fe ion are half-filled, while, the spin-down channel of the e_g orbitals are at the unoccupied state. The reversal of the BTO polarization merely affect the e_g electrons of the spin majority states. Such a switch role of polarization leads the e_g spin majority states pass through the Fermi level, resulting in a varying degrees of electron transfer. To quantitatively describe the number of electron transfer, we calculated the electron transfer of Fe-3d orbital in the HSs compared with bulk by integrating the density of states, as shown in Fig. 4 (h). In the P^+ state, only a slight electron transfer occurs in the e_g spin majority states, which makes the Fe-3d orbitals closely remain to being the half-filled high spin $d^5 (t_{2g}^1\cdot e_{g}^2)$ state. Therefore, the Fe ions will maintain the superexchange interaction between the Fe$^{3+}$–O$^{2-}$–Fe$^{3+}$, thus, a AFM ordering. For the P-state, the Fe ions maintain a high spin state, but there is a 0.32 electrons transferred emerging in the e_g spin majority states, which results in a mixture state of Fe$^{3+}$ $(t_{2g}^1\cdot e_{g}^2)$ and Fe$^{4+}$ $(t_{2g}^2\cdot e_{g}^1)$ in the layer. Additionally, a strong hybridization between the O-p_x and the Fe-e_g orbitals arises in the, as shown in Fig. 3 (b). This allows the surface to exhibit a local FM ordering through the Fe$^{3+}$–O$^{2-}$–Fe$^{4+}$ double exchange effect mediated by the itinerant electron.

Conclusion

In summary, we designed a BFO/BTO HSs to investigate the ME coupling effect using first-principles calculations. We achieved reversible switching of magnetic ordering and easy magnetization axis by switching polarization of BTO. Further analyses reveal that this strong ME coupling is mainly attributed to the different electronic structures caused by the competition between the polarization of BTO and BFO part. In addition, the electron transfer result in the conversion of the surficial exchange interaction from Fe$^{3+}$–O$^{2-}$–Fe$^{3+}$ superexchange to Fe$^{3+}$–O$^{2-}$–Fe$^{4+}$ double-exchange, then leading a change of the sign for the exchange constant J. Remarkably, we found that the magnitude of the DMI in BFO part of the HSs can be increased by three or four times larger than that of the bulk. Furthermore, the nonvolatile control of interfacial DMI vector and the exchange coupling constant are also dominated by the FE polarization. Our work provides a platform for experimental investigating of ME coupling in epitaxial perovskite oxide HSs.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge grants from the National Natural Science Foundation of China under research (Nos. 51571083 and 11674083) and Foundation of Postgraduate Education Innovation and Quality Improvement Project of Henan University (No. CX3040A0920215). Z.X. Cheng thanks Australia Research Council for support (DP190100150). Fengzhu Ren thanks The International Cooperation Project of Science and Technology of Henan Province for support (No. 182102410096).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jare.2020.04.012.

References

Fig. 4. (a) Four magnetic configurations for the HS with 2 MLs BiFeO3, red and blue arrows are used to distinguish different magnetic directions. The set of J1, J2 and J3 are labeled in the figure. (b–d) The change of the lattice parameter ΔC = CHS - C0 that relative to the bulk. The oxygen dimpling away from cations in the z direction for (e) the HSs with 4 BFO MLs, (f) the HSs in the P+ states, and (g) P- states with four kinds of BFO MLs. (b) The electron transfer numbers of the Fe-t2g and Fe-eg state at two polarization states.

