2014

The medicinal chemistry development for new antimicrobial chemotherapeutics

Adel Ahmed Rashad Ahmed

University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
THE MEDICINAL CHEMISTRY DEVELOPMENT FOR NEW ANTIMICROBIAL CHEMOTHERAPEUTICS

A thesis submitted in fulfilment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

From

UNIVERSITY OF WOLLONGONG

By

Adel Ahmed Rashad Ahmed

B. Pharm. Sci.(2005),

MSc. Med. Chem.(2009)

Supervisor: Assoc. Prof. Paul Keller

SCHOOL OF CHEMISTRY

August 2014
I, Adel Ahmed Rashad, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Adel Ahmed Rashad Ahmed

August 2014
Table of Contents

Certification .. i
Table of Contents ... ii
Publications ... v
Acknowledgements .. vi
Abstract .. vii
List of Abbreviations .. x

CHAPTER 1: Introduction ... 1

1.1. Classification, history and clinical features ... 1
1.2. Virology of the CHIKV ... 3
1.3. The development of CHIKV vaccine ... 6
1.4. Emerging novel CHIKV targets ... 7
 1.4.1. Non-structural proteins .. 8
 1.4.1.1. Non-structural protein 1 ... 8
 1.4.1.2. Non-structural protein 2 ... 8
 1.4.1.3. Non-structural protein 3 ... 12
 1.4.1.4. Non-structural protein 4 ... 14
 1.4.2. Structural proteins ... 15
1.5. Highlights for the CHIKV emerging targets .. 19
1.6. Development of chemotherapeutics against CHIKV: new medicinal chemistry leads 20
 1.6.1. Protease inhibitors ... 20
 1.6.2. Furin inhibitors ... 22
 1.6.3. Chloroquine and Quinine ... 23
 1.6.4. Ribavirin and 6-Azauridine ... 24
 1.6.5. Arbidol ... 25
 1.6.6. Mycophenolic acid (MPA) ... 26
 1.6.7. Trigocherrin A .. 27
 1.6.8. Trigowiin A, Prostratin and 12'-O-Tetradecanoylphorbol 13-Acetate 27
 1.6.9. Lupenone and β-amyrone ... 28
 1.6.10. Harringtonine ... 29
 1.6.11. Purine based inhibitors.. 29
 1.6.12. Polyinosinic acid ... 30
 1.6.13. Gene silencers .. 31
1.7. Highlights for CHIKV inhibitors ... 31
1.8. Concluding remarks .. 33
1.9. Project aims ... 34

CHAPTER 2: The Search for Anti-CHIKV Lead Compounds 35
2.1. Introduction ... 35
2.2. Synthesis of the meta-nitro AAPM derivative ... 37
2.3. Modification in the amine side chain of the AAPM derivatives 46
2.4. Decreasing the steric hindrance of the dimethyl groups 48
2.5. Replacing the 4,6-dichloropyrimidine with 4-chloropyridine 50
2.6. Concluding remarks ... 62

CHAPTER 3: Modelling Study of the CHIKV nsP3 as a Possible Drug Development Target ... 64
3.1. Introduction ... 64
3.2. Results and discussion: .. 66
3.3. Synthesis of pose_3_2 (86) ... 77
3.4. Concluding remarks .. 80

CHAPTER 4: Synthesis of Mycophenolic Acid Analogues as Inhibitors of the Chikungunya Virus ... 83
4.1. Introduction ... 83
4.2. Design of MPA analogues .. 84
4.3. Synthesis of the aromatic heads ... 86
 4.3.1. Synthesis of the isobenzofuran-1(3H)-one (benzolactones) 86
 4.3.2. Synthesis of the isatin aromatic heads ... 90
4.4. Coupling of the aromatic heads ... 94
 4.4.1. Coupling with the isobenzofuran-1(3H)-one 94
 4.4.2. Coupling with the isatin aromatic heads .. 110
4.5. Concluding remarks .. 114

CHAPTER 5: Computational and Modelling Studies of the CHIKV nsP2 as a Possible Drug Development Target ... 117
5.1. Introduction ... 117
5.2. Results and discussion: ... 120
 5.2.1. Protease active site (domain C) ... 120
 5.2.2. N domain binding site .. 122
5.3. Virtual screening with the CHIKV nsP2 .. 123
 5.3.1. Analysis of the C domain virtual screening results 136
 5.3.2. Analysis of the N domain virtual screening results 141
5.4. Concluding remarks .. 144

CHAPTER 6: Structure Based Design towards the Identification of Novel Binding Sites and Inhibitors for the Chikungunya Virus Envelope Proteins 146

6.1. Introduction ... 146
6.2. Results and discussion .. 149
 6.2.1. Identification of novel binding sites ... 149
 6.2.2. Virtual screening with the CHIKV envelope proteins 150
6.3 Analysis of the docking calculations .. 173
6.4. Concluding remarks .. 180

CHAPTER 7: New Leads for African Trypanosomiasis .. 181

7.1. Introduction ... 181
7.2. Results and discussion .. 184
7.3. Concluding remarks .. 193

CHAPTER 8: Conclusions and Future Directions ... 194

8.1. Chapter 2: The Search for anti-CHIKV lead compounds 194
8.2. Chapter 3: The CHIKV nsP3 ... 197
8.3. Chapter 4: Mycophenolic acid analogues .. 198
8.4. Chapter 5: The CHIKV nsP2 ... 200
8.5. Chapter 6: The CHIKV envelope proteins ... 201
8.6. Chapter 7: New leads for african trypanosomiasis ... 203

CHAPTER 9: Experimental ... 205

9.1. Chemistry .. 205
9.2. In silico experiments .. 284
 9.2.1. CHIKV non-structural protein 2 (nsP2) ... 284
 9.2.2. CHIKV envelope proteins ... 286
 9.2.3. CHIKV non-structural protein 3 (nsP3) ... 289
9.3. Biological evaluation .. 290
 9.3.1. Anti-Chikungunya evaluations ... 290
 9.3.2. Trypanocidal activity evaluation .. 290

CHAPTER 10: References ... 293

Acknowledgements

First and foremost, to Paul Keller, his keen supervision, expertise, encouragement and patience has enriched these years with an extremely astonishing experience. His good care and advice has had great influence on developing me as a scientist. I have gained a fruitful experience in chemistry, team working as well as scientific writing skills based on his directions. This has greatly allowed me to develop my career as an academic and a researcher.

To all members of the Keller research group, I have enjoyed working with you all and we have spent very good times together inside and outside the lab. I have also gained lots of different experiences from the different cultures and expertise backgrounds within the group. Special thanks to Andrew Stevens, my first lab colleague, for our fruitful discussions during my early days. I would like also to thank Mohammed for his guidance in molecular modelling.

Special thanks and gratitude to those who were responsible for the biological evaluation; Prof. Johan Neyts and Dr. Pieter Leyssen, Rega Institute of Medical Research, Belgium, for the anti-chikungunya testing, Prof. Suresh Mahalingam, Emerging Viruses and Inflammation Research group, Institute for Glycomics, Griffith University, for the anti-chikungunya testing and to Dr. Amy Jones, Discovery Biology, Eskitis Institute, Brisbane Innovation Park, for the anti-trypanosoma testing.

Thanks to Dr. Wilford for training on NMR machines and his guidance and fruitful discussions along the way with the NMR problems during this work.

A huge thanks to Dr. Glennys for all of the first year teaching opportunities as well as always checking to see how I was going, discussing the situation in Egypt and asking about my family.

Finally, I would like to express my deepest thanks and gratitude to my family member; my parents, sisters and brother, for their emotional support and encouragement. Huge thanks to my wife, for her support, love and her belief in me, which has greatly pushed me to keep going through this degree.

To everybody in the school of chemistry, thank you very much for the excellent friendly environment.
Abstract

Chapter 2 discusses the synthesis of the arenearylpyrimidylmethanes (AAPMs) series was investigated to further develop the structure activity relationships (SAR) of these compounds as potential anti-chikungunya virus agents. 1-(4,6-Dichloropyrimidin-5-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol was prepared in 50% yield. Subsequent dehydration and amination gave the intermediate 4-amino-6-chloro-5-(2-methyl-1-(3-nitrophenyl)prop-1-en-1-yl)pyrimidine in 90% yield, over two steps. Final amination using either 1-amino-3-(diethylamino)propan-2-ol or \(N^1, N^4 \)-diethylpentane-1,4-diamine was attempted using several conditions, however, the desired final AAPM derivatives were not obtained.

Further modification of the synthetic protocol was achieved through the replacement of the 4,6-dichloropyrimidine with the less hindered 4-chloropyrididine. The 4-chloropyridin-3-yl alcohols were prepared in 42-52% yield. Subsequent dehydration afforded the 4-chloropyridine alkenes in 62-85% yield. Final replacement of the chlorine atom with the amine \(N^1, N^4 \)-diethylpentane-1,4-diamine was attempted under different conditions, however, the desired products were not obtained. Instead the 3-(cyclobutylidene(4-phenoxy(pyridin-3-yl)methyl)aniline was isolated when using phenol as a solvent for the amination reaction. Replacement of the \(N^1, N^4 \)-diethylpentane-1,4-diamine with the secondary amine morpholine gave 4-(3-(cyclopropylidene(3-nitrophenyl)methyl)pyridin-4-yl)morpholine in 65% yield.

Chapter 3 discusses a development of a virtual screening computer model for the Chikungunya virus (CHIKV) non-structural protein 3 (nsP3) macro domain, using the ADP-ribose binding site as a possible druggable pocket for potential inhibitors. The NCI diversity set III of 1990 compounds were screened against the nsP3 using Autodock Vina as the virtual screening engine with 17 hits initially identified as stronger ligands than the original co-crystallized ligand (ADP-ribose). The hits were further screened in a second round docking using Autodock 4 where 7 hits were ranked higher than ADP-ribose. The \(N^1, N^4 \)-bis(3-(1H-benzo[d]imidazol-2-yl)phenyl) terephthalamide hit achieved a binding energy (\(\Delta G_{\text{bind}} \)) of -11.31 Kcal/mol and a predicted inhibitory constant (\(K_i \)) value of 5.1 nM and was selected for further in silico docking-based optimization. As a result, \(N^1, N^2 \)-bis(3-(5-cyano-1H-benzo[d]imidazol-2-
yl)phenyl)oxalamide was selected as an optimized ligand with ΔG_{bind} of -13.12 Kcal/mol and K_i value of 0.239 nM, a more than 21 fold improvement in the combined in silico binding profile to the nsP3 active site. This optimized ligand was chemically accessed in three facile synthetic steps, starting with the synthesis of the 2-(3-nitrophenyl)-1H-benzo[d]imidazole-5-carbonitrile. Subsequent reduction of the nitro group afforded the 2-(3-aminophenyl)-1H-benzo[d]imidazole-5-carbonitrile in 80% yield. Reaction with oxalyl chloride finally afforded the target optimized hit in 69% yield. Compounds are under anti-chikugunya and cytotoxicity evaluation.

In chapter 4, a series of benzolactone-acid conjugates, benzolactone-tetrazole conjugates and isatin-acid conjugates were prepared as mycophenolic acid derivatives to be evaluated as potential inhibitors for the CHIKV. The benzolactones were synthesised through the Pd catalysed cyclization of benzoic acids. The isatin cores were accessed from the corresponding aniline derivatives. Suzuki coupling with 3-(3-boronophenyl)propanoic acid afforded the acid conjugates. The tetrazole conjugates were accessed via two pathways: the formation of the acetonitrile intermediates via a Suzuki reaction with either 3-(3-boronophenyl)propanoic acid or 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile, with subsequent cycloaddition reaction with NaN₃. The second pathway to access the tetrazole conjugates was through a one step Suzuki reaction with the synthesized potassium 5-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)methyl)tetrazol-1-ide. The synthesized benzolactones-acid conjugates, benzolactone-tetrazole conjugates and isatin-acid conjugates have drug like qualities, as they are water soluble and have LogD₅.₅ values in the range of 1-4. Therefore, this series could be further developed as orally bioavailable compounds. These compounds are under anti-chikugunya evaluation.

In chapter 5, the crystal structure of the CHIKV nsP2 (the viral protease) was investigated for druggable binding sites for the development of possible inhibitors. Two sites were detected, one within the proteolytic C domain, and one within the NTPase/RTPase N domain. A computer virtual screening model was developed for each site, where the Life Chemicals cysteine protease inhibitor library of 28,960 compounds was screened in both sites using the FRED virtual screening engine. The interacting
residues were determined for each hit. A second round of refining docking was performed on the top FRED hits, using Autodock. The top 5 hits in each site were recorded and purchased for anti-chikungunya evaluation.

Chapter 6 discusses the development of a virtual screening computer model to identify novel binding sites for the chikungunya envelope glycoproteins. The model enabled the identification of possible antagonists for these sites through virtual screening using two successive docking scoring functions; FRED docking for fast precise screening, with the top hits then subjected to a ranking scoring using the Autodock algorithm. Both the immature and the mature forms of the chikungunya envelope proteins were included in the study to increase the probability of finding positive and reliable hits. Some small molecules were identified as good in silico chikungunya virus envelope proteins inhibitors, representing templates for drug design targeting this virus.

In chapter 7, three facile synthetic steps were developed to synthesize analogues for the lead \(N\)-(1-(ethyrsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2-fluorobenzenesulfonamide that was discovered through a high throughput screening of 87,926 compounds (WEHI 2003) library against Trypanosoma brucei. The first step in the synthetic pathway was the sulfonation of the secondary amine of the commercially available 7-nitrotetrahydroquinoline using the appropriate sulfonyl chlorides. Subsequent reduction using Raney Nickel and hydrazine hydrate afforded the 7-amino tetrahydroquinoline intermediates which were reacted with the appropriate sulfonyl chlorides to afford the final bis-sulfonamide analogues. Evaluation of the anti-trypanosoma activity of the compounds revealed the activity of some analogues with the IC\(_{50}\) values in the range of 2-4 \(\mu\)M, with good selectivity indices.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree(s) Celsius</td>
</tr>
<tr>
<td>^1H NMR</td>
<td>Proton Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>^13C NMR</td>
<td>Carbon Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>AAPM</td>
<td>Arenearylpyrimidylmethane</td>
</tr>
<tr>
<td>ADME</td>
<td>Absorption, Distribution, Metabolism and Elimination</td>
</tr>
<tr>
<td>ADT</td>
<td>Autodock tools</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>Ar</td>
<td>Aromatic Ring</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartic Acid</td>
</tr>
<tr>
<td>br</td>
<td>Broad</td>
</tr>
<tr>
<td>C</td>
<td>Capsid Protein</td>
</tr>
<tr>
<td>cal</td>
<td>Calories</td>
</tr>
<tr>
<td>CHIKF</td>
<td>Chikungunya fever</td>
</tr>
<tr>
<td>CHIKV</td>
<td>Chikungunya virus</td>
</tr>
<tr>
<td>cLogD</td>
<td>Calculated LogD</td>
</tr>
<tr>
<td>clogP</td>
<td>Calculated logP</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DCB</td>
<td>1,2-dichlorobenzene</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of Doublets</td>
</tr>
<tr>
<td>ddd</td>
<td>Doublet of Doublet of Doublets</td>
</tr>
<tr>
<td>DIPA</td>
<td>Diisopropyl Amine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dt</td>
<td>Doublet of Triplets</td>
</tr>
<tr>
<td>DV</td>
<td>Dengue Virus</td>
</tr>
</tbody>
</table>
EC$_{50}$ Concentration to achieve 50% Induction of the response
EI-MS Electron Impact Mass Spectrometry
eq. Equivalent(s)
ER Endoplasmic Reticulum
ESI-MS Electrospray Ionisation Mass Spectrometry
FDA Food & Drug Administration
FRED Fast Rigid Exhaustive Docking
Gln Glutamine
Glu Glutamic Acid
Gly Glycine
GMP Guanosine Mono Phosphate
GTP Guanosine 5′-Triphosphate
GUI Graphics User Interface
h Hour(s)
HAT Human African Trypanosomiasis
Hb Hydrogen Bond
HBA Hydrogen Bond Acceptor
HBD Hydrogen Bond Donor
HCV Hepatitis C Virus
His Histidine
HIV Human Immunodeficiency Virus
HIV RT Human Immunodeficiency Virus Reverse Transcriptase
HPLC High Performance Liquid Chromatography
HR High Resolution
HTS High Throughput Screening
Hz Hertz
IC$_{50}$ Concentration to Effect 50% Inhibition
IFN Interferon
Ile Isoleucine
IMPDH Inosine Monophosphate Dehydrogenase
K Kilo
LDA Lithium Diisopropylamide
Leu Leucine
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>Low Resolution</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting Point</td>
</tr>
<tr>
<td>Met</td>
<td>Methionine</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>mol</td>
<td>Mole(s)</td>
</tr>
<tr>
<td>MPA</td>
<td>Mycophenolic acid</td>
</tr>
<tr>
<td>Mse</td>
<td>Selenomethionine</td>
</tr>
<tr>
<td>Mwt</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>nM</td>
<td>NanoMolar</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>ns</td>
<td>Non-structural</td>
</tr>
<tr>
<td>NTPase</td>
<td>Nucleotide Triphosphatase</td>
</tr>
<tr>
<td>ORFs</td>
<td>Open Reading Frames</td>
</tr>
<tr>
<td>p</td>
<td>Pentet</td>
</tr>
<tr>
<td>P. falciparum</td>
<td>Plasmodium falciparum</td>
</tr>
<tr>
<td>PHB</td>
<td>Prohibitin</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenyl Alanine</td>
</tr>
<tr>
<td>PLC</td>
<td>Preparative Thin Layer Chromatography</td>
</tr>
<tr>
<td>Pro</td>
<td>Proline</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic Acid Interference</td>
</tr>
<tr>
<td>rt</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>RTP</td>
<td>Ribavirin Triphosphate</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure Activity Relationship</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>sp</td>
<td>Septet</td>
</tr>
<tr>
<td>sex</td>
<td>Sextet</td>
</tr>
<tr>
<td>SFV</td>
<td>Semliki Forest Virus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>SINV</td>
<td>Sindbis Virus</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>td</td>
<td>Triplet of Doublets</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>tt</td>
<td>Triplet of Triplets</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Val</td>
<td>Valine</td>
</tr>
<tr>
<td>w</td>
<td>Weak</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>WNV</td>
<td>West Nile Virus</td>
</tr>
</tbody>
</table>
CHAPTER 1: Introduction

1.1. Classification, History and Clinical Features

Chikungunya virus (CHIKV) is an emerging arthrogenic arbovirus that belongs to the *alphavirus* genus, family *Togaviridae*. It has been responsible for major outbreaks of a devastating human arthritis disease during the past five years.\(^1\) Chikungunya fever caused by the virus was first described in 1952,\(^2\) after an outbreak on the Makonde Plateau (named after an ethnic group from East Africa), along the border between Tanganyika and Mozambique. During this period, a high proportion of residents of all ages were affected by a distinctive disease with a sharp onset of crippling joint pains, severe fever, and a conspicuous rash.\(^2\) The elders of the Makonde tribes could not remember any previous, similar epidemics with these symptoms, suggesting that this was a new illness. The word “Chikungunya” translates to “that which bends up” relating to the stooped posture developed as a result of rheumatologic inflammation.\(^3\) After that, only minor outbreaks occurred periodically in Africa, but some major epidemics were reported in the 1960s and 70s in India and Southeast Asia.\(^4\) After the 1973 outbreak in India, only sporadic activities were detected over the next 30 years, with no major recurrence until a large outbreak in Kenya in 2004.\(^5\) This outbreak initiated a spreading epidemic that reached numerous islands of the Indian Ocean, India, and parts of Southeast Asia, and was also detected in 18 countries throughout Asia, Europe, and North America via imported infectious carriers. Over the course of five years, an estimate of more than 2 million cases occurred, with outbreaks in several countries where the virus had not been previously documented.\(^6\) The first European detection of CHIKV occurred in Italy in 2007.\(^7,8\)

Nearly 40 countries have detected chikungunya virus infected cases so far (Figure 1.1). The virus was listed in 2008 as a category C priority pathogen by the US National Institute of Allergy and Infectious Diseases (NIAID) that include pathogens which could be engineered for mass dissemination in the future, because of the high morbidity and mortality rates and major health impact.\(^9,10\) Recent epidemics were reported in India (1.4 to 6.5 million cases in 2006-2007), 3,000 – 42,000 cases were detected in 2009 in Malaysia and Thailand.\(^11,12\) The CHIKV mortality rate has been
estimated to be 1 in 1000 and most of the deaths occur in neonates, adults with underlying conditions and the elderly.10

\textbf{Figure 1.1} Chikungunya virus Worldwide distribution,10 figure used with permission from NPG (Nature publishing group).

CHIKV can be transmitted through an urban cycle, man to mosquito to man, or a sylvatic cycle, animal to mosquito to man.13 The virus is transmitted to humans by mosquitoes of the \textit{Aedes} genus (\textit{Aedes furcifer} in Africa and \textit{Aedes aegypti} in Asia), similar to the dengue fever causing virus. However, the \textit{Ae. albopictus} mosquito was extensively implicated in CHIKV transmission during the 2005-2006 outbreak on Reunion island.10

The switch of the CHIKV vector from \textit{Ae. aegypti} to \textit{Ae. albopictus} was caused by the insufficient \textit{Ae. aegypti} number for its transmission.14 A mutation in the E1 envelope protein, A226V, increased the CHIKV fitness in \textit{Ae. albopictus} and improved the transmissibility of the virus through \textit{Ae. albopictus} to vertebrate species.15 \textit{Ae.
albopictus has spread to Madagascar, the Indian Ocean nations, Africa, Southern Europe and the USA.16,17 Virus transmission has been also reported as a result of maternal-foetal transmission in recent epidemics.18

Chikungunya fever (CHIKF): The symptoms of CHIKF infection generally start 4–7 days after the mosquito bite. Infection tends to present in two phases, the first stage is acute, while the second stage is persistent (chronic), causing disabling polyarthritis.19 Acute infection lasts 1–10 days and is characterized by a painful polyarthralgia, high fever, asthenia (weakness), headache, vomiting, rash, and myalgia (muscle pain). Rash is the least reliable symptom, presenting in as few as 19\% of patients. When a rash is present, it is typically maculopapular in nature, but recent studies have also noted vesiculobullous lesions with desquamation.20 The persistent chronic CHIKF phase is characterized by polyarthralgia (aches in the joints, joint pains) that can last from weeks to years beyond the acute stage.21 Eighteen months after disease onset, 40\% of patients are found to still have anti-CHIKV immunoglobulin M (IgM).22

CHIKV attacks fibroblasts, explaining the involvement of muscles, joints, and skin connective tissues. The high number of nerve endings within the joints and muscle tissues explains the pain associated with CHIKF. Neurological manifestations have also been reported during the most recent epidemics. In India, some neurological disorders such as encephalitis, peripheral neuropathy, myelopathy, myeloneuropathy and myopathy were reported.23 Moreover some cases with multi-organ failure have also been reported.24 Eye infection (Chikungunya neuroretinitis) has also been reported where patients suffered from a sudden, painless diminution of vision in both eyes.25,26 It has been also reported that CHIKV can infect the cornea and can be transmitted \textit{via} the ocular route.27

1.2. Virology of the CHIKV

The CHIKV genome (Figure 1.2) is a positive sense, single stranded RNA genome of about 11.8 Kb in size. It consists of two open reading frames (ORFs),28 one in the 5’ end encoding the non-structural protein (nsP) precursors:

- nsP1: involved in viral mRNA capping \textit{via} its guanine-7-methyltransferase and guanylyltransferase enzymatic activities,
• nsP2: acts as protease and helicase,
• nsP3: part of the replicase unit and an accessory protein involved in RNA synthesis,
• nsP4: RNA-dependent-RNA polymerase,

The nsP123 precursor and nsP4 function in a complex for viral negative-strand RNA synthesis. The 3’ end ORF encodes the structural proteins, the capsid (C), envelope glycoproteins E1 and E2 and two small cleavage products (E3, 6K). The untranslated junction region (J) (Figure 1.2) contains its internal promoter, a conserved sequence of 21 nucleotides, for transcription of the sub-genomic mRNA in other alphaviruses (sindbis virus).29

![Schematic representation for The CHIKV genome showing the RNA sequence ORFs.](image)

Figure 1.2 Schematic representation for The CHIKV genome showing the RNA sequence ORFs.

The CHIKV surface consists of 80 trimeric spikes composed of heterodimers of the envelope glycoproteins (E1 and E2) in the lipid bilayer. Similar to other members of the alphaviruses, the CHIKV starts its life cycle (Figure 1.3) by entering the target cells by pH dependent endocytosis in clathrin coated vesicles via receptor mediated interaction,30 but the exact mechanism by which it does so remains unclear. CHIKV has been shown to replicate in a large number of cell types including epithelial, endothelial and fibroblast cells as well as monocyte derived macrophages.30 A recent study identified prohibitin (PHB) as a microglial cell expressed CHIKV binding protein.31 PHB is an evolutionarily conserved and ubiquitous protein that consists of two highly homologous proteins of different molecular weights. PHB1 has a mass of approximately
30 kDa while PHB2 is approximately 37 kDa. The two proteins oligomerize, and hetero-oligomerization is essential for protein stability. PHB has been shown to be present in multiple cell compartments including the mitochondria, cytoplasm and nucleus in addition to its expression on the cell surface. PHB1 was confirmed as a CHIKV E2 binding protein, but not PHB2. PHB1 was found to be involved in the internalization process either on its own or as part of a complex, further suggesting that a PHB-virus interaction may be mediated by the specific PHB molecule that interacts with the virus. Experimental down-regulation of PHB1 significantly reduced the level of infection in tested cell lines. However, it is believed that this mechanism might be only one pathway by which CHIKV can enter the susceptible cells, as in case of other enveloped viruses.

![Figure 1.3 Schematic representation of the Chikungunya virus life cycle.](image)

After entering the cell, the endosome acidic environment triggers conformational changes, the viral envelope proteins (E1 and E2 complex) reorganizes, leading to
dissociation of the E2-E1 heterodimers, and the formation of E1 homotrimers. E1 trimerizes and inserts into the target membrane with the hydrophobic fusion peptide (fusion loop) and refolds to form a hairpin-like structure. Exposure of the E1 fusion peptide mediates virus host cell membrane fusion, releasing the nucleocapsid into the cytoplasm.\(^{34,35}\) This process depends on low pH and cholesterol, which is also required for budding during *alphavirus* infection.\(^{36,37}\)

Two non-structural protein precursors are translated from the viral mRNA, and then are cleaved generating nsP1, 2, 3 and 4. During translation, nsP123 binds to free nsP4 and with some cell proteins, forming the replication complex,\(^{38,39}\) which synthesizes a full-length negative-strand RNA intermediate required for replication. When nsP123 concentration increases, it is cleaved into nsP1, nsP2, nsP3 and nsP4 which forms, along with host cell proteins, the positive strand replicase, which produces the 26S sub-genomic positive strand RNAs and genomic (49S) RNAs.\(^ {39}\) Promoters present in the negative strand initiate the transcription of 26S sub-genomic positive stranded RNA which encodes the structural protein precursors. The later is cleaved by a serine protease to yield the capsid (C) which remains in the cytoplasm (Figure 1.3), pE2, 6K and E1.\(^ {40}\) The C protein might be responsible for such autoproteolytic activity as it has few conserved sequences which have similar activity, and are common in other *alphaviruses*.\(^ {41}\)

pE2 and E1 are translated in the endoplasmic reticulum (Figure 1.3) and processed in the Golgi, and are moved to the plasma membrane, where pE2 is cleaved by furin-like protease activity in the host cell into E2 and E3.\(^ {42}\) The assembly of virions begins in the cytoplasm of the cell, where the formation of the nucleocapsid with 120 dimers of the C protein starts to occur.\(^ {43}\) The assembled particle buds at the cell membrane as spherical particles of 65 to 70 nm in diameter, composed of genomic RNA molecules and the capsid proteins and enveloped in a host-derived lipid membrane.

1.3. The Development of CHIKV Vaccine

There is an urgent need to control the spreading CHIKV, however, there is little understanding of the interaction between the chronic CHIKV infection and the immune system in defending the body against any subsequent reinfection.\(^ {10}\) The immune responses are strongly accepted to induce autoimmunity, by cross reactivity between
viral and host antigens. The B cells and T cells might respond to CHIKV and this may contribute to the long-term joint disease experienced by many convalescent patients.44

Thus far, there is no licensed CHIKV vaccine. Some vaccine preparations that involved either formalin inactivation or Tween-ether extracts of virus45 showed high immune responses without any adverse effects. In 2000, the US Army carried out a Phase II clinical trial examining a live attenuated CHIKV vaccine.46,47,48 The vaccine was formulated from human MRC-5 cell line. In this study, subjects that received the vaccine developed neutralizing antibodies, with few subjects showed mild joint pain compared to those who did not.48

In 2009, one study reported a vero cell adapted formalin inactivated prototype vaccine with alhydrogel as adjuvant that was prepared using an Indian CHIKV strain implicated in the 2006 epidemic. The humoral immune response was characterized by high titer antibodies that have been confirmed through microcytotoxicity assay and in vivo neutralization tests. Therefore, this could be a promising, safe and effective vaccine that can elicit long lasting protective immune response.49

A live CHIKV vaccine was developed in 2011 that elicits a protective immune response with no detectable disease in mice. It is also unable to infect mosquito vectors, which is an important safety feature for a live virus vaccine that could be used in nonendemic areas to immunize travellers or laboratory personnel. However, this vaccine candidate is still under evaluation in nonhuman primates, before evaluation in humans.50 Other promising CHIKV vaccine candidates that depend on virus-like particles are in early stages of preclinical development.51,52 A successful virus-like particle vaccine based on viral structural proteins was tested on nonhuman primates and was found to produce neutralizing antibodies that protect against viremia after high-dose challenge. When these antibodies were transferred into an immunodeficient host (a mouse), the host was protected indicating a passive immunity.53

With the ongoing vaccine development research against the CHIKV, the world remains under the threat of rapidly spreading CHIKV infections, emphasizing the importance of developing chemotherapeutics targeting the virus.

1.4. Emerging novel CHIKV targets

As previously mentioned, the CHIKV genome is formed from 2 ORFs, one in the 5’ end coding for nsP1, nsP2, nsP3 and nsP4. The 3’ end ORF encodes capsid (C), envelope
proteins E1, E2, E3 and 6k (Figure 1.2). These proteins, which mediate essential steps in the lifecycle (Figure 1.3) of the virus, could be possible targets for drug design.

1.4.1. Non-Structural Proteins

1.4.1.1. Non-structural protein 1

Like in other alphaviruses, CHIKV nsP1 is a palmitoylated 535 amino acid protein. The N-terminal region is a methyltransferase and guanylyltransferase involved in capping and methylation of the newly formed viral genomic and subgenomic RNAs. In early 2013, it was shown that CHIKV nsP1 acts as antagonist for the bone marrow stromal antigen 2 (BST-2). BST-2 is one of the host cell defensive mechanisms, and is induced by interferon (INFα). BST-2 expression results in retaining viruses at the surface of the infected cells. BST-2 was found to co-localize with CHIKV E1 and nsP1, but only nsP1 is able to down-regulate BST-2 expression and therefore, inhibiting the virus tethering on cell surface. This activity of the CHIKV nsP1 is similar to that of the HIV-1 Vpu protein in that both repress BST-2. This discovery will help in developing BST-2 mediated therapeutics targeting the nsP1.

1.4.1.2. Non-structural protein 2

The non-structural protein 2 (nsP2) of alphaviruses is a multifunctional protein. The proteolytic domain has been allocated to its C-terminal section which forms a papain like cysteine protease (also known as thiol protease). The nsP2 proteolytic activity is critical for virus replication and is responsible for cleavage of the non-structural polyprotein complex.

The proteolytic activity of the CHIKV nsP2 has been demonstrated, and the enzymatic activities within the N-terminus have been investigated recently. It was found to have RNA triphosphatase activity that performs the first of the viral RNA capping reactions. It was also found to have a nucleotide triphosphatase (NTPase) activity, fueling the RNA helicase activity performed by the C-terminal domain. CHIKV-nsP2 also has 5′-triphosphatase (RTPase) activity that removes the γ-phosphate from the 5′ end of RNA. Both NTPase and RTPase activities are completely dependent on Mg2+ ions.

Both N and C domains are composed of α-helices and β-strands (Figure 1.4). The N terminus is dominated by α-helices, whereas the C-terminal domain contains
helices and strands. The central β-sheets are flanked by α-helices. The crystal structure of CHIKV nsP2 protease has been solved and comprises 324 residues. Being a cysteine protease, the catalytic mechanism involves a nucleophilic cysteine thiol in a catalytic dyad.66 Analysis of the CHIKV nsP2 crystal structure shows 6 cysteine residues, three in the N-terminus (Cys1013, Cys1057 and Cys1121) and three in the C-terminus (Cys1233, Cys1274 and Cys1290) as shown in Figure 1.4. Since the proteolytic activity is isolated in the C-terminus,64 one of the three cysteine residues in the C-domain might contribute as the catalytic thiol.

![CHIKV nsP2 crystal structure](PDB code: 3TRK, no citation was found for the crystal structure).

The first step in the mechanism of cysteine proteases catalysis is usually the deprotonation of a thiol group within the enzyme active site by an adjacent amino acid containing a basic side chain, often a histidine residue.68 Among the three cysteine residues in the C-terminus (Figure 1.5), the Cys1274 residue is less likely to be involved in the catalytic mechanism because only one His residue (His1314) is nearby, whereas the other cysteine residues, four His residues, His1222, His1228, His1229 and His1236 could be associated in the deprotonation mechanism (Figure 1.5).
Figure 1.5 Schematic representation of the CHIKV nsP2 C-Domain showing the positions of the cysteine residues (yellow) and histidine residues (green). Distances (Å) shown in red, generated from the crystal structure PDB file code: 3TRK.

In 2012, Singh Kh et al. reported the development of a homology model of CHIKV nsP2 protein based on the crystal structure of the nsP2 protein of Venezuelan equine encephalitis virus (VEEV), in order to locate the active site of the protease. The critical residues in nsP2 were identified by docking three different peptides in order to identify the residues responsible for non-structural protein cleavage, nsP1-2, nsP2-3 and nsP3-4 peptides. These three peptide sequences represent the substrates for the nsP2 proteolytic processing with a remarkable preference of nsP3-4>nsP1-2>nsP2-3.

The active site was investigated and was found to lie in the C-terminal domain (Figure 1.5). The key residues Gln1039, Lys1045, Glu1157, Gly1176, His1222, Lys1239, Ser1293, Glu1296 and Met1297 were found to interact with the nonstructural protein sequence complex to be cleaved, and were considered an individual functional unit. Only two residues are located in the N-domain, Gln1039 and Lys1045, all the other residues are located in the C-domain. Similar work by Bassetto et al. reported the development of a homology model for the nsP2 protease active site within the C-domain.

The predicted active site by Singh Kh et al. and Bassetto et al. matches with the abovementioned explanation concerning the poisoning the active site within the C-
domain, especially, they found that His1222 residue to be lying within the predicted active site pocket. Analysis of the enzyme surface shows that the predicted active site is located in a major surface groove as shown in Figure 1.6, the major cavity on the enzyme surface is more likely to accommodate the substrate polyprotein sequence to be cleaved.

Figure 1.6 Electrostatic potential surface of the CHIKV nsP2 and its active site pocket within the C-domain, a) The active enzyme surface front view showing the active site as a transparent red sphere surrounding the active site with the Cys1233 and His1222 residues lying within the sphere. b) Side view of the enzyme (rotated left by 90° about the vertical axis from the view in a) showing the major accessible cavity to the active site with a part of the sphere protruding toward the outer surface, generated from the PDB file 3TRK.

This major enzyme groove (Figure 1.6b) may act as the enzyme mouth holding the protein to be processed. Therefore, targeting the residues specified above,69 as well as the residues within the active site, would be an applicable strategy to inhibit the enzyme function and consequently inhibiting the virus replication.

Moreover, the alphaviruses nsP2 proteins have been described as virulence factors responsible for the transcriptional and translational shutoff in infected host cells and the inhibition of interferon (IFN)-mediated antiviral responses contributing to the controlling of translational machinery by viral factors.72,73 This controlling comes through interactions with cellular RNA binding proteins, including heterogeneous nuclear ribonucleoproteins (hnRNPs), ribosomal protein S6 (RpS6), and cellular
filament components. Recently, 22 cellular components were hypothesized to interact with nsP2 or nsP4 contributing to the CHIKV replication, mainly, heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4). Also, it was noted that the interaction of nsP2 with the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in the cellular machinery control induced by the CHIKV infection.74

1.4.1.3. Non-structural protein 3

The function of \textit{alphaviruses} nsP3 has remained unknown, although mutations can affect different steps of the viral replication machinery.75 It is constructed of two domains, the first is a unique macro domain in the conserved N-terminal region. The C-terminal region is less conserved and is phosphorylated in about 16 positions on serines and threonines.76,77 The function of phosphorylation is not understood, but it was found that deletion of these phosphorylated residues decreases the RNA synthesis level.78 Interestingly, viral pathogenicity of Semliki Forest virus (SFV), another \textit{alphavirus}, is decreased in the absence of phosphorylation on nsP3, and the absence of the C terminus alters SFV neurovirulence.79

The N-terminus of nsP3 contains a macro domain (known also as X domain), which binds to ADP-ribose derivatives and RNA, and is able to hydrolyse ADP-ribose-1\(^\prime\)-phosphate,80,81 a side product of cellular pre-tRNA splicing. Therefore, it is believed to control the metabolism of ADP-ribose 1\(^\prime\)-phosphate and/or other ADP-ribose derivatives which have regulatory functions in the cell. The ADP ribose–binding site within the nsP3 macro domain is solvent-exposed and points away from the other domains in the nsP23 polyprotein. Based on sequence conservation in \textit{alphaviruses}, it has been shown that residues just after the nsP3 macro domain play a role in positioning of the nsP23 complex cleavage site.82 It can be inferred from the crystal structure of the nsP23 precursor protein of the closely related \textit{alphaviruses}, SINV, that the nsP2 is connected to the nsP3 through the macro domain of the nsP3.83 The nsP23 cleavage site is located in a narrow cleft formed between nsP2 and nsP3 that is inaccessible for proteolysis, and all the nsP2 noncytopathic mutants lie at the interface between nsP2 and nsP3.83 The inaccessibility of the nsP23 cleavage site indicates that access is tightly regulated. It is believed that the activator segment is located in the amino-terminus of the nsP2 which becomes exposed after cleavage from the nsP12 precursor polyprotein.84
In 2010, the crystal structure of the nsP3 macro domain for the CHIKV was solved80 (Figure 1.7). It is formed of 672 residues and contains six-stranded β sheets with three α helices. The intermolecular interactions between the residues in the binding pocket of the enzyme and the ADP-ribose,85 as analysed from the crystal structure, are shown in Figure 1.8.

![Figure 1.7 Crystal structure of the CHIKV macro domain with the bound ADP-ribose (yellow colour), generated from the PDB file code: 3GPO.](image1)

![Figure 1.8 2D representation of the interaction of ADP-ribose inside the nsP3 macro domain binding pocket showing the other residues inside the active site (Generated from the PDB file: 3GPO)](image2)

As shown in Figure 1.8, the key binding residues are: Arg144, Asp10, Ile11 Thr111, Gly112, Ser110, Tyr114, Val113, Asn24, Asp31 and Val33. The binding
complex is formed from 10 H-bonds and one π-cation interaction.85 The PO_4^{2-} moiety showed the strongest interactions with these residues in the enzyme pocket. Also, the ribose (with Thr111) and the diphosphate (with Val 33, Ser110, Gly112, Val113, Tyr114) units were found to play major roles in the CHIKV nsP3 ADP-ribose complex.85

Understanding this binding interaction of the ADP-ribose to the macro domain of the CHIKV could therefore be a useful element to further assist in drug design and development of inhibitors for this virus. Bound inhibitors to the ADP-ribose binding pocket will alter the function of the nsP3 either cleaved or in a polyprotein complex, and consequently will alter the function of the viral replication machinery.

Recently, more insights on the molecular function of the nsP3 revealed interesting findings, it was reported that the nsP3 of CHKV, as with other \textit{alphaviruses}, use a conserved proline-rich motif to interact with the Src-homology-3 (SH3) domain of amphiphysin-1 and amphiphysin-2 proteins of the host cell, two related member proteins of the BAR (Bin-Amphiphysin-Rvsp) protein superfamily implicated in several cellular functions.86

More recently,87 the nsP3 has been shown to be the inhibitor of stress granule assembly by recruiting G3BP into cytoplasmic foci. The conserved nsP3 SH3 domain-binding motif (the proline-rich motif) is essential for both nsP3-G3BP interactions and viral RNA replication. G3BP (Ras GTPase-activating protein-binding protein) is an enzyme in human cells and a member of the heterogeneous nuclear RNA-binding proteins.88 This protein plays a major role during infection and in the assembly of stress granules. Stress granules are membranous cytoplasmic focal structures (foci) that immediately aggregate in response to cellular stress, this last action leads to impaired translation of most mRNAs.89 These stress granules may have antiviral activity that is inhibited by CHIKV replication by the nsP3 SH3 domain-binding motif.87

\textit{1.4.1.4. Non-structural protein 4}

The non-structural protein 4 was identified as the RNA-dependent-RNA polymerase,29,90 and recently was found to suppress the host cell unfold protein response (UPR), also named as endoplasmic reticulum (ER) stress response.91 The UPR is a mechanism that maintains the cellular protein homeostasis and prevents over-loading of unfolded protein in the lumen of the ER during normal and diseased cellular conditions.
Chapter 1

Introduction

The UPR involves some steps and some contributing proteins, including the PKR-like ER kinases (PERK). During the UPR, PERK activates by self-dimerization and phosphorylation; this activated PERK in turn, phosphorylates the serine 51 position of the eukaryotic translation initiation factor 2, alpha subunit (eIF2α), an essential factor for protein synthesis. Phosphorylated eIF2α inhibits the general protein synthesis, and consequently, will inhibit the pathogen protein replication. The CHIKV nsP4 was found experimentally to significantly reduce the phosphorylation (serine 51) of eIF2α, and thus ensuring the translation of the viral protein. This discovery can be exploited as a possible target for anti-CHIKV intervention.

1.4.2. Structural Proteins

The invasion of susceptible cells by the CHIKV is performed by two viral glycoproteins, E1 and E2. Both carry the basic antigenic determinants and form the icosahedral shell of the virion particle. E2 and E3 are produced from furin cleavage of p62 (also known as PE2, see Figure 1.2) precursor. E2 is responsible for receptor binding whereas E1 mediates the membrane fusion. E3 contains the 64-amino-terminal residues of p62. E1 and p62 peptide are type I membrane proteins and are derived from a structural polyprotein precursor. They are translated in the infected cell endoplasmic reticulum, into a p62–E1 heterodimer and processed by the Golgi (Figure 1.3), E3 protects the E2-E1 heterodimer from premature fusion with cellular membranes. The heterodimers trimerize forming the viral spikes. Cleavage of p62 into E3 and E2 during transport to the cell surface prepares the spikes for the fusogenic activation to enter the cell. At the plasma membrane, the formed virions bud through interactions between E2 and genome-containing viral nucleocapsids in the cytoplasm.

In a recent study, the roles of four amino acid residues (G91, V178, A226, and H230) in the CHIKV E1 protein have been linked to the E1 and cell fusion process. The study revealed that the highly conserved amino acid residues, G91 and H230, are important for membrane fusion functionality. The glycine residue (G91) is critical for the fusion process whereas any mutation or substitution in this residue leads to complete loss of E1 fusion ability. The E1 histidine 230 is located outside of the fusion sequence, but is still critical for the fusion. Other structural proteins also affect the E1 fusogenic capacity. E2 protein facilitates both E1 folding and regulates E1 fusogenic properties.
This process is pH and cholesterol dependent.96 As an \textit{alphavirus} family member, the hydrophobic fusion peptide of the CHIKV was found to be a trimer of hairpins composed of β-sheets in the post fusion state (type II fusion proteins).97,98 Figure 1.9 shows the crystal structure of the CHIKV fusion peptide,99 consisting of 18 amino acid residues, residues 84–101 in the full-length E1 glycoprotein.95

\textbf{Figure 1.9} Hydrophobic surface view of the CHIKV fusion peptide showing the residue G91 in red label located at the back side (generated from the crystal structure of the fusion peptide, PDB file code: 2RSW99).

The crystal structures of the CHIKV p62-E1 (immature) and the E3-E2-E1 (mature) glycoprotein complexes have been recently solved (Figures 1.10-1.12). E1 is folded into three domains I, II and III (Figure 1.11) that are rich in β-sheets. E2 is an immunoglobulin β protein, with three domains (A, B and C). Domain A is at the centre, domain B is at the membrane upper end whereas domain C is towards the viral membrane. The later binds to domain II of E1 by hydrogen bonding due to the hydrophilic contact area between them (Figure 1.10). The long β–ribbon of E2 makes most of the connection with E3 (Figure 1.12). Furin loop (Figure 1.10) is the E2E3 junction in the immature complex, and this junction contains a functional proprotein convertase motif which is cleaved by the cellular proteases, furin-like proprotein convertases, during the maturation (Figure 1.3) of the glycoproteins.42 Variations within this junction site among the different CHIKV isolates greatly affect the cleavage
susceptibility by furin proteases. The amino acid His60 (residue 56 in the crystal structure PDB file: 3N40) is the critical residue that determines the spectrum of furin and furin-like convertases that process the E2E3 glycoprotein complex.\(^\text{100}\) It can be inferred from the comparison between the structures of the immature and the mature glycoprotein complex,\(^\text{95}\) that the short peptide sequence (Pro59, His60, Arg63, Glu64, Ser65, Thr66, Lys67 and Asp68) is cleaved form the immature complex after furin cleavage.

Figure 1.10 Crystal structure of the immature envelope glycoprotein complex of Chikungunya virus, E1 formed of domains I, II and III. E2 contains domains A, B and C, generated from the PDB file code: 3N40.\(^\text{95}\) E3 stabilizes the E2 β-ribbon connector\(^\text{94}\) being associated with domain A of E2 and domain II of E1, allowing domain B to protect the fusion loop.

The U shaped fusion loop of E1 is inserted in a cavity that lies between E2 domains A and B that is stabilized by hydrogen bonds (Figure 1.13) with E2 histidine side chains.\(^\text{95}\) At neutral pH, E3 maintains the relative orientation of the E2 domain B and the domain A, creating the cavity space accommodating the E1 fusion loop. This orientation by E3 protects the virus from premature fusion with other cellular membranes.\(^\text{95,101}\) The fusogenic activity of the E1 fusion peptide is therefore, highly dependent on pH change. The histidine residues of E2 act as the pH sensor for the activation of the fusion protein at lower pH\(^\text{95}\) due to the increased probability of histidines to become positively charged at lower pH values (acidic endosome), based on
the fact that the imidazole ring of the histidine residue is the only amino acid side chain whose apparent dissociation constant from protons (pKa; acid dissociation constant at logarithmic scale) falls within the physiological range.

Figure 1.11 Crystal structure of E1 glycoprotein formed of 393 residues (residue 402-residue 794 within the whole complex structure), separated from the complex for visualization, generated from the PDB file code: 3N40.

Some important locations (transitional epitopes) were identified in both E1 (domain III) and E2 (domain B) of *alphaviruses*: these locations become accessible

Figure 1.12 Crystal structure of E2, E3 glycoprotein complex formed of 401 residues (residue 1-residue 401 within the whole structural protein complex), separated from the complex for visualization, generated from the PDB file code: 3N40.
upon exposure to heat or low pH. These locations are also accessible upon the contact of the virions with the susceptible cells. This contact leads to conformational changes related to cell binding, e.g. domain B moves out in relation to domain A opening the cavity, and the fusion loop now becomes free to release. This occurs without a full dissociation of the E2-E1 heterodimer. Other residues in domain B of E2 are believed to be associated with cell recognition assuming that several sites on the virus surface can interact with different cell receptors and therefore, these residues may be involved in the attachment and entry of the virus.

Figure 1.13 Crystal structure of the CHIKV mature envelope glycoprotein complex. E1 is viewed as hydrophobic surface with the critical amino acid residue Gly91 of the fusion loop labelled in black. E2 and E3 are viewed as solid ribbon, with histidine residues on E2 viewed as stick structures in red surrounding the fusion loop and acting as the pH sensors, generated from the PDB file code: 3N42.

1.5. Highlights for the CHIKV emerging targets

With the recent growing knowledge and available structural information about the CHIKV genome, drug design of particular inhibitors targeting individual viral proteins has become more real. The most promising targets from a chemical and biological standpoint would be the viral protease (nsP2) and the viral envelope proteins. The first protein has a complete crystal structure for the protein N and C domains, while the critical residues for the proteolytic activity have already been investigated. This nsP2
protein also functions through the N domain, and therefore, it would be interesting for medicinal chemists to investigate all possible options to inhibit the function of this viral protein within the two domains. The challenge here is the lack of a tool to validate the inhibitory effects of the designed protein antagonists, rather than whole cell assay protocols. Therefore, extensive efforts should be devoted to investigate the use of the nsP2 as an applicable target for the structure based drug design. The second promising protein target is the viral envelope proteins, with several residues identified to be essential for the viral fusion process such as the Gly91 and His230 residues. Designing specific inhibitors targeting the viral fusion process would be valuable for the inhibition of the alphaviruses in general. The viral nsP3 also represents a possible drug design target, with the structure of the conserved macro domain already known. However, this target requires further investigation, such as the complete protein structure as well as a tool to validate the inhibitory activity of the designed antagonists.

1.6. Development of chemotherapeutics against CHIKV: new medicinal chemistry leads

There is currently no recognised single antiviral treatment for chikungunya. During the recent outbreaks that occurred in the Indian Ocean nations, only surface treatments were available, based on non-steroidal anti-inflammatory, non-salicylate analgesics and fluids. Mild physical exercise is believed to decrease the joint stiffness, but heavy exercise may increase the rheumatic pain. During the chronic CHIKV infection, corticosteroids may be used to help decrease the inflammation. The status of drug discovery for the CHIKV is still in the early stages with no drugs currently in clinical trials. The first mouse model to study the pathophysiology of the resulting disease was developed in 2008, after which several animal models were developed to aid the understanding of the drug-disease interactions that would facilitate the development of an effective therapy.

1.6.1. Protease inhibitors

Targeting the CHIKV nsP2 protease activity within the C-domain, would have an inhibitory effect on viral replication. Using the developed homology model for the nsP2, Singh and coworkers screened, in silico, a library of compounds to identify potential hits for the predicted active site. Four compounds (1-4) shown in Figure 1.14, were identified as potential in silico inhibitors for the nsP2 protease. Ideally, binding
to this active site will block the protein function and will stop the replication cycle. However, the actual antiviral activity of these hits (1-4) has not yet been investigated.

![Chemical structure of the four identified in silico CHIKV nsP2 inhibitors.](image)

Figure 1.14 Chemical structure of the four identified *in silico* CHIKV nsP2 inhibitors.

In similar work, Bassetto *et al.*71 reported the identification of *in silico* CHIKV nsP2 inhibitors through virtual screening of a large compound library using the developed homology model for the CHIKV nsP2. One of the hits, compound 5 (Figure 1.15) was predicted to bind to the central portion of the nsP2 protease active site, with its hydrazone group placed in the region defined by the catalytic dyad. The *in vitro* activity of this hit compound was assessed and it was found to inhibit the virus at EC\textsubscript{50} value of 5 µM and selectivity index (SI) value of 14, through the inhibition of the virus-induced cytopathic effect.71 The central cyclopropyl and the hydrazone moieties were found, through a structure activity relationship study, to be important for the anti-chikungunya activity. A series of derivatives were also designed based on these identified pharmacophores of (5). When the cyclopropyl group was replaced with a trans-ethenylcylic moiety maintaining length and geometry of the original linker (6, Figure 1.15), the antiviral activity was slightly improved. Compound (6) displayed EC\textsubscript{50} value of 3.2 µM and selectivity index (SI) of 32. The binding modes of both compounds (5, 6) inside the nsP2 pocket were similar.71
1.6.2. Furin inhibitors

Infection by alphaviruses can be inhibited in vitro by blocking the intracellular furin-mediated cleavage of viral envelope glycoproteins: the E2E3 or p62 precursors. This blocking was demonstrated by showing the inhibitory effect of an irreversible furin-inhibiting peptide, decanoyl-RVKR-chloromethyl ketone (dec-RVKR-cmk, 7, Figure 1.16) on in vitro CHIKV infection. This peptide significantly reduces the processing of E3E2 CHIKV glycoproteins in infected myoblast cultures and led to the formation of immature viral particles and impaired viral spreading among cells, but not the replication in the already infected cells. Therefore, the chemical structure of the furin-inhibiting peptide (7) could be a starting point for generating novel generations of active peptidomimetics using the ligand based drug design techniques, targeting the intracellular furin cleavage step.
1.6.3. Chloroquine and Quinine

The *in vitro* antiviral activity of chloroquine (8, Figure 1.17) was first reported more than 35 years ago and has been successfully used as anti-malarial drug.108,109 Concerning the *alphaviruses*, chloroquine was found to be effective *in vitro*,110,111,112 but a few years later, a mouse model revealed that chloroquine may enhance viral replication *in vivo* leading to aggravation of the disease.113 Regarding the CHIKF, chloroquine and chloroquine phosphate have been used in the treatment of chronic chikungunya arthritis,114 only for the anti-inflammatory properties of the molecule (used in chronic rheumatologic diseases) rather than for the antiviral effect. Some studies suggest that chloroquine might interact with the endosome-mediated internalisation process during the infection cycle, stating that chloroquine might be classified as an entry inhibitor. Chloroquine 8 entered phase 3 clinical trials in France as a therapy for the CHIKV in 2006, however, these studies were terminated in 2007 without promising results.

<table>
<thead>
<tr>
<th></th>
<th>Chemical structure</th>
<th>IC<sub>50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine</td>
<td></td>
<td>1.1 µg/ml</td>
</tr>
<tr>
<td>Quinine</td>
<td></td>
<td>0.1 µg/ml</td>
</tr>
</tbody>
</table>

Figure 1.17 Chemical structures of chloroquine (8) and quinine (9).

In one clinical study, the effect of chloroquine 8 on CHIKF patients was investigated using another placebo treated group of patients, and at the conclusion of the study period, there was no statistical difference between the chloroquine and the placebo treated groups regarding the mean duration of febrile arthralgia or the decrease of viraemia (viral count in plasma). However, these contradicting results casts serious doubt as to the effectiveness of chloroquine as an effective chemotherapeutic against CHIKV and until resolved, it should be treated with caution as a drug lead.105

Another anti-malarial drug, quinine (9, Figure 1.17), also inhibits the virus *in vitro* in a concentration less than that of chloroquine (IC₅₀ = 0.1 µg/ml for quinine, 1.1
µg/ml for chloroquine). Also, quinine is suggested to affect the nsP1 as mutations in this protein occur upon growing the virus in a high concentrations of quinine.105

1.6.4. Ribavirin and 6-Azauridine

The antiviral ribavirin (10, Figure 1.18), is well known to inhibit many RNA viruses \textit{in vitro}, by different mechanisms.115 It is being used either alone for treatment of Respiratory Syncytial virus, or in combination with alpha-interferon in the treatment of hepatitis C virus (HCV) infection. This combination showed a synergistic \textit{in vitro} inhibition of the CHIKV.116 A combination of alpha-interferon, at a concentration of 3.9 IU/ml, and ribavirin at a concentration of 18.75 µg/ml, inhibited CHIKV replication by 50%, whereas ribavirin 10 alone without interferon, inhibited CHIKV with EC\textsubscript{50} value of 83.3 µg/ml. However, there is no evidence supporting the clinical efficacy of ribavirin 10 on CHIKV, and the combination with interferon should be subjected to clinical trials for the treatment of CHIKV infections.105 Furthermore, the exact mechanism of ribavirin is still unclear as it may change from one virus to another, however, it is believed that ribavirin can interact with the intracellular viral RNA production.

\begin{center}
\begin{tikzpicture}
\node[above] at (0,0) {10};
\node[above] at (2,0) {11};
\draw (0,0) -- (0:1cm) -- (90:1cm) -- (0,0);
\draw (2,0) -- (0:1cm) -- (90:1cm) -- (2,0);
\node[below] at (0,0) {EC\textsubscript{50}= 83.3 µg/ml};
\node[below] at (2,0) {EC\textsubscript{50}= 0.2 µg/ml};
\end{tikzpicture}
\end{center}

\textbf{Figure 1.18} Chemical structures of ribavirin (10) and 6-azauridine (11).

The broad-spectrum anti-metabolite, 6-azauridine (11, Figure 1.18) inhibits both DNA and RNA virus replication, and the activity might be through the inhibition of orotidine monophosphate decarboxylase, an enzyme involved in the \textit{de novo} biosynthesis of pyrimidine, cytidine and thymidine.117 It showed a significant inhibition of CHIKV at a low concentration (0.2 µg/ml) and was more effective against the CHIKV compared to ribavirin 10.116 6-Azauridine 11 is not approved for human use and therefore was not included in a combination study with alpha-interferon. However,
6-azauridine triacetate is used for treatment of different diseases without notable adverse effects.118 Therefore, 6-azauridine should be evaluated \textit{in vivo} as CHIKV inhibitor.116

\subsection*{1.6.5. Arbidol}

The antiviral drug arbidol (12, Figure 1.19) was originally developed 20 years ago at the Russian Research Chemical and Pharmaceutical Institute.119 Since 1990, it has been used in Russia for acute respiratory infections including influenza. So far, arbidol shows a wide range of activity against many RNA, DNA, enveloped and non-enveloped viruses.120 This broad spectrum of activity may be attributed to the different modes of action including the inhibition of virus mediated fusion,121 and blocking of the viral entry into the target cells through inhibition of glycoprotein conformational changes that are essential for the fusion process, as in the case of influenza virus and hepatitis C virus.122,123

In 2011, arbidol 12 and two derived metabolites (Figure 1.19), HZ1 13 and HZ3 14, were tested \textit{in vitro} on the chikungunya virus using two cell lines, and in different conditions, pre- and post-infection treatments. Arbidol was the only active compound with an IC\textsubscript{50} value that was much lower than the toxic concentration (IC\textsubscript{50} = 12.2 µM, CC\textsubscript{50} ≥ 200 µg/ml).124 HZ1 13 and HZ3 14 were assumed to be responsible for the antiviral properties of arbidol, however in this study, HZ1 and HZ3 showed only weak effects on CHIKV replication.

![Chemical structures](image)

\textbf{Figure 1.19} Chemical structures of arbidol (12), HZ1 (13) and HZ3 (14).

Arbidol 12 was found not to be viricidal, rather, it blocks the earliest stages of the viral replication, virus attachment and/or virus entry as previously reported.120 For
CHIKV, it works by targeting the cellular membrane (E2 viral envelope protein) which was confirmed by the use of arbidol resistant CHIKV strain (mutation in the E2 protein, G407R).124 However, all these studies were performed \textit{in vitro} and \textit{in vivo} studies are required to validate the activity of arbidol on CHIKV.

1.6.6. Mycophenolic acid (MPA)

Mycophenolic acid (15, Figure 1.20) was isolated about one hundred years ago.125 It is an inhibitor of inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the \textit{de novo} biosynthesis of guanine nucleotide. It has a very good anti-proliferation activity and has been established as an anticancer,126 antiviral agent and as an immunosuppressant.127

![Figure 1.20 Chemical structures of mycophenolic acid (15) and trigocherrin A (16).](image)

Recently, MPA was shown to inhibit the CHIKV replication and virus induced cell death. The IC\textsubscript{50} value was 0.2 µM with a selectivity index of 150.128 Mycophenolic acid was found to induce CHIKV apoptosis. When the treated CHIKV infected cells were provided with exogenous guanosine (GMP), MPA could no more prevent the CHIKV induced cell death, indicating that it works by inhibiting IMPDH enzyme. It has also been suggested that MPA increases the mutation rate during the viral replication.128 Considered as a good lead compound, the \textit{in vivo} activity of mycophenolic acid on CHIKV should be investigated as it is well known that mycophenolic acid suffers from a metabolic drawback associated with rapid conjugation of the C-7 phenolic hydroxyl group with glucuronic acid.129,130
1.6.7. Trigocherrin A

Trigocherrin A (16, Figure 1.20), is a highly oxygenated and chlorinated daphnane diterpenoid orthoester, that had been isolated from the bark of Trigonostemon cherrieri Veillon (Euphorbiaceae), a tree collected in the sclerophyllous forest of New-Caledonia. This genus comprises about 80 species occurring in tropical Asia, from India and Sri Lanka to New Guinea. These diterpenoids have been shown to have cytotoxic and antiviral properties. Recently, this natural product was tested against CHIKV and was found to inhibit virus-induced cell death in a virus-cell-based assay with an EC$_{50}$ of 1.5 μM and only caused a significant antimetabolic effects at a concentration (CC$_{50}$) of 35 μM, and the selectivity index (SI) value was 24. Different concentrations of 16 were able to protect the host cells from the virus cytopathic effect without any adverse effects. Also, it was found to be more potent than the reference compound used in this study (chloroquine, 8). The assay protocol suggests that this compound might inhibit the viral replicase functions, however, for the drug discovery process, the in vivo activity, the precise mode of action as well as the total synthesis of this lead compound should be investigated.

1.6.8. Trigowiin A, Prostratin and 12-O-Tetradecanoylphorbol 13-Acetate

In a recent study (2012), an extract of the bark of Trigonostemon howii (Euphorbiaceae species) from central Vietnam was tested against the CHIKV. A new tigliane diterpenoid, trigowiin A (17, Figure 1.21) was isolated and was found to be structurally closely related to the tigliane diterpenes (Figure 1.21), prostratin (a promising adjuvant for anti-HIV therapy) and 12-O-tetradecanoylphorbol 13-acetate (TPA, 19).

\[EC_{50} = 43.5 \text{ μM} \quad EC_{50} = 2.6 \text{ μM} \quad EC_{50} = 0.0029 \text{ μM} \]

Figure 1.21 Chemical structures of trigowiin A (17), prostratin (18) and TPA (19).
In the CHIKV assay, trigowiin A \(17\) showed weak antiviral activity, with an \(EC_{50}\) of 43.5 ± 12.8 μM whereas TPA \(19\) and prostratin \(18\) proved to be the most potent inhibitors, with low \(EC_{50}\) values and higher selectivity indices (SI), for TPA \(19\), \(EC_{50} = 0.0029 ± 0.0003\) μM and \(SI = 1965\) while \(EC_{50}\) for prostratin \(18\) was 2.6 ± 1.5 μM and \(SI = 30.3\) showing that TPA \(19\) was 65 times more potent than prostratin \(18\). At the same time, these compounds did not show activity against Sindbis virus (SINV) nor Semliki forest virus (SFV) which indicates an excellent selectivity for inhibition of the CHIKV. The authors\(^{138}\) believe that this selectivity might be due to a specific mechanism of virus inhibition through the activation of the signal transduction enzyme protein kinase C (PKC), similar to the proposed mechanism of HIV replication inhibition\(^{140}\) for TPA \(19\). However, TPA \(19\), is currently one of the most potent tumor-promoting agents known to date,\(^{141}\) therefore, the less potent prostratin \(18\) is more likely to be further investigated as a potential candidate, as it does not exhibit\(^{142}\) a tumor-promoting activity. The exact mode of action of these compounds is as yet unknown and needs further investigation.

1.6.9. Lupenone and β-amyrone

In the continuous effort to identify novel inhibitors of Chikungunya from natural sources, a phytochemical study on the leaves of *Anacolosa pervilleana* (Madagascaran plant) was performed in a virus-cell-based assay for CHIKV.\(^{143}\) Two triterpenoids with a moderate anti-CHIKV activity were isolated and identified (Figure 1.22), lupenone \(20\) with \(EC_{50} = 77\) μM and β-amyrone \(21\) with \(EC_{50}\) value of 86 μM.\(^{143}\) However, the weak activity of these natural compounds should be improved by medicinal chemistry optimization processes before being considered as lead compounds.

![Chemical structures of lupenone (20) and β-amyrone (21), Me refers to methyl groups, simplified to fit within the ring structure.](image)

Figure 1.22 Chemical structures of lupenone (20) and β-amyrone (21), Me refers to methyl groups, simplified to fit within the ring structure.
1.6.10. Harringtonine

Harringtonine (22, Figure 1.23) is an alkaloid from *Cephalotaxus harringtonia* trees, which is native to Japan. The natural product has known antitumor activity and inhibits the first cycle of the elongation phase of eukaryotic translation.144 Recently, the anti-CHIKV activity of harringtonine was investigated.145 It displayed potent inhibition of CHIKV infection ($EC_{50} = 0.24 \mu M$) with minimal cytotoxicity, through the inhibition of the early stages of infection after cellular endocytosis. Also, it was found to affect the CHIKV RNA production inside the infected cell, as well as viral protein expression such as the nsP3 and the E2 proteins.145 The *in vivo* studies of harringtonine are still ongoing which could make harringtonine a promising lead towards the discovery of anti-CHIKV drugs.

\begin{figure}
\centering
\includegraphics[width=0.2\textwidth]{harringtonine.png}
\caption{Chemical structures of harringtonine (22).}
\end{figure}

1.6.11. Purine based inhibitors

In 2012, D’hooghe *et al.* reported the design and synthesis of a new series of purine-β-lactam hybrids and purine-aminopropanol hybrids and their evaluation as potential antiviral candidates depending on the antiviral templates purines and β-lactams.146 These new scaffolds were screened against nine different viruses including the chikungunya virus. Two purine-β-lactam hybrids and one purine-aminopropanol hybrid (Figure 1.24) were found to possess promising activity and cytotoxicity profiles, the purine-β-lactam 23 with $EC_{50} = 17.11 \mu M$ and SI > 5.75, the purine-β-lactam 24 with $EC_{50} = 13.01 \mu M$ and SI > 4 and the purine-aminopropanol 25 with $EC_{50} = 11.51 \mu M$ and SI > 6, which displayed relatively stronger inhibition compared to the β-lactam ring
analogues, indicating that the β-lactam ring is not essential. The mode of action has not been investigated. The synthesis of this class of compounds is already established and therefore, they represent good subject for further medicinal chemistry optimization.

![Chemical structures of the purine-β-lactams](image)

Figure 1.24 Chemical structures of the purine-β-lactams (23, 24) and the purine-aminopropanol (25) compounds.

1.6.12. Polynosinic acid

Polycytidylic acid [Poly (I:C)] (26, Figure 1.25), a synthetic double-stranded RNA (dsRNA) analogue, is an immunostimulant that acts as an inducer for the most potent interferon (IFN) via interaction with toll-like receptor 3 (TLR3). It can induce IFN-α/β production and natural killer (NK) cell activation *in vivo* after intraperitoneal injection. Activation of the TLR3 contributes to an innate immune response against many viruses. In CHIKV infection, the virus was found to be sensitive to the innate immune response induced by Poly (I:C). This sensitivity was noticed as a decreased cytopathic effect and inhibition of the virus replication in the infected cell lines. This sensitivity has been explained to be a result of the overstimulation of the TLR3 as well as the other anti-viral genes by Poly (I:C).
1.6.13. Gene silencers

New trends in the CHIKV treatment trials are the use of genes silencers targeting specific viral proteins (capsid protein, E1, nsP1 and nsP3). Silencing the target viral genes will consequently lead to shutdown of the protein expression process, and thereby stopping viral replication. After viral infection, the exogenous small interfering RNA (siRNA) induces RNA interference mechanism, resulting in the assembly of RNA-induced silencing complex (RISC) which inhibits subsequent protein expression. Using the siRNA targeting CHIKV E1 and nsP3, was effectively used in suppression of in vitro CHIKV replication. Similarly, a plasmid based small hairpin RNA (shRNA) against CHIKV replication targeting the capsid, E1 and nsP1 proteins has been used. Simply, the plasmid is first introduced to cell, expressed inside the nucleus, small-hairpin RNA (shRNA) is formed and processed by cytoplasmic Dicer enzyme to siRNAs, leading to activation of the RNA silencing machinery. This silencing machinery recognizes and degrades the target CHIKV single strand RNA, consequently stopping viral protein expression. However, clinical studies should be able to prove the applicability of these trends in developing effective anti-CHIKV therapeutics.

1.7. Highlights for CHIKV inhibitors

Several molecules have been tested against the emerging CHIKV with weak to moderate activities. Those included drugs already in the market, being used for other diseases, such as chloroquine, ribavirin, arbidol and mycophenolic acid. The
challenge here would be in finding similar compounds that are structurally unique with improved potency and other drug like qualities, also avoiding the metabolic draw backs when present. The protease inhibitors 5, 6 that were developed based on an in silico study, would be attractive candidates for further development, however, the challenge here is to develop a more specific inhibitory assay protocol to confirm the selectivity for the inhibition of viral proteins. Protein crystallization with the inhibitor would be a useful element to validate such studies. Some of the tested compounds represent complex natural products and have good enough activity as antiviral agents, such as Trigocherrin A 16, prostratin 18, TPA 19 and harringtonine 22. It will be an arduous task to chemically access these structures and to simplify these chemical skeletons to more drug like molecules with acceptable ADME properties.

The anti-CHIKV activity of the tested molecules ranged from strong to weak inhibition depending on the type of the assay used, with the TPA 19 being the strongest inhibitor with \(\text{EC}_{50} = 0.0029 \ \mu\text{M} \) and \(\beta \)-amyrone 20 which displayed the weakest activity with \(\text{EC}_{50} = 86 \ \mu\text{M} \), similar activity to that of ribavirin 10, \(\text{EC}_{50} = 83.3 \ \mu\text{M} \). It is worth noticing that the active agents, TPA 19 and the less active Trigocherrin A 16, shared a common structural feature, the substituted benzo[\(e \)]azulene derived structure, (Figure 1.26). The TPA structure 19 is simpler than that of Trigocherrin A 16, lacking the extra phenyl rings, two chlorine atoms, four oxygen bridges and the alkene side chain (Figure 1.26), however, TPA 19 on the other hand has a characteristic long tetradecanoic ester moiety which was responsible for the activity over Trigowiin A 17 and Prostratin 18, two derivatives that were even less active than Trigocherrin A 16. These highlights will guide further investigations toward the development of CHIKV inhibitors based on that substituted benzo[\(e \)]azulene skeleton.
Figure 1.26 Chemical structures of TPA (19) and Trigocherrin A (16), common skeleton is highlighted in bold red colour, unique groups to TPA (19) are shown in green while the excess groups of Trigocherrin A (16) are shown in blue colour.

1.8. Concluding remarks

Chikungunya virus (CHIKV) is an emerging arbovirus virus that has had devastating effects in recent years in many areas in the world. Chikungunya virus infection can develop into an arthritis disease that remains with the patient for years. The mutations in the viral envelope protein genes increased the fitness of the virus in another mosquito vector, Ae. albopictus which was responsible for cases reported in temperate zones. With no licensed vaccine for immunization against this virus, disease control is currently non-existent, and the treatment would be through the development of chemotherapeutics. Some promising lead compounds have been discovered recently and could be starting points towards effective treatments. The discovery of these leads was mostly based on random screening of drugs already on the market, newly discovered natural products or the antiviral evaluation of synthetic compounds. Also, in the last two years, the molecular functions as well as the crystal structures of a number of critical enzymes involved in the virus life cycle are being reported, with no known inhibitor thus far. Some in silico models targeting these viral proteins have been developed, with some active compounds identified, to initiate the search for effective and selective therapy such as targeting the viral protease. This will help the drug discovery and development process through designing inhibitors against those targets. The virus has been considered neglected for many years and this emphasizes the importance of developing highly potent and safe inhibitors.
1.9. Project aims

At the outset of this project (2010), there were no lead compounds reported (including those previously mentioned in this chapter 1-26), except for some contradicting arguments about the efficacy of chloroquine 8, with limited evidence suggesting the efficacy against the chikungunya virus. There were no crystal structures available for any of the viral proteins. Therefore, the main aim of the project was to find a hit compound that could be taken further *via* a hit to lead discovery study. The main strategies investigated during this project were:

- Random screening, through the synthesis and evaluation of anti-microbial class of compounds that were driven from the current projects within our research group.
- Continuous screening of the literature for emerging viral proteins to develop a structure-based drug design approach.
- Continuous screening of the literature for active lead compounds to conduct a ligand-based drug design approach.
CHAPTER 2: The Search for Anti-CHIKV Lead Compounds

2.1. Introduction

At the outset of this project (2010), there were no lead compounds reported, except some contradicting arguments about the efficacy of chloroquine against the chikungunya virus, as was referred to in chapter 1. Therefore, the goal of this project was to search for new lead compounds. Finding a lead compound usually starts with the random screening of a compound library against the target virus. One active program within our group was the investigation of new structural motifs as potential non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV RT) and developing in silico models for the identification of structurally unique inhibitors. While 15 compounds tested from this in silico screening of these models were inactive against HIV RT, seven possessed good anti-malarial activity. Of these seven compounds, the arylarenypyrimidylmethane (AAPM) compound (Figure 2.1) was chosen for further investigation as an anti-malarial lead, where it showed an IC$_{50}$ of 0.88 µM against P. falciparum. The developed synthetic strategy utilized for the synthesis of compound 27 is shown in Figure 2.1.

![Chemical structure diagram](image)

Figure 2.1 The synthesis of the AAPM derivative, compound 27.
When compound 27 was synthesized, no similar derivatives were investigated to study structure activity relationships for the anti-malarial activity, nor an optimization strategy for the synthetic pathway used to obtain more derivatives. Therefore, our research group had focused on developing this series, not only to further develop the synthetic methodology, but also accessing analogues to investigate the structure activity relationship.

An attempt to derivatise compound 27 in our laboratory had been performed, and only one derivative, the unsubstituted AAPM compound 34 (Figure 2.2) was synthesized, due to the difficulties in the synthesis, even after several trials of optimization.157

![Chemical structures](image)

Figure 2.2 The unsubstituted AAPM compound 34, and the two AAPM modified derivatives 35, 36 displaying inhibitory activity against the dengue virus close to 50% at 25 μM.

During the optimization157 process, some modified AAPM derivatives (without the diethylamino-propanol side chain) were synthesized and were tested against dengue virus.157 The AAPM derivatives 35, 36 showed weak to moderate activity against the dengue virus (Figure 2.2). Dengue virus belongs to the family Flaviviridae, and is transmitted through the *Aedes aegypti* mosquito,158 the same vector which transmits the chikungunya virus. Therefore, this family of heterocycles may also inhibit the CHIKV. With an established synthetic strategy, the generation of analogues for testing against the CHIKV makes a viable line of research seeking new leads. Consequently, the synthesized derivatives would enrich the AAPM library giving strength to the scope of
developing novel anti-microbial agents in general, and especially, with respect to the anti-malarial program.

2.2. Synthesis of the meta-nitro AAPM derivative

The synthetic strategy for this AAPM derivative was similar to the procedures described in Figure 2.1 replacing the ketone 29 with 38.

2.2.1. Nitration of isobutyrophenone 37

The synthesis started with the nitration of isopropyl phenyl ketone 37 under the standard nitration conditions of dropwise addition of the cold nitrating mixture to a cold solution of the ketone 37 in conc. sulphuric acid (Scheme 2.1). The isopropyl 3-nitro-phenyl ketone 38 was isolated in 52% yield, as a yellow oil.

![Scheme 2.1 The synthesis of the isopropyl 3-nitrophenyl ketone 38.](image)

2.2.2. Addition of the isobutyrophenone 35 to 4,6-dichloropyrimidine 28

The next step in the synthetic pathway was the addition of the 4,6-dichloropyrimidine 28 to the nitro derivative 38. Therefore, a fresh solution of lithium diisopropylamide (LDA) solution was prepared by the dropwise addition of n-BuLi solution in hexanes to a solution of diisopropyl amine (DIPA) in tetrahydrofuran (THF), pre-cooled to -78 °C (Scheme 2.2), and the solution was allowed to stir at -78 °C for 45 min to allow the complete formation of LDA. A solution of 4,6-dichloropyrimidine 28 in THF, pre-cooled to -78 °C, was then added dropwise to the LDA solution, producing an instant orange colour change which was attributed to the formation of the pyrimidyl anion 39, and the solution was stirred at -78 °C for 45 min. The solution was then cooled to -116 °C, and a solution of nitro derivative 38 in THF, pre-cooled to -116 °C, was added dropwise. The mixture was left for 45 min to allow complete addition. The reaction was then quenched by addition of NH₄Cl. After acidic aqueous workup, the desired alcohol 40 was isolated in 50% yield as pale yellow crystals, the unreacted starting ketone 38 was recovered with the remaining outcomes of this reaction being polymeric products as analysed from the baseline material on thin layer chromatography (TLC) analysis.
The analysis of the 1H NMR spectrum of 40 showed a broad singlet peak at 3.38 ppm, assigned to the OH group, and two doublet peaks resonating at 1.11 and 0.93 ppm, that were assigned to the two methyl groups.

Scheme 2.2 Addition of 4,6-dichloropyrimidine 28 to the nitro derivative 38, forming the alcohol 40.

The proposed mechanism for this reaction starts with the nucleophilic attack of LDA onto the 5-pyrimidyl proton resulting in the lithiated dichloropyrimidine anion 39, which nucleophilically attacks the electrophilic carbonyl of the ketone 38, to give the alcohol after a protic workup (Scheme 2.3).

Scheme 2.3 The proposed mechanism for the formation of alcohol 40.

This reaction (Scheme 2.2) required ultra dry conditions, with all the glassware oven dried for at least 12 h prior to reaction, and all the reactants dried overnight under vacuum. The 4,6-dichloropyrimidine 28 was crystallized from water. Previous work157 reported the purification of 28 by bulb-to-bulb distillation, however, in this work, simple crystallization was effective. The previous best reported yields157 of similar reactions in our group was 38-47% yield. In this work (Scheme 2.2), the yield was
optimized to 50%. The notable increase in yield was attributed to the ultra dry conditions, as this reaction was found to be very sensitive to moisture, including from the N\textsubscript{2} atmosphere used during the reaction. Therefore, in this reaction (Scheme 2.2), the needle supplying N\textsubscript{2} to the reaction flask, was filled with pre-dried CaCl\textsubscript{2} to ensure the dry atmosphere inside the reaction flask. The slow rate of addition of the electrophile 38, as well as the pre-cooling (-116 °C) of the electrophile 38 solution prior to addition, were found to be important factors for improving the yield (Scheme 2.2).

2.2.3. Dehydration reaction of the alcohol 38 to the form the alkene 41

The next synthetic step was the dehydration of alcohol 40. Previous work157 facilitated a similar transformation by reacting the alcohols with four molar equivalents of thionyl chloride (SOCl\textsubscript{2}) and four molar equivalents of phosphorus pentaoxide (P\textsubscript{2}O\textsubscript{5}) in dichloromethane with stirring at 50 °C for 12 h. In this work, when this method was carried out on the alcohol 40, the yield of the alkene derivative 41 was low (24%), with substantial quantities of un-reacted alcohol (Scheme 2.4), even with the continued heating for 48 h at 70 °C.

![Scheme 2.4](image)

Scheme 2.4 Dehydration reaction of the alcohol 40 to the alkene 41, using SOCl\textsubscript{2} and P\textsubscript{2}O\textsubscript{5} in CH\textsubscript{2}CH\textsubscript{2}.

The reaction was then performed using neat pre-distilled SOCl\textsubscript{2}, by heating the alcohol 40 with SOCl\textsubscript{2} at reflux under a N\textsubscript{2} atmosphere for 48 h (Scheme 2.5). After basic aqueous workup, the alkene 41 was isolated in 70% yield. Analysis of the 1H NMR spectrum of the alkene 41 showed the disappearance of two peaks at 3.38 ppm and 3.64-3.58 ppm from 40, indicating the loss of the alcohol functionality. Analysis of the 13C NMR spectra showed a shift of the propanol C1 of 40 (81.7 ppm) to 140.1 ppm for the propene C1 in 41, indicating the formation of the double bond.
Scheme 2.5 Dehydration of the alcohol 40 using neat SOCl₂.

The proposed dehydration mechanism of the reaction begins with the nucleophilic attack of the alcohol to the sulfonyl chloride. Elimination of HCl results in the chlorosulfite intermediate which eliminates to yield SO₂ and a second mole of HCl and the alkene 41 as shown in Scheme 2.6.

Scheme 2.6 The proposed dehydration mechanism of the alcohol 40 to form 41.

The difference in the yield of the alkene 41 obtained in this work (70%) from the yield obtained by the previous other derivatives¹⁵⁶,¹⁵⁷ is attributed to the difference in the electronic environment of the aromatic ring carrying the deactivating nitro group 40. The electron withdrawing nitro group on the alcohol 40 may be responsible for slowing the rate of the reaction (Scheme 2.6), especially the last elimination step of the HCl and SO₂ in the proposed mechanism.

The yield of the alkene 41 using SOCl₂ dehydration mechanism was satisfactory, however, the reaction required 48 h. Therefore, an alternative dehydration
method was investigated. Conc. sulphuric acid is a well known dehydrating reagent for primary alcohols via an E2 mechanism, and secondary and tertiary alcohols via an E1 mechanism, to give the corresponding alkenes in both cases.159 This sulphuric acid dehydration reaction was performed on the alcohol 40 by adding the latter, portion-wise, to conc. \(\text{H}_2\text{SO}_4 \) and allowing the mixture to stir at room temperature (Scheme 2.7). The reaction was allowed to stir until all the alcohol 40 was consumed. After workup, the alkene 41 spot was found to be present in trace (not changing) compared to the major product, which was found to be 4-chloro-6,6-dimethyl-5-(3-nitrophenyl)-5,6-dihydrofuro[2,3-\textit{d}]pyrimidine 42 derivative (Scheme 2.7). Analysis of the \(^1\text{H} \) NMR spectrum showed a singlet peak resonating at 4.55 ppm integrating for one proton, which was assigned to H5 of the furo-pyrimidine skeleton. Analysis of the HRMS spectrum showed a peak at 306.0648 \textit{m/z} which was assigned to the molecular formula C\(_{14}\)H\(_{13}\)ClN\(_3\)O\(_3\) (MH\(^+\)), indicating that the alcohol oxygen atom was still present in the structure.

\begin{center}
\begin{tikzpicture}
\node (40) at (0,0) {\includegraphics[width=0.3\textwidth]{alcohol40}};
\node (41) at (4,0) {\includegraphics[width=0.3\textwidth]{alkene41}};
\node (42) at (8,0) {\includegraphics[width=0.3\textwidth]{furopyrimidine42}};
\node (reaction) at (0,-1) {Conc. \text{H}_2\text{SO}_4, rt. 4 h};
\draw[->] (40) -- (reaction);
\draw[->] (reaction) -- (41);
\draw[->] (reaction) -- (42);
\node at (0,-2) {40};
\node at (4,-2) {trace};
\node at (8,-2) {85%};
\node at (4,-3) {41};
\node at (8,-3) {42};
\end{tikzpicture}
\end{center}

\textbf{Scheme 2.7} Dehydration reaction of the alcohol 40 using \(\text{H}_2\text{SO}_4 \), producing the furo-pyrimidine 42.

The proposed mechanism for the formation of the furo[2,3-\textit{d}]pyrimidine 42 was attributed to the rearrangement of the carbocation produced after the E1 elimination step (Scheme 2.8), where the positive charge is transferred to carbon 2 of the propyl chain (through a hydride shift). The planarity of the benzylic carbocation with the benzene and the pyrimidine ring might be responsible for such a rearrangement. This later carbocation is further attacked by water giving another tertiary alcohol on C2 of the propyl chain. \(\text{S}_\text{N}2 \) attack of the OH group to Cl gave the cyclised product 42. This reaction (Scheme 2.7) is considered as a new convenient two step synthesis of the
furo[2,3-d]pyrimidine heterocycle, which is rarely reported in the literature. Existing methods for the synthesis of this scaffold require more harsh synthetic160,161 conditions.

![Scheme 2.8](image)

Scheme 2.8 The proposed mechanism of the formation of furo[2,3-d]pyrimidine derivative 42.

2.2.4. Mono-amination of the alkene 41

The nucleophilic substitution of ammonia onto the pyrimidine ring of the alkene 41 has been previously optimized on similar scaffolds using a microwave assisted reaction.157 Therefore, the alkene 41 was suspended in ammonia solution (25%), and the mixture heated and irradiated in a microwave reactor at two stages; the first stage involved heating the mixture at 120 °C for 50 min, followed by a slight increase in the temperature to 130 °C, for a 30 min (Scheme 2.9). These conditions maximized the production of the mono-amino substitution product 43 and minimized the production of the di-amino product 44. Analysis of the 1H NMR spectrum of 43 showed a broad peak at 5.27 ppm, which was assigned to the NH$_2$ group. Analysis of the ESI-MS spectrum showed a peak at 307 m/z for the molecular ion (M+, 37Cl), indicating the replacement of one Cl atom in the alkene 41 by an amino group.
Scheme 2.9 Selective amination of the dichloro-pyrimidine 41.

The reaction proceeded via a $S_{N}Ar$ mechanism where the lone pair of electrons of ammonia attacked C4 of the pyrimidine ring followed by rearomatisation of the ring displacing the chlorine atom resulting in the formation of 43.

2.2.5. Final amination of 43 for the final AAPM derivative

The final amination of the amino alkenes had been a challenge in the synthesis of this series, in this work as well as the previous work. Only the lead compound, the chloro-AAPM 27, and the unsubstituted AAPM 34 were synthesized previously in our group, with multiple attempts to generate more derivatives.

The previous synthesis of the AAPM 27 utilised the reaction between the racemic, highly viscous, propylamine side-chain 33 in a solvent free reaction with the aminochloropyrimidine 32 to give the desired AAPM 27 (Figure 2.3) in 40% yield.

Figure 2.3 The synthesis of the AAPM 27 from the aminochloropyrimidine 32.

When this synthetic strategy was used previously in our group for the synthesis of the unsubstituted AAPM 34, the reaction failed with no evidence for the formation of the AAPM 34, even after conventional heating of the reactants at 200 °C for 5 h (Figure 2.5). Instead, further investigation of the reaction mixture indicated the
polymerization of the poly aminic side chain 33. However, access to the AAPM 34 was achieved through an optimization process previously investigated in our group, using a microwave irradiation method (Figure 2.4), with a poor yield (21%).

![Figure 2.4 Reactions of the aminopyrimidine 45 with the amine 33 for the synthesis of the AAPM 34.](image)

Therefore, the aminochloropyrimidine 43 was heated with the amine 33 under microwave irradiation at 150 ºC for 5 min (Scheme 2.10). The reaction cycle was repeated 5 times until the complete disappearance of the starting aminochloropyrimidine 43 as indicated by the TLC analysis (90% ethyl acetate in petroleum spirit). Further analysis of the reaction revealed the presence of polymeric baseline material and the absence of material resembling the AAPM 46. This indicated the disintegration of the heterocyclic structure. Although harsh conditions are required to overcome the steric barrier of the reaction, prolonged periods of heating result in the destruction of the material. Therefore, lower temperature were investigated, Table 2.1 summarises the series of microwave reactions attempted using the aminochloropyrimidine 43 and the amine 33.

![Scheme 2.10 Attempted synthesis of the AAPM 46 using the microwave irradiation.](image)

Table 2.1 Attempted microwave reactions of 43 with 33.
For all entries (Table 2.1), TLC analysis was performed to gauge the outcome of each reaction. For entry 1, the starting material 43 was the major spot, with the additional appearance of the polymeric baseline material. Mass spectrometric analysis of the crude reaction mixture did not show any peaks that could be assigned to the formation of the AAPM 46. Increasing the temperature to 130 °C (entry 2) and 140 °C (entry 3) did not produce any differences from the results from entry 1, with the exception of increased decomposition.

The next attempt to synthesise 46 used solvent in order to solubilise the highly viscous amino side chain 33, and for the ease of recovery of the aminochloropyrimidine 43. In the previous optimized process of the synthesis of AAPM 34, dichlorobenzene (DCB) was used, however, it was demonstrated not to improve the reaction, nor the recovery of the un-reacted starting material. Therefore, the reaction was attempted here using water as a solvent, because of the amino side chain 33 solubility in water reduced the high viscosity of the amine 33 allowing a greater chance of reaction with the aminochloropyrimidine 43. Water was also selected as it had been successfully used for many microwave assisted reactions. Therefore, the aminochloropyrimidine 43 was heated with amino side chain 33 in a microwave tube at 100 °C for 5 min. TLC analysis (90% ethyl acetate in petroleum spirit) indicated the presence of the starting materials with polymeric baseline material. The temperature was increased to 150 °C and the reaction was held at this temperature for 10 min. TLC analysis after the 10 min at 150 °C indicated that the concentration of the starting material was decreasing and the concentration of the baseline material increased. Furthermore, low resolution mass spectrometric analysis did not show any evidence indicating the formation of the desired AAPM 46. The aminochloropyrimidine 43 was recovered in 60%.

The difficulties in the synthesis of the AAPM derivatives along with the previous attempts were attributed to the polymerization of the amino side chain 33 at
the reaction temperatures. The electronic effect of the substituents on the phenyl ring (Cl in AAPM 27, H in AAPM 34 and NO$_2$ in the unformed AAPM 46) is also believed to play a role in the amination reaction, where the Cl atom might activate the amination and the NO$_2$ group may deactivate the amination reaction. No investigations were performed at this point to confirm this hypothesis either in the previous work or in this work.

2.3. Modification in the amine side chain of the AAPM derivatives

An alternative amine side chain, N^1,N^1-diethylpentane-1,4-diamine 47† was selected as a replacement for the polymeric side chain 33, as it is identical to the amino side chain of the antimalarial chloroquine 8. Furthermore, the amine 47 is a liquid with low viscosity compared to the amine 33. Therefore, it was thought that it would react more easily with the aminochloropyrimidine 43. The later was reacted with amine 47 in different conditions (Scheme 2.11) using either conventional heating or microwave irradiation (Table 2.2).

![Scheme 2.11 Attempted reaction of the aminochloropyrimidine 43 with the amine 47.](image)

† Was purchased from Aldrich and further distilled under N$_2$ at 70 °C to provide a colourless liquid.

† Personal communication with Andrew Stevens (ref 157), who synthesized the AAPM 34, and attempted in other AAPM derivatives.
Table 2.2 Attempted reaction conditions for the synthesis of the target compound 48.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Heating method</th>
<th>Reaction temp. (ºC)</th>
<th>Reaction time</th>
<th>Yield (%) of 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microwave</td>
<td>150</td>
<td>3 min</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Microwave</td>
<td>150</td>
<td>10 min</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Microwave</td>
<td>170</td>
<td>5 min</td>
<td>Trace</td>
</tr>
<tr>
<td>4</td>
<td>Microwave</td>
<td>200</td>
<td>3 min</td>
<td>Trace</td>
</tr>
<tr>
<td>5</td>
<td>Microwave</td>
<td>200</td>
<td>12 min</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Conventional</td>
<td>150</td>
<td>12 h</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Conventional</td>
<td>200</td>
<td>48 h</td>
<td>0</td>
</tr>
</tbody>
</table>

From Table 2.2, the first attempt of the reaction (Scheme 2.11) used microwave irradiation (entry 1); this method resulted in no change as indicated by TLC and mass spectrometric analyses. Increasing the reaction time to 10 min (entry 2) did not produce any change in the reaction. The temperature was then increased to 170 ºC (entry 3) and the reaction was held for 5 min. The mass spectrum of the reaction mixture showed a weak peak at 427 m/z, indicating a trace of the product 48. Increasing the temperature to 200 ºC for 3 min (entry 4) to push the reaction to completion did not improve the production of 48 but still the weak 427 m/z peak in the mass spectrum could be observed. When the hold time was increased to 12 min (entry 5), the weak 427 m/z peak of the product 48 could not be seen indicating the decomposition or polymerization of the product. In entries 1-4, 70-73% of the starting material was recovered indicating that little reaction had taken place, while in entry 5, no starting material was recovered from the reaction mixture. The reaction (entry 4) was then repeated on fresh starting materials, the content was then subjected to preparative TLC (PTLC) using 10% water in acetonitrile, the baseline band was isolated. Analysis of the mass spectrum of this band revealed the presence of the 48 peak at 427 m/z and the amine peak 47 at 158 m/z. However, analysis of the ¹H NMR spectrum of this fraction showed mainly complex polymeric protons in the aliphatic region (0.6-2.5 ppm) and the compound 48 was not separated.
When the reactants were heated using the conventional heating method (entries 6, 7), no evidence for the formation of 48 was detected by either mass spectrometric or NMR analysis, and the starting aminochloropyrimidine 43 was completely decomposed.

2.4. Decreasing the steric hindrance of the dimethyl groups

The poor reactivity of the aminochloropyrimidine 43 with either the amine 33 (Scheme 2.10) or the amine 47 (Scheme 2.11) argued for the difficulties in the reaction being due to the steric clashes with the dimethyl group. Therefore, the dimethyl groups in 43 were replaced with a cyclopropyl group, in an attempt to give the aminochloropyrimidine 51. The cyclopropyl group was selected in order to tether the dimethyl groups together and minimize the steric hindrance. The attempted access to 51 was performed in a similar synthetic pathway (Scheme 2.12) as that used for 41, using cyclopropylphenyl ketone 49.

Scheme 2.12 Attempted synthesis of the alkene 51 through the alcohol 50.

The alcohol 50 was isolated in 37% yield compared to 50% of the alcohol 40. Analysis of the 1H NMR spectrum of 50 showed a broad peak at 2.83 ppm, assigned to the OH substituent. The ESI-MS spectrum showed a peak at 295.1 m/z assigned to the (M+, 35Cl) of the alcohol 50. However, the alcohol 50 was found to be unstable, with decomposition occurring immediately after column chromatography (80% ethyl acetate in petroleum spirit), as indicated by TLC analysis. These unstable by-products could not
be separated and identified. Therefore, the dehydration reaction was carried out immediately after the isolation of 50 from the column. Stirring the alcohol 51 with SOCl₂ at room temperature, or at 80 °C, caused only charring of the alcohol 51. The dehydration reaction using conc. H₂SO₄, that was carried out on alcohol 40 (Scheme 2.7), was also attempted on alcohol 50 to investigate the possibility of forming the alkene 51, or the furopyrimidine 52 product (Scheme 2.13). However, charring was also observed after 5 min of stirring, with no formation of 51 or 52.

![Scheme 2.13](image)

Scheme 2.13 Attempted conc. H₂SO₄ reaction on the alcohol 50.

Compared to alcohol 40, alcohol 50 does not contain a nitro group in the phenyl ring. The next investigation was to check whether the presence of the nitro group on the phenyl ring of 50 would stabilize the alcohol or not. Therefore, the cyclopropylphenyl ketone 49 was first nitrated using conc. H₂SO₄/HNO₃ at -10 °C to afford the cyclopropyl(3-nitrophenyl)methanone 53 in 70% yield (Scheme 2.14).

![Scheme 2.14](image)

Scheme 2.14 Nitration of cyclopropylphenyl ketone 49.

The phenone 53 was then subjected to the LDA addition reaction with the 4,6-dichloropyrimidine 28 (Scheme 2.15). Despite subjecting the substrates to identical reaction conditions previously used for the synthesis of the alcohols 40 and 50, the alcohol 54 was not formed and the starting phenone 53 was recovered (50%). The percentage consumed from the phenone 53 indicated that the reaction may have occurred but the product was unstable, and immediately decomposed.
These investigations into the synthesis the AAPM 46, compound 48 and the alcohol 54, as well as the instability of the alcohol 50, argued for the importance of decreasing the steric hindrance around the Cl atom to be substituted with the amine, and also argued for the need of further simplification of the AAPM structure.

2.5. Replacing the 4,6-dichloropyrimidine with 4-chloropyridine

One strategy to simplify the core structure of the AAPM precursors involved replacing the bulky 4,6-dichloropyrimidine 28 (Scheme 2.2) with the simpler 4-chloropyridine.HCl 55. Lithiation of the meta position of 4-chloropyridine 55, with subsequent addition of aldehydes has been previously reported,163 where the electrophilic addition was performed at -78 °C without the need to cool the reaction to -116 °C.163 This change of the addition temperature would be advantageous, compared to the example of 4,6-dichloropyrimidine 28, in avoiding the difficulty of maintaining the reaction temperature at -116 °C. During this modification, the nitro group was kept on the phenyl rings of the reacting phenones, ketones 38, 53 and the nitrocyclobutylphenyl ketone 57 were investigated in this modification step.

2.5.1. Synthesis of the nitrocyclobutylphenyl ketone 57

Ketone 57 was accessed through the nitration of the precursor phenone 56 using a nitrating mixture of conc. H$_2$SO$_4$/HNO$_3$ at -15 °C (Scheme 2.15). After completion of the reaction and the aqueous workup, the oil left was subjected to column chromatography using 30% ether in petroleum spirit. The desired meta isomer
cyclobutyl(3-nitrophenyl)methanone 57 was isolated in 27% yield, and the ortho isomer cyclobutyl(2-nitrophenyl)methanone 58 in was isolated 10% yield.

Scheme 2.15 Nitration of the cyclobutylphenyl ketone 56.

The ortho nitration of ketones carrying bulky groups has been previously observed as in case of adamantyl bearing aromatic ketones. Therefore, in the presence of the bulky cyclobutyl ring, the formation of the ortho derivative 58 was also possible, and could be explained by formation of the nitronium or proton complex with the carbonyl of cyclobutylphenyl ketone 56 and establishment of pre-equilibrium included both this form and its mutual competition. The increase of the nitronium-carbonyl complex concentration leads to an increase of the amount of ortho nitro regioisomer 58 (Figure 2.5) by the nucleophilic attack of the benzene ring from the ortho position. Optimization of this reaction (Scheme 2.15) could be investigated by changing the reaction conditions, however, this was out of the scope in this work.

Figure 2.5 Proposed mechanism for the nitration of 56 and the formation of 58.
The first step in the addition reaction was the lithiation of the 4-chloropyridine 55 using a freshly prepared LDA solution at -78 °C as previously discussed (Scheme 2.2). The prepared LDA solution was then transferred to the solid 4-chloropyridine HCl 55, and the solution was left to react at -78 °C and to form the lithiated pyridinyl anion (Scheme 2.16). The completion of the reaction was indicated by the disappearance of the solid 4-chloropyridine HCl 55, which took almost 45 min. To this anion solution, was added dropwise a solution of the appropriate ketone (38, 53 or 57) in dry THF at -78 °C. The reaction temperature was kept at -78 °C for 45 min, after which the reaction mixture was allowed to warm up to room temperature over 12 h. After quenching the reaction and an acidic work up, the alcohols 59-61 were obtained after column chromatography in 48-52% yield. The same dry reaction conditions discussed previously (Scheme 2.2) were also utilized. Addition of the ketones at -78 °C (Scheme 2.16) rather than at -116 °C (Scheme 2.2), was advantageous and could be more easily controlled. Moreover, the acidic workup conditions in case of the pyridine based alcohols 59-61 facilitated the isolation of relatively pure products. This was indicated by the improved yield and less side products observed by TLC analysis, compared to the results obtained before when using pyrimidine (Scheme 2.2). Analysis of the 1H NMR spectrum of alcohol 59 showed a broad peak at 3.25 ppm assigned to the OH substituent, whereas the EI-MS spectrum showed a peak at 306 m/z which was assigned to the (M+35Cl).

Scheme 2.16 Addition of the ketones (38, 53, 57) to the 4-chloropyridine HCl 55.
The reaction was attempted using 2 molar equivalents of the prepared LDA solution, however, this was insufficient to react with the 1 molar equivalent of 4-chloropyridine HCl 55 and some of the solid remained undissolved. On addition of the electrophile (ketones 38, 53 and 57), the reaction proceeded, however, the isolated yields were lower than those obtained in Scheme 2.16, due to the presence of a lower concentration of the lithiated pyridinyl anion (Scheme 2.16). Using 2.5 molar equivalents of LDA was found to completely react with 4-chloropyridine HCl 55.

2.5.3. Dehydration of the alcohols 59-61

The first attempted dehydration reaction used the conc. H₂SO₄ method. Therefore, a mixture of the appropriate alcohol (59-61) and conc. H₂SO₄ was stirred at room temperature for 24 h and the reaction was monitored by TLC analysis at 1 h time intervals (Scheme 2.17). Although the reactions were clean and complete by TLC analysis, in the case of the alcohol 59 and the cyclopropyl alcohol 60, the cyclobutyl alcohol 61 underwent charring after 30 min of stirring with conc. H₂SO₄. The dimethyl alkene analogue 62 and the cyclopropyl alkene 63 were isolated after aqueous basic workup conditions as yellow oils in 85% and 62% yield, respectively. Analysis of the \(^1\)H NMR spectrum of the alkene 62 showed the disappearance of the OH substituent of the alcohol that was resonating at 3.25 ppm, and the adjacent proton that was resonating as a multiplet peak at 3.12-3.09 ppm in 59, indicating the formation of the double bond. Analysis of the \(^{13}\)C NMR spectrum showed a shift of the propanol C1 in 59 (79.7 ppm) to 138.5 ppm for the propene C1 of 62. Analysis of the EI-MS spectrum of 62 showed a peak at 288 m/z, which was assigned to M⁺.

![Scheme 2.17 Dehydration of the alcohols (59-61) using conc. H₂SO₄.](image)

Upon the workup of the charred solution in case the alcohol 61, neither the alcohol nor the alkene 64 were detected, instead, a polymeric dark line was present by
TLC analysis. Therefore, the SOCl\(_2\) dehydration method was attempted, where the alcohols 60 or 61 were added to neat SOCl\(_2\), and the solutions were heated at 80 °C under N\(_2\) atmosphere for 24 h and 36 h, respectively (Scheme 2.18). Upon cooling the reactions, ice was added, and the solutions were neutralized with 2 M KOH. After CH\(_2\)CH\(_2\) extraction and column chromatography, the oily alkenes 63 and 64 were isolated in 75% and 69% yield, respectively. The yield of the alkene 63 was slightly improved over using the conc. H\(_2\)SO\(_4\) method (Scheme 2.17).

Scheme 2.18 Dehydration of the alcohols 60 and 61 using neat SOCl\(_2\).

2.5.4. **Final amination of the alkenes 62-64**

The amine 33 was avoided in this trial based on the results previously discussed (Scheme 2.10). The amine 47 was selected for the amination reaction on the alkenes 62-64 and a series of reactions, using different conditions, were carried out on the alkenes 62-64 depending on the availability of each. The alkene 62 was mixed neat with the amine 47 and the mixture was placed in a microwave tube, followed by irradiation under different conditions (Scheme 2.19, Table 2.3).

Scheme 2.19 Attempted microwave reaction of the alkene 62 with the amine 47.
Table 2.3 Microwave reaction conditions of the alkene 62 with the amine 47.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Microwave temp. (ºC)</th>
<th>Reaction time (min)</th>
<th>Yield (%) of 65</th>
<th>Yield (%) of 66</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>170</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>280</td>
<td>20</td>
<td>0</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>280</td>
<td>60</td>
<td>0</td>
<td>trace</td>
</tr>
</tbody>
</table>

After each entry (1-7, Table 2.3), a sample of the reaction mixture was taken for TLC and low resolution mass analysis. In entries 1-5, TLC analysis indicated no change in the reactants. Furthermore, the analysis of EI-MS spectra of the samples showed peaks at 288 m/z (M+ of 62) and the amine 47 peak at 158 m/z. The stability of the alkene 62 at 250 ºC was encouraging to increase the temperature to 280 ºC. When the alkene 62 was heated with the amine 47 at 280 ºC for 20 min (entry 6), TLC analysis indicated no change, however, EI-MS spectrum showed a new peak at 269 m/z, which corresponded to the (M+) of the amine 66. When the reaction was heated further at 280 ºC for 60 min (entry 7), the alkene 62 disappeared and the the peak at 269 m/z (amine 66) was still present in the EI-MS spectrum. TLC analysis of the reaction mixture of entry 7 presented a polymeric baseline long spot and the amine 66 was not isolated. Formation of the amine 66 at high temperature not only indicated the decomposition of the amine 47 releasing the NH$_2$ nucleophile, but also indicated the weak reactivity (electrophilicity) of the alkene 62 towards the amine 47. This lack of reactivity towards 47 and the reactivity with the released nucleophile NH$_2$, can be explained based on steric hindrance with the amine 47 being hindered from replacing the 4-chloro on the pyridine ring of 62.

The instability of the amine 47 and the lack of reactivity of the alkene 62 under the normal S$_{N}$Ar conditions required a different strategy. Therefore, the use of a catalyst such as palladium [Pd(0)], in mild conditions was attempted to facilitate the reaction and to avoid the degradation of the amine 47. The amine 47 was reported to react with
4-chloroquinoline 67 in the presence of palladium acetate (4 mol%), DPEphos* (8 mol%) and potassium phosphate (K₃PO₄, 2.5 equivalent) and the mixture was heated in 1,4-dioxane for 18 h at 85 ºC, where the final product 68 was isolated in 93% yield (Figure 2.6).\(^\text{165}\)

![Chemical structure](image)

Figure 2.6 Reported amination\(^\text{165}\) reaction using the amine 47 with 4-chloroquinoline 67 using a Pd catalyst.

The presence of the chlorine atom in position 4 of the quinoline 67, makes it analogous to the case in the alkene 62, however, there is no steric hindrance around the chlorine atom in 67. Therefore, the alkene 62 was placed with the amine 47 in a sealed tube, to which was added palladium acetate (4 mol%), DPEphos (8 mol%) and K₃PO₄ (2.5 equivalent), and the tube was degassed for 10 min using N₂, the tube was sealed and then heated at 18 h at 85 ºC (Scheme 2.20). Upon TLC analysis of the mixture, no change was observed. Therefore, the content of the tube was transferred to a microwave tube and the reaction was irradiated with microwave at 100-160 ºC for 10 min to 1 h. No change in the reaction was detected until reaching 160 ºC for 1 h, where the reactants decomposed as indicated by the TLC analysis where several minor spots (>7) appeared that were difficult to separate.

* (oxydi-2,1-phenylene)bis(diphenylphosphine).
Scheme 2.20 Attempted Pd catalysed amination of the alkene 62 using the amine 47.

The failure of the above reactions (Schemes 2.19, 2.20) argued for the difficulty of the reactions in the presence of the steric hindrance induced mainly by the methyl groups in both 62 and 47. Therefore, the less hindered, alkene 63, with the cyclopropyl chain instead of the two methyl groups in 62, was reacted with the amine 47 using the same Pd catalysed conditions (Scheme 2.21). At the same time, the alkene 63 was reacted with the amine 47 using a conventional heating method in a sealed tube, to test the reactivity without the Pd catalyst (Scheme 2.21).

Scheme 2.21 Attempted reactions of the cyclopropyl alkene 63 with the amine 47, using the Pd catalysed amination and the free S_NAr reaction.

Using the Pd catalysed conditions, the product 69 was not detected and only the alkene 63 was recovered. Using the thermal heating method, the reaction was heated until the starting material disappeared. No characteristic peaks were identified in the EI-MS/ESI-MS spectra, therefore, the excess amine 47 was then removed by distillation.
under vacuum at 120 °C. Further analysis of the EI-MS and 1H NMR spectra of the oily residue did not provide any evidence indicating the formation of 69, instead, a polymeric material was detected that had complex multiplicity in the aliphatic regions (1-3 ppm) with no aromatic protons.

Another S_NAr reaction of the amine 47 with 9-chloroacridine 70 was reported in 2009, utilizing phenol as a solvent and heating the reaction at 100 °C for 15 min, with the product 71 isolated in 65% yield 166 (Figure 2.7).

![Figure 2.7 Reported S_NAr reaction of the 9-chloroacridine 70 with the amine 47 using phenol as a solvent.166](image)

Therefore, the alkene 64 was placed in a sealed tube, phenol was added and then, the amine 47 was added. The tube was sealed and the reaction was heated at 100 °C for 5 min (Scheme 2.22). A sample of the reaction was taken for TLC analysis, which indicated no change. The tube was then heated at 120 °C for 10 min and 140 °C for 1 h, after which, no change was observed in the reaction. Finally, the tube was heated at 160 °C for 14 h. The tube was then cooled and the content was adsorbed onto silica and subjected to a flash column chromatography and eluted with 10% methanol in CH$_2$Cl$_2$ to give 3-(cyclobutylidene(4-phenoxypyridin-3-yl)methyl)aniline 72 as a colourless oil in 43% yield. Analysis of the EI-MS spectrum showed a peak at 328 m/z that was assigned to the M+. Analysis of the 1H NMR spectrum showed a broad peak at 3.55 ppm which was assigned to the NH$_2$ group. The IR spectrum of 72 showed the disappearance of the NO$_2$ group absorption bands at 1527 and 1340 cm$^{-1}$ from 64, and showed an absorption band at 3256 cm$^{-1}$ indicating the presence of an amino group, confirming the reduction of the nitro group on the phenyl ring of 64.
Scheme 2.22 Reaction of the alkene 64 with the amine 47 using phenol as a solvent.

The nucleophilic substitution reaction of the chlorine atom by the phenol is a known reaction for the preparation of ethers (Ullmann ether synthesis), where the nucleophile (phenol) is heated with a chlorated substrate at elevated temperatures, in the presence of a base and copper metal, as in case of 4-phenoxy.pyridine 74, which was prepared via reacting 4-chloropyridine HCl 55 with phenol in the presence of cesium carbonate (Cs₂CO₃), and Cu-source (Figure 2.8).⁶⁷ The same reaction can also occur in the absence of the copper metal, where the 4-chloropyridine HCl 55 could be heated with phenol at 150 ºC for 15 h (Figure 2.8).⁶⁸

Figure 2.8 Reported reaction of 4-chloropyridine HCl 55 with phenol, forming 4-phenoxy.pyridine 74.⁶⁷,⁶⁸

In our reaction (Scheme 2.22), two transformations are taking place, the solvent phenol first serves as a nucleophile and undergoes an Sₙ₂ reaction, replacing the Cl
leaving group, producing the ether 72. This was surprising because the phenol is a weaker nucleophile than the \(\text{NH}_2 \) group of amine 47 or its decomposition product, the \(\text{NH}_2 \) nucleophile, as previously noted (Scheme 2.19). This can be explained based on the steric hindrance, by the adjacent sp3 carbon in 47, which prevents the nucleophilic attack of the amine 47 to give the product 72. At the same time, the amine 47 or its decomposition product (at 160 °C), might serve as base to mediate the reaction of the phenol with the alkene 64, as the case mentioned in Figure 2.8.

The second transformation that occurred (Scheme 2.22) was the reduction of the nitro group of 64 to give the aniline 72. No metal catalyst was present in the reaction to catalyse such a reduction, however, the catalyst free reduction of the aromatic nitro group is possible and has been reported previously, where aromatic nitro compounds can be heated with a hydrogen source at 110 °C for 24 h, in a solvent like water or water/DMSO mixture. Amines and hydrazines are well known sources of hydrogen in reduction reactions, and therefore, the amine 47 or its decomposition products are proposed to be the hydrogen source for the reduction of the nitro group in 64 to the amino group in 72, when heated at 160 °C for 14 h in a sealed tube. The sealed tube also provided the pressure required for such a reduction reaction. However, because the product 72 is out of the scope in this work, the reaction was not repeated on the other alkene 62 or 63, to investigate the scope of this reduction.

2.5.5. Amination of the alkenes 62-64 using morpholine 75

Replacing the amine side chain 33 and the amine 47 by morpholine 75 was an applicable strategy that was previously used. The AAPM 36 carrying the morpholine side chain (Figure 2.2), displayed a weak to moderate activity against the dengue virus (64% inhibition at 25 µM). The synthesis of the AAPM 36 was also achieved in 62% yield. Therefore, the alkenes 62-64 were reacted with neat morpholine 75, by heating the mixture at reflux for 48 h (Scheme 2.23). Excess morpholine 75 was then removed by distillation under vacuum, leaving oily residues. Only the cyclopropyl analogue 77 was isolated after being subjected to alumina column chromatography. Analysis of the ESI-MS (negative ionization) spectrum of 77 showed a peak at 336.9 \(m/z \) which corresponded to \([\text{M-H}^+]\). Analysis of the \(^{13}\text{C} \) NMR spectrum of 77 showed a peak at 66.8 ppm assigned to the morpholine C2 and C6, and two carbon resonating at 53.4 ppm assigned to C3 and C5 of the morpholine ring in 77.
Scheme 2.23 Amination reaction of the alkenes 62-64 with morpholine 75.

In case of the alkenes 62 and 64, no reaction was detected and the alkenes were fully recovered after the reaction time (Scheme 2.23). The ability of the alkene 63 to react with morpholine 75 was related to the less hindrance, in comparison with the more hindered alkenes 62 and 64. Therefore, harsher conditions were employed on alkenes 62 and 64. Neat morpholine 75 was heated with either alkene 62 or alkene 64, in a microwave tube (Scheme 2.24). The maximum heat applied was 240 °C (using the maximum microwave power), and the reaction was held for 1 h. The reaction was cooled with compressed air for 10 min. TLC and low resolution mass analysis indicated no change in the reactants.

Scheme 2.24 Attempted microwave reaction of the alkenes 62, 64 with morpholine 75.

The failure to synthesise 76 and 78 was mainly attributed to the steric hindrance by the dimethyl groups in case of alkene 62, and the bulky cyclobutyl of the alkene 64. However, the alkenes 62, 64 were found to be stable after heating at 240 °C for 1 h, and were fully recovered.
2.6. Concluding remarks

This chapter presented the attempted trials to synthesise the nitro AAPM derivative 46, starting from the nitro-isobutyrophenone 38. The sequence of the reaction sequence proceeded well until the final amination step with the racemic side chain amine 33. Different conditions were tried for this amination, however, the polymerization of the side chain and the loss of the starting material, the aminochloropyrimidine 43, provided additional difficulties in repeating the reaction. During the optimization of the dehydration reaction for the alcohol 40, using conc. H₂SO₄, a new furopyrimidine 42 was obtained in an excellent yield. This is considered a novel short synthetic pathway to access the furopyrimidine skeleton which has been rarely reported in the literature.

The racemic amine 33 was then replaced by the amine 47, which contains features present in the anti-malarial chloroquine 8. Final amination using 47 was not successful due to the instability of 47, decomposing and releasing NH₂ as a nucleophile, and also due to the steric hindrance caused mainly by the two methyl groups in the aminochloropyrimidine 43. One way to decrease the steric hindrance was by tethering the two methyl groups by using the less hindered cyclopropyl group. The replacement took place, and the alcohol 50 was isolated, however, it was found to be unstable, and the conversion to the alkene 51 was not successful. Another possibility is to use a less hindered analogue of 47 that does not have the methyl germinal to the NH₂ group.

A modification of the AAPM structure was then achieved by replacing the 4,6-dichloropyrimidine 28 by the simpler 4-chloropyridine HCl 55. The addition and dehydration reactions proceeded well and three alcohols 59-61 and the corresponding alkenes 62-64 were obtained in good yields. However, the final amination with the amine 47 was not successful with any of the alkenes, including the Pd catalysed amination chemistry. Instead, the ether-aniline product 72 was obtained when trying the amination with the alkene 64, using phenol as a solvent. This product showed that the nucleophilic substitution on the alkenes 62-64 was possible, although steric hindrance prevented the addition of the amine 47 in the desired position. Product 72 showed also the instability of the amine 47 when placed in harsh conditions which might be required for such nucleophilic substitution reactions, as can be noted by the reduction of the nitro group on alkene 64 to an amino group in 72, depending on the amine as a hydrogen source.
Finally, the amination with the secondary amine, morpholine 75, was performed on the alkenes 62-64, however, only the cyclopropyl analogue 77 was isolated in good yield. This confirmed the difficulties in performing such reactions in the presence of hindered systems.

In conclusion, the alkene 63, with the less hindered cyclopropyl group, represents the most promising alkene to perform more amination reactions under moderate conditions. The synthesized compounds, not only represent milestones in the optimization process of the AAPM derivative syntheses, but also provide new scaffolds for testing against the CHIKV as well as against malaria, to identify new hit compounds.

Some alternative routes to the AAPM derivatives are to be considered. The synthesized new furopyrimidine 42 can be considered for the amination reaction, as it is less sterically hindered than the corresponding alkene 41 (Scheme 2.25). The furan ring can then be open using POCl$_3$ to give the final aminated products.

Scheme 2.25 Alternative synthesis of the AAPM 46, 48 and 81 using the furopyrimidine 42 intermediate.
3.1. Introduction

The function of alphaviruses nsP3 has remained unknown, although mutations can affect different steps of the viral replication machinery. It is constructed of two domains, with the first being a unique macro domain in the conserved N-terminal region. The C-terminal region is less conserved and is phosphorylated in about 16 positions on serines and threonines. The function of phosphorylation is not understood, but it was found that deletion of these phosphorylated residues decreases the RNA synthesis level in infected cells.

The N-terminus of nsP3 contains a macro domain (known also as X domain), which binds to ADP-ribose derivatives and RNA, and is able to hydrolyse ADP-ribose-1'-'phosphate, a side product of cellular pre-tRNA splicing. Therefore, it is believed to control the metabolism of ADP-ribose 1'-phosphate and/or other ADP-ribose derivatives which have regulatory functions in the cell. The ADP ribose-binding site within the nsP3 macro domain is solvent-exposed and points away from the other domains in the nsP23 polyprotein. Based on sequence conservation in alphaviruses, it has been shown that residues just after the nsP3 macro domain play a role in positioning of the nsP23 complex cleavage site. It can be inferred from the crystal structure of the nsP23 precursor protein of the closely related alphaviruses, SINV, that the nsP2 is connected to the nsP3 through the macro domain of the nsP3.

In 2010, the crystal structure of the nsP3 macro domain for the CHIKV was solved (Figure 3.1). It is formed of 672 residues and contains six-stranded β sheets (cyan colour in Figure 3.1) and three α helices (red colour in Figure 3.1). The 2D intermolecular interactions between the residues in the binding pocket of the enzyme and the ADP-ribose, as analysed from the crystal structure, are also shown (Figure 3.2).

As shown in Figure 3.2, the key binding residues are: Arg144, Asp10, Ile11, The111, Gly112, Ser110, Tyr114, Val113, Asn24, Asp31 and Val33. The binding complex is formed of 10 H-bonding and one π-cation interaction. The PO₄²⁻ moiety
showed the strongest interactions with these residues in the enzyme pocket. Also, the ribose (with Thr111) and the diphosphate (with Gly112, Ser110, Tyr114, Val113, Val33) units were found to play major roles in the CHIKV nsP3 ADP-ribose complex.85

The nsP3 of CHKV uses a conserved proline-rich motif to interact with the Src-homology-3 (SH3) domain of amphiphysin-1 and amphiphysin-2 proteins, of the host cell, which are related members of the BAR (Bin-Amphiphysin-Rvsp) protein superfamily implicated in several cellular functions.86

Figure 3.1 Crystal structure of the CHIKV macro domain with the bound ADP-ribose, generated from the PDB file code: 3GPO.80 β sheets are shown in cyan, while the three α helices are shown in red colour.

Figure 3.2 2D representation of the interaction of ADP-ribose inside the nsP3 macro domain binding pocket showing the other residues inside the active site (Generated from the PDB file: 3GPO80).
It was recently found that the nsP3 acts as an inhibitor of stress granule assembly by recruiting G3BP into cytoplasmic foci. The conserved SH3 domain-binding motif in nsP3 (the proline-rich motif, not included in the crystal structure) is also essential for both nsP3-G3BP interactions and viral RNA replication. G3BP (Ras GTPase-activating protein-binding protein) is an enzyme in human cells and a member of the heterogeneous nuclear RNA-binding proteins. This protein plays a major role during infection and in the assembly of stress granules. Stress granules are membranous cytoplasmic focal structures (foci) that immediately aggregate in response to cellular stress; this last action leads to impaired translation of most mRNAs. These stress granules may have antiviral activity that is inhibited by CHIKV replication by the nsP3 SH3 domain-binding motif.

The crystal structure of the CHIKV nsP3 macro domain represents only one domain of the whole protein, however, the main function of the CHIKV nsP3 is located within this X domain, through the ADP-ribose binding site. Moreover, like other alphaviruses, the nsP2 is connected to the nsP3 through the macro domain of the nsP3. Therefore, targeting the binding site of this domain will have effects on both the functions of the whole nsP3 itself, and also, will impair the functions of the polyprotein complex (nsP23 cleavage site). Therefore, impairing the functions of the nsP3 macro domain would either affect the functions of the whole protein (nsP3) as an individual functioning unit, or would impair the functions of the polyprotein complex before being cleaved by the protease activity of the nsP2. In either case, the viral replication machinery will be impaired.

This chapter describes the investigation of using of the CHIKV nsP3 as a potential drug target by utilizing the ADP-ribose binding site to perform virtual screening of a compound library. In this structure-based search approach, the co-crystallized ligand (ADP-ribose) was used as a control. Ligands which showed higher scores within the pocket were considered as potential competitive inhibitors, and ligands which showed lower affinities were discarded.

3.2. Results and discussion:

3.2.1. The data set library used in the search
The freely available NCI diversity set III was selected for this virtual screening. The diversity set was derived from almost 140,000 compounds available in plates for high
throughput screening approaches. Only available compounds were considered. The 71,756 compounds meeting this criterion were filtered using the program Chem-X (Oxford Molecular Group). Chem-X uses defined centers (hydrogen bond acceptor, hydrogen bond donor, positive charge, aromatic, hydrophobic, acid, base) and defined distance intervals to create a particular finite set of pharmacophores. 3-Point pharmacophores were used resulting in almost 1,000,000 possible pharmacophores. The Chem-X diverse subset generating function reads through a set of structures and determines the acceptable conformations. For each acceptable conformation, it determines all the possible pharmacophores. The pharmacophores for the current structure are compared to the set of all pharmacophores found in structures already accepted into the diverse subset. If the current structure has more than a preset number of new pharmacophores, it is added to the diverse subset. The requirements were set as 5 new pharmacophores and, additionally, 5 or fewer rotatable bonds. This procedure resulted in the selection of 1990 compounds.

3.2.2. Virtual screening with the CHIKV using Autodock Vina

In this chapter, Autodock Vina (Vina)172 was used to perform virtual screening of the NCI Diversity Set III into the ADP-ribose binding site within the CHIKV nsP3 macro domain crystal structure (pdb: 3GPO80). Vina is freely available to the academic community. It is two orders of magnitude faster than Autodock 4.0 (Autodock173). Vina performs well relative to Autodock; while Autodock is slightly better at predicting the energy of binding (standard error of 2.2 kcal.mol-1 versus 2.8 kcal.mol-1 for Vina), Vina more accurately reproduces cocrystallized ligand poses.172,174 Vina has been used successfully for virtual screening with reliable results.175

Table 3.1 shows the top 17 ranked docked poses that achieved lower binding energies (ΔG_{bind}) than the co-crystallized ligand (ADP-ribose), with the binding energies (Kcal/mol), interacting residues and calculated log (ClogP). The validation of the docking accuracy was achieved by docking the native co-crystallized ligand (ADP-ribose) into its binding site of nsP3 macro domain. The result was satisfactory where the docked ligand was exactly superimposed on the native co-crystallized ligand with a RMSD value of 0.34 Å, and a binding free energy of -10.4 kcal/mol. The top 10 compounds were selected for in vitro antiviral evaluation against the CHIKV.

* The diversity set III definition and the preparation procedures were extracted from the NCI website.
Table 3.1 Autodock Vina top ranked molecules which scored higher than ADP-ribose, binding affinity (ΔG_{bind}), interacting residues and calculated logP (ClogP).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>ΔG_{bind} Kcal/mol</th>
<th>Interaction Residues</th>
<th>ClogP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-12.0</td>
<td>Leu108 (H bond, 1.99 Å), Ser110 (H bond, 2.26 Å), Arg144 (cation-π)</td>
<td>2.94</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-11.9</td>
<td>Trp148 (π-π), Leu108 (H bond, 2.2 Å)</td>
<td>2.41</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-11.5</td>
<td>Arg144 (H bond, 2.15 Å), Ser115 (H bond, 2.01 Å), Thr111 (H bond, 2.18 Å), Trp148 (π-π)</td>
<td>6.77</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-11.4</td>
<td>Asn24 (H bond, 2.24 Å), Cys34 (H bond, 2.08 Å), Val113 (H bond, 1.83 Å), Leu108 (H bond, 2.47 Å), Arg144 (H bond, 1.84 Å), Ile11 (H bond, 2.42 Å), Tyr142 (H bond, 2.30 Å)</td>
<td>6.75</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-11.3</td>
<td>Ile11 (H bond, 2.42 Å)</td>
<td>3.01</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-11.1</td>
<td>Trp148 (π-π), Val113 (H bond, 2.03 Å), Asp31 (H bond, 2.39 Å)</td>
<td>5.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>CHIKV nsP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 </td>
<td>-10.9 Arg144 (cation-π, H bond, 2.09 Å), Ile11 (H bond, 2.27 Å), Tyr142 (H bond, 1.88 Å), Thr111 (H bond, 2.19 Å), Gly112 (H bond, 2.02 Å)</td>
</tr>
<tr>
<td>8 </td>
<td>-10.8 Thr111 (2 H bond, 1.81, 2.48 Å), Gly112 (H bond, 2.26 Å)</td>
</tr>
<tr>
<td>9 </td>
<td>-10.7 Trp148 (π-π), Arg144 (H bond, 1.91 Å), Thr111 (H bond, 1.83 Å), Gly112 (H bond, 2.40 Å)</td>
</tr>
<tr>
<td>10 </td>
<td>-10.7 Agr144 (cation-π)</td>
</tr>
<tr>
<td>11 </td>
<td>-10.7 Arg144 (H bond, 2.13 Å), Asp145 (H bond, 2.29 Å), Thr111 (H bond, 1.89 Å), Gly112 (H bond, 2.22 Å)</td>
</tr>
<tr>
<td>12 </td>
<td>-10.6 Asp31 (H bond, 1.90 Å)</td>
</tr>
<tr>
<td>13 </td>
<td>-10.6 Arg144 (cation-π, H bond, 2.48 Å), Thr111 (H bond, 2.09 Å), Gly112 (H bond, 2.17 Å), Val33 (H bond, 2.36 Å)</td>
</tr>
<tr>
<td>14 </td>
<td>-10.6 Leu108 (H bond, 1.93 Å), Tyr142 (H bond, 2.15 Å), Thr111 (H bond, 1.79 Å), Gly112 (H bond, 2.33 Å),</td>
</tr>
</tbody>
</table>
From Table 3.1, it can be seen that all the top ranked poses could interact with the key residues inside the CHIKV nsP3 pocket, which interact with ADP-ribose (Figure 3.2). The results also revealed the participation of new residues within the pocket, where the amino acid Leu108 was found to either accept H-bonds through the carbonyl group, or donate H-bonds through the NH group with poses 1, 2, 4, 14 and 15 (Figure 3.3). The Leu108 residue is located inside the pocket close to the key residues Ser110, Thr111, Gly112 and Val113. Interactions with these residues were found to be important for the binding of the ADP-ribose ligand. Therefore, interactions with Leu108, should also strengthen the interactions within this site of the pocket. This would stabilizes the ligand-enzyme complex at this site, therefore, competing well with ADP-ribose (did not show interactions with Leu108) to fit within the pocket inside the CHIKV nsP3 macro domain.
Figure 3.3 Leu108 (red colour) interactions within the nsP3 pocket with entries 1, 2, 4, 14 and 15 (poses are shown in green colour). Leu108 can either accept H-bonds through the backbone CO or donate H through the backbone NH group.

Another common residue, Trp148 which is lying on the pocket floor, was found to have π-π stacking interactions with entries 2, 3, 6 and 9 (Table 3.1). These poses were found to position aromatic systems against the indole ring of Trp148, giving stability of the aromatic residues against the pocket mouth (Figure 3.4). The amino acid residue Asp145 was also found to form a H-bond only with entry 11 (Table 3.1). Ser115 was also found to form a H-bond only with entry 3.

Figure 3.4 Trp148 π-π interactions with the aromatic rings of entries 2, 3, 6 and 9. Trp148 is shown in blue colour within the transparent surface of the nsP3 pocket. The π-π interactions are shown as orange lines.
3.2.3. Ranking of the Autodock Vina output using Autodock

To select the hit to be optimized, the hit list obtained by Autodock Vina (Table 3.1) was subjected to ranking using the Autodock algorithm, which was then used for the in silico optimization. Re-docking of the hits using Autodock was performed to re-score the list with the Autodock scoring function, using the native ligand (ADP-ribose) as a control, and excluding those hits which are ranked below the score of ADP-ribose. Table 3.2 shows the re-docking results. Autodock 4 results for the ADP-ribose: binding energy ($\Delta G_{\text{bind}} = -11.07 \text{ Kcal/mol}$) and predicted inhibition constant ($K_i = 7.74 \text{ nM}$).

Table 3.2 Hits which passed the Autodock re-ranking, achieving scores higher than (ADP-ribose), their binding energies (ΔG_{bind}), predicted inhibitory constant (K_i) and interacting residues. Entries of the table are the same as in Table 3.1.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>ΔG_{bind} Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td>-12.66</td>
<td>0.528</td>
<td>Asp31 (H bond, 1.74 Å)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-12.01</td>
<td>1.56</td>
<td>Leu108 (H bond, 1.90 Å), Val113 (H bond, 2.01 Å), Tyr142 (π-π)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>-11.71</td>
<td>2.59</td>
<td>Leu108 (H bond, 1.97 Å), Thr111 (H bond, 2.21 Å), Arg144 (cation-π)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>-11.37</td>
<td>4.62</td>
<td>Ala22 (H bond, 2.09 Å), Cys34 (H bond, 1.71 Å), Gly112 (H bond, 2.16 Å), Val113 (sigma-π), Arg144 (H bond, 2.06 Å)</td>
</tr>
</tbody>
</table>
Table 3.2 showed that the amino acid residue Asp31 is critical for the ligand-enzyme interaction complex as demonstrated by entries 12 and 6, where both predicted to form H-bonding with Asp31 with predicted distances of 1.74 Å and 2.15 Å, respectively. Entry 12 also achieved shape matching and therefore was predicted to have the highest ΔG_{bind} value. Entry 16 showed the ability to form a H-bonding with Asp31 with a predicted distance of 2.38 Å, a greater distance from those observed in entries 12 and 6. Although ranked the last pose (Table 3.2), entry 16 showed 8 H-bonds with key binding residues within the pocket, ranging from 1.78 to 2.38 Å.

Entry 3 (benzimidazole derivative) was selected for the docking based optimization due to its easy chemical access, high scoring in the first Autodock Vina screening, highly optimizable structure and it showed the ability to form 2 cation-π interactions with Arg144 (similar to ADP-ribose). It was also selected in order to validate the efficacy of the optimization process (optimizing a lower ranked hit rather than a higher ranked one).
3.2.4. *In silico* optimization of entry 3

Hit 3 (Table 3.2) showed interaction within the CHIKV nsP3 pocket ($\Delta G_{\text{bind}} = -11.31$ Kcal/mol, predicted $K_i = 5.1$ nM). Figure 3.5 shows the 2D representations of the interaction of entry 3 with the nsP3 residues. This hit can be described as two benzimidazol-2-yl phenyl units connected to a central phenyl ring through amide linkages. One of the benzimidazol-2-yl phenyl forms important interactions with the key amino acid residue Arg144, where the benzimidazole moiety forms the π-cation stacking interaction with the cationic side chain of Arg144 *via* the benzo moiety, and another π-cation interaction with the phenyl ring, whereas one N atom of the imidazole moiety accepts a H-bond from one of the Arg144 NH$_2$ (Figure 3.5). The other benzimidazole moiety can donate a H-bond, through the imidazole moiety to the backbone carbonyl group of Ala22. One of the amide carbonyl (Figure 3.5) accepts two H-bonds from the backbone amide NH of the key residues Gly112 and Val113.

Figure 3.5 2D representations of the interaction of entry 3 within the CHKV nsP3.

Therefore, the important moieties for hit 3 (Table 3.2) appear to be the benzimidazol-2-yl phenyl moieties and the amide linkages. The ClogP for this hit is 6.77, which is due to the presence of 5 phenyl rings in the structure. Removal of the central phenyl ring was the first modification performed on hit 3, producing pose_3_1 (Figure 3.6) which suggested more positive interactions with active site residues ($\Delta G_{\text{bind}} = -11.44$ Kcal/mol, predicted $K_i = 4.08$ nM), a slight improvement in the Autodock score compared to hit 3. ClogP for pose_3_1 is 4.97, lower than that of the original hit 3.
Figure 3.6 2D representations of the pose_3_1 within the CHIKV nsP3.

Figure 3.6 shows that pose_3_1 has the same predicted interactions with the key residue Arg144. However, Gly112 also interacted, not through a H-bond as in case of hit 3 (Figure 3.5), but through a sigma-π stacking interaction (Figure 3.6). Two amino acid residues participated in new H-bonds, the key residue Tyr142 (1.82 Å) and the backbone NH of Leu108 (1.88 Å). The other terminal benzimidazole N did not donate a H-bond to Ala22 as in hit 3, instead, a H-bonding interaction with the key residue Asp31 (Figure 3.6) was predicted. The 3D model of pose_3_1 suggested further possibilities of H-bonds with the polar hydrogens of the key amino acid residue Asn24 (Figure 3.7), through one of the benzimidazole rings. Such H-bond formation will require the presence of an acceptor on the terminal benzo moiety of the benzimidazole close to Asn24 (Figure 3.7). Moreover, the presence of an acceptor on the other benzimidazole moiety (which forms interactions with Arg144), would make possible a H-bond with the polar hydrogens of Lys35 (Figure 3.7).
Therefore, the next modification was to insert an acceptor group on the terminal benzimidazole rings. This acceptor was to be added on both benzimidazole rings, to achieve the two possible interactions with Asn24 and Lys35. Several acceptor groups such as NH₂, OH, COOH and NO₂ could be added on the desired position, however, the nitrile group (CN) was selected as an acceptor to be added on the benzimidazole ring. It was selected because it is able to form relatively strong H-bonds with the receptor residues,¹⁷⁶ and also, the presence of the carbon atom would act as a spacer, bringing the N closer to the receptor residues.¹⁷⁷ Therefore, pose_3_1 was optimized to give Pose_3_2. This modification, not only represented a better in silico binding profile ($\Delta G_{\text{bind}} = -13.12$ Kcal/mol, predicted $K_i = 239.69$ pM), but also, it showed interactions with 9 key residues within the nsP3 binding pocket (Figure 3.8). Furthermore, the ClogP for pose_3_2 was brought down to be 3.84 compared to 6.77 of the original hit 3.
Figure 3.8 Pose_3_2 within the CHIKV nsP3 pocket. a) 3D representation, b) 2D representation. H-bonds are shown as green dashes, cation-π and sigma-π interactions are shown as orange lines.

As predicted, the nitrile group introduced on the benzimidazole rings, not only accepted a H-bond from Asn24 (1.90 Å), but also accepted another H-bond from the key residue Cys34 (2.19 Å). The nitrile group on the other benzimidazole ring also accepted a H-bond from Lys35 (2.35 Å) as predicted. It is envisaged that such interactions with Cys34 and Lys35 residues would stabilize the pose within the pocket cavity openings (Figure 3.8a). The pocket central residues Gly112, and Val113 were able to form sigma-π stacking interactions with a phenyl ring, and the imidazole moiety, respectively (Figure 3.8b). The molecular weight of pose_3_2 is 522.5, with ClogP value of 3.84, and these drug-like properties made it an attractive candidate for synthesis and testing against the CHIKV.

3.3. Synthesis of pose_3_2 (86)

The retrosynthetic analysis of pose_3_2 (Figure 3.9) suggested that it could be accessed through three synthetic steps; the synthesis of the nitro-benzimidazole, which can be then reduced to the amino derivative, and reacted in a final step with oxalyl chloride (Figure 3.9) to give the bis-product.
The synthesis of the benzimidazole nucleus can be achieved by a variety of methods. The synthesis can involve the reaction between the phenylene diamine derivatives with aldehydes, carboxylic acids or acid chlorides, utilizing a variety of different solvents and catalysts. In this work, the benzimidazole \(\text{84} \) was synthesized via the reaction of the 3,4-diaminobenzonitrile \(\text{82} \) with 3-nitrobenzaldehyde \(\text{83} \) in solvent free conditions, where the two solids were mixed together (1:1 molar ratio) and the mixture was heated with vigorous stirring at 90 °C. Both solids melted, giving a dark brown oil mixture (Scheme 3.1). After a few minutes of stirring the dark oil at 90 °C, the mixture solidified as a dark brown solid. At this stage, the first step of the reaction occurred which was the condensation reaction of the aldehyde \(\text{83} \) with one of the amines in \(\text{82} \) giving the Schiff base intermediate (Scheme 3.1). Increasing the temperature to 145 °C initiated the cyclization step, where the 2\(^{nd} \) amine attacked the electron deficient azomethene carbon, where the dark brown solid condensation intermediate melted again giving a dark red oily mixture. Stirring continued for about 3 min, after which the mixture solidified again as a dark red solid (Scheme 3.1). The solid was then extracted into boiling ethanol, and crystallized from a mixture of methanol, 1,4-dioxane and water to afford the benzimidazole \(\text{84} \) as a yellow crystalline solid.
Analysis of the ESI-MS spectrum of 84 showed a peak at 264.1 m/z that corresponded to (M+). The 1H NMR spectrum showed a broad singlet peak resonating at 13.8 ppm which was assigned for the NH. This solvent free conditions enabled the access to the desired benzimidazole in a short time (less than one hour) and relatively good yield (70%).

The next synthetic step was the reduction of the nitro group in 84. Therefore, the benzimidazole 84 was suspended in methanol, and Raney Nickel catalyst was added under N$_2$ atmosphere with vigorous stirring. The hydrogen source for the reduction was hydrazine monohydrate in methanol, which was added dropwise. During the addition of hydrazine hydrate, hydrogen gas was evolved and upon cessation, the reaction was heated to 80 °C for 2 h (Scheme 3.2). The mixture was then filtered through celite while hot, and methanol and excess hydrazine hydrate were removed under reduced pressure to give the amine 85 as a dark yellow solid.

The analysis of 1H NMR spectrum of the product 85 showed a broad peak resonating at 5.37 ppm which was assigned as the NH$_2$ group. ESI-MS (negative ionization) showed a peak at 233.0 which was assigned for (M-1).
The final synthetic step was the dimerization of the amine 81 using oxalyl chloride. The amine 85 was dissolved in dry THF in the presence of TEA, and the mixture was stirred under N\textsubscript{2} atmosphere at 0 °C. A solution of oxalyl chloride in dry THF was then added dropwise with vigorous stirring. After addition, the mixture was left to warm to room temperature with stirring for 2 h (Scheme 3.3) after which the mixture became turbid. The reaction was then quenched with chilled water and a solid precipitated immediately. The solid was filtered and washed with water and methanol, recrystallised from DMF to afford the final pose\textsubscript{3,2} (86) in 69% yield. The 13C NMR spectrum of the product showed a peak at 158.8 ppm which was assigned to the CO\textsubscript{2} groups. The 1H NMR spectrum showed a peak at 11.08 ppm which was assigned for the two oxalamide NH groups. The IR spectrum also showed a band at 2219 cm-1 that was assigned for the nitrile group.

Scheme 3.3 Reaction of the amino benzimidazole 85 with oxalyl chloride to afford the final compound 86.

In this reaction (Scheme 3.3), only the primary amine NH\textsubscript{2} group was involved in the reaction with oxalyl chloride. The benzimidazole NH is reactive and might react with acid chlorides, however, it is known that N-acylbenzimidazoles undergo hydrolysis to the free NH again in the presence OH groups or water.181 The rate of this hydrolysis increases if the imidazole or benzimidazole carries electron withdrawing groups such as the nitro group.182 The electron withdrawing nitrile group of 85 is therefore believed to achieve similar effect, deactivating the acylation of the benzimidazole NH.

3.4. Concluding remarks

This chapter discussed the use of the macro domain (domain X) of the CHIKV nsP3 as a possible target for the drug design against that virus. The nsP3 is a multifunctional viral protein, with the macro domain being the domain which regulates the ADP-ribose
substrates within the cellular process. Furthermore, the ADP-ribose binding site within the macro domain is close to the connection site with the nsP2. Therefore, occupying the ADP-ribose binding pocket with an exogenous ligand (inhibitor) should affect the function of the nsP3 either in a polyprotein complex or as an individual functioning protein. In this chapter, a virtual screening process of the NCI diversity set III, a library that carries drug-like molecules, was performed using the ADP-ribose pocket as the target binding site. Autodock Vina, a fast and reliable virtual screening engine, was used and 17 hits were identified as potentially stronger enzyme binders compared to the original ligand (ADP-ribose) which may serve as inhibitors for the CHIKV nsP3 functions. The search revealed that the hits made interactions with the identified key residues within the pocket, and also with new residues that tended to stabilize the ligand-receptor complex, such as Leu108, Trp148, Ser115 and Val22. The top 17 hits (Table 3.1) were obtained from the NCI and are currently under antiviral evaluation (at Griffith University).

The top hits were then subjected to re-ranking against the original ligand (ADP-ribose) using Autodock 4. This re-ranking resulted in 7 hits achieving higher scores than the ADP-ribose. One hit, hit 3 (Table 3.2) was selected for further docking based optimization. This optimization resulted in pose_3_2 (86) which showed a significantly improved in silico profile compared to the original hit (Figure 3.10).

<table>
<thead>
<tr>
<th>Hit</th>
<th>ΔG<sub>bind</sub></th>
<th>K<sub>i</sub></th>
<th>ClogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-11.31 Kcal/mol</td>
<td>5.1 nM</td>
<td>6.77</td>
</tr>
<tr>
<td>86</td>
<td>-13.12 Kcal/mol</td>
<td>0.239 nM</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Figure 3.10 Comparison between (a) hit 3 and (b) the optimized structure 86.
The optimized structure 86 was then accessed through three facile synthetic steps. This optimized hit 86 represents an early stage towards the discovery of a lead compound, based on the structure-based approach, which can be further optimized using \textit{in silico} and \textit{in vitro} in-depth studies.

The virtual screening hits 4 and 17 (Tables 3.1, 3.2) have the same linear skeleton and showed good interactions with the CHIKV nsP3 ADP-ribose pocket. If these molecules were demonstrated to be promising in activity, different derivatives can be accessed through one step reaction (Figure 3.11), and therefore, they might be a subject of both \textit{in silico} and \textit{in vitro} optimizations.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.11.png}
\caption{Possible access of different analogues for hits 4 and 17.}
\end{figure}

The inhibitor discovery status for the CHIKV nsP3 is still in the very early stages. Thus fare, the enzyme is not even available as a testing kit to validate the potential inhibitors. Efforts should be devoted to develop such validation techniques. Protein crystallization with the inhibitor would enhance the drug design approach for this virus.
CHAPTER 4: Synthesis of Mycophenolic Acid Analogues as Inhibitors of the Chikungunya Virus

4.1. Introduction

Mycophenolic acid (15, Figure 4.1) was isolated about one hundred years ago from the cell culture of *Penicillium brevi-compactum*. It acts as an inhibitor for the inosine monophosphate dehydrogenase (IMPDH) enzyme which is involved in the *de novo* biosynthesis of guanine nucleotide. It has good anti-proliferation activity and has been established as an anticancer and antiviral agent, as well as an immunosuppressant properties.

![Chemical Structure of Mycophenolic Acid 15](image)

Figure 4.1 Chemical structures of mycophenolic acid 15.

Recently, MPA was shown to inhibit the CHIKV replication and virus induced cell death with an IC$_{50}$ value of 0.2 µM and a selectivity index value of 150 (compared to vero cell lines), and it was found to induce CHIKV apoptosis. It works by inhibiting IMPDH, and when the CHIKV infected cells were provided with exogenous guanosine (GMP), MPA was prevented from inducing the CHIKV cell death. Considered as a good lead compound, the *in vivo* activity of MPA acid against CHIKV should be investigated as it is well known that mycophenolic acid suffers from a metabolic drawback associated with rapid conjugation of the C-7 phenolic hydroxyl group with glucuronic acid.

MPA as a lead: Mycophenolic acid 15 has good drug like properties with a molecular weight of 320.3, calculated logP (clogP*) value of 2.92, calculated LogD† value of 3.56.

Calculated using ACD Labs v.12.0 (ACD/Labs, Toronto, Canada)

†Calculated using PALLAS3.7.1.2 CompuDrug Chemistry Ltd, USA. LogD is a pH dependent distribution coefficient version of the logP. It represents the drug permeability (lipophilicity) at a certain pH.
(pH=1-2), 0.67 (pH=7.4) and 2.52 (pH=5.5) indicating good blood solubility and oral bioavailability (oral drug absorption occurs in the small intestine at pH ~ 5.5185,186). With the good CHIKV activity (IC\textsubscript{50} = 0.2 µM), MPA 15 is a promising template for developing anti-CHIKV drugs, with the metabolic drawbacks to be avoided for better bioavailability properties.183,184,129,130 The structure of CHIKV IMPDH enzyme is not yet available and therefore the structure based drug design for inhibitors is not a possibility. Instead, a ligand based drug design approach can be used starting with MPA 15 as a lead compound.

4.2. Design of MPA analogues

Mycophenolic acid consists of three major components (Figure 4.2), an aromatic head (the 3-oxo-1,3-dihydroisobenzofuran moiety), a rigid linker (the alkene connection) and an acidic tail (the carboxylic acid group). The aromatic head carries two major hydrogen bond acceptors (the carbonyl group and the oxygen atom of the lactone ring). The aromatic benzo moiety carries a hydroxyl group, a methoxy group and a methyl group.

In this study, the three components of MPA 15 were investigated as optimizable components that could be changed with a variety of similar systems, starting from simple cores such as benzoic acids and anilines. Figure 4.2 shows the possible access to MPA 15 analogues starting from such derivatives. Both the acids and anilines could be converted into the aromatic head groups carrying H-bond acceptor capacity, and then could be connected through simple C-C coupling, to the other two cores, the linker and the acidic tail. R groups on the acids and anilines were selected to give a similar environment as in 15.
85

Figure 4.2 Design of MPA 15 analogues starting from benzoic acids and aniline derivatives. The red circles indicate the HBA groups, the blue boxes indicate the rigid linker and the green circle refers to the acidic tail moiety which could be either COOH or the bioisostere tetrazole.

4.2.1. Design Strategy

The design of alternative and similar cores to MPA 15 was based on:

1. Changing the aromatic head: the aromatic head was either kept as a benzolactone or changed to an isatin moiety (Figure 4.2). The use of benzolactones as the aromatic head groups would highlight the importance of this functionality for the anti-CHIKV activity. Isatins were also selected as alternative possible replacements for the aromatic head group; as they have been showed to possess various pharmacological and biological properties including anticholinesterase, anticonvulsant, antiinflammatory, antihypertensive, antihypoxic, antimicrobial, and antiviral properties. Furthermore, the isatin moiety has been found in nature, e.g. as a component of the secretion from the parotid gland of *Bufo* frogs, and in humans as a metabolic derivative of adrenaline. Isatin is also found in the brain. The structure of isatin participates in the activity, where the two carbonyl groups (red circles, Figure 4.2) could accept H-bonds from residues in the target receptors, and the NH can donate a H-bond to acceptor residues. The aromatic core π-system of isatin was also found to participate through aromatic interactions with some target receptor residues. Therefore, replacing
the benzolactone head of MPA 15 with isatin, would have some structural similarities, with possible similar interactions with the yet unknown viral receptor.

2. Replacing the rigid linker alkene with the rigid phenyl ring (blue boxes, Figure 4.2) would be an applicable strategy for obtaining a rigid linker between the aromatic head and the acidic tail of MPA analogues. Utilizing the C-C cross coupling chemistry could facilitate such facile access to the biphenyl system. This phenyl aromatic linker may also provide a π-electron system for interaction within the yet unknown target site.

3. The acidic tail was kept as either a carboxylic group or changed to the bioisosteric tetrazole moiety (green, Figure 4.2). The carboxylic group is highly polar and can ionize and hinder absorption. The tetrazole ring has similar physiochemical properties but offers some advantages over carboxylic acids. Like COOH groups, tetrazole rings have an ionisable acidic proton at pH 7.4. They are also planar in structure, however, the tetrazole anion is 10 times more lipophilic than the carboxylate anion and this can enhance drug absorption as a result. Tetrazole rings are also resistant to many of the metabolic reactions that occur to the carboxylic groups.

This chapter discusses the different synthetic strategies undertaken for the access to the aromatic head groups (benzolactones and isatins) and the C-C coupling reactions utilized to tether the synthesized head groups to the linker and acidic tails (either COOH groups or tetrazoles) producing different conjugates. It also discusses the calculated physicochemical properties of the synthesized target compounds as templates for developing drug-like candidates.

4.3. Synthesis of the Aromatic Heads

4.3.1. Synthesis of the isobenzofuran-1(3H)-one (benzolactones)

Many procedures have been reported for the synthesis of the isobenzofuran-1(3H)-one ring system including from 2-formylbenzoic acid, phthalaldehyde, 1,2-phenylenedimethanol and from benzoic acids.

In this study, benzoic acids were used as starting materials. Therefore, a mixture of benzoic acid derivatives, palladium acetate, dipotassium phosphate and dibromomethane as the solvent and carbon donor was heated in a sealed tube at 140
°C under a N₂ atmosphere for 36 h (Scheme 4.1). After dilution of the reaction with CH₂CH₂, filtration through celite, washing with acid and evaporation of the solvent, the lactones 90-62 were obtained in 38-58% yield. The obtained compounds were easily purified through either flash column chromatography or recrystallization from a mixture of chloroform/hexane mixture (1:3, v/v). Analysis of the ¹H NMR spectra of the isobenzofuran-1(3H)-ones 90-92 showed a new singlet peak resonating at 5.17-5.23 ppm that was assigned to the newly formed lactone CH₂ group. Analysis of the ¹³C NMR spectra showed one carbon resonating at 68.2-86.7 ppm that was assigned to the newly added methylene carbon.

Scheme 4.1 The synthesis of the isobenzofuran-1(3H)-one heads 90-92.

The reaction proceeds via a Pd(II)-catalysed C–H activation where the coordination of the cation with the carboxylate group forces the Pd(II) centre to chelate in the proximity of the C–H bond ortho to the acid substituent (Figure 4.3), a geometry that facilitates C–H cleavage. The alkylation attacks the less hindered ortho position to the carboxylic acid group.

Figure 4.3 Mechanism of benzolactone formation from benzoic acid.

This synthetic procedure was applied either on the brominated benzoic acids, which provided the 6-bromobenzolactones with the coupling handles already intact, e.g.
the 6-bromo-7-methoxyisobenzofuran-1(3H)-one 90 and the 6-bromo-7-methylisobenzofuran-1(3H)-one 91, or was applied on the benzoic acid derivative without the bromo substituent, which required further attachment of a coupling handle for the next step, e.g. 5,7-dimethoxyisobenzofuran-1(3H)-one derivative 92.

Addition of coupling handle (bromine) to 92: The presence of the coupling handle (bromine) on C6 of the 5,7-dimethoxyisobenzofuran-1(3H)-one 92 was previously described using a different benzolactone synthesis procedure, starting from either 4,6-dibromo-5,7-dimethoxyisobenzofuran-1(3H)-one 204 or from methyl 3-bromo-6-(bromomethyl)-2,4-dimethoxybenzoate (93, Figure 4.4). 205 In both cases, the benzolactone skeleton was synthesized with the bromine already attached in the desired position, prior to the cyclization step.

![Reaction scheme](image)

Figure 4.4 Example of the synthesis of the 6-bromo-5,7-dimethoxyisobenzofuran-1(3H)-one 94 from methyl 3-bromo-6-(bromomethyl)-2,4-dimethoxybenzoate 93, with the bromine atom already intact prior to cyclization. 205

However, the regioselective bromination on C6 of the unsubstituted phthalide 97 (benzolactone) has been previously described in acidic medium, using a mixture of sulphuric acid and trifluoroacetic acid. 206 The selective iodination at C6 was also previously reported. 207 Position 6 in 5,7-dimethoxyisobenzofuran-1(3H)-one in 92 is more activated than that of the unsubstituted phthalide 97, however, it is more sterically hindered by the methoxy groups. In this work, due to the crowding of C6 by the two methoxy groups, a different method was used to access the 6-bromo derivative for this benzolactone 94 from the corresponding benzolactone 92. A solution of 5,7-dimethoxyisobenzofuran-1(3H)-one 92 in glacial acetic acid was cooled in an ice bath before a solution of bromine in glacial acetic acid was added dropwise and the mixture was then stirred at room temperature for 4 h (Scheme 4.2). The resulting solid was filtered and subjected to flash column chromatography (60% CH₂Cl₂ in hexane) to
afford the benzofuran 94, which was recrystallised from 1,4-dioxane. The isobenzofuran-1(3H)-one 94 was obtained in 84% yield with a melting point of 190 °C (Lit. 205 m.p 206 °C). The 1H NMR spectrum of 94 showed the disappearance of the C6 aromatic proton which resonated at 6.42 ppm in 1H NMR spectrum of the isobenzofuran-1(3H)-one 92. The EI-MS spectrum of 94 showed also a peak at 272 m/z which was assigned to the molecular ion (M+, 79Br). The addition of the bromine solution was carried out at 0 °C to minimize the production of the 4-bromo isomer 95 and the 4,6-dibromo derivative 96 side products. These side products were not separated due to overlapping bands on the TLC plates, and low mass recovery of this mixture. The EI-MS spectrum of the mixture showed peaks at 272 m/z (79Br) that was assigned to the 4-bromo isomer 95 and at 352 m/z (79Br, 81Br) that was assigned to the 4,6-dibromo derivative 96. The reported melting point for the 4,6-dibromo derivative 96 is 136 °C 204, and that for the 4-bromo isomer 95 is 245 °C 205.

Scheme 4.2 The synthesis of 6-bromo-5,7-dimethoxyisobenzofuran-1(3H)-one 90.

The 2D 1H NMR NOESY experiment of 94 showed a correlation between the aromatic proton H4 with a methoxy group. The methoxy groups appear as singlets resonating at 4.02 ppm and integrate for 6 protons*. No correlation was seen between the aromatic H4 proton and the CH2 in the NOESY experiment. However, the big difference in the melting points of 94 and 95 argued the bromination of C6.

Access to the unsubstituted benzofuran 100: The synthesis of 6-bromoisobenzofuran-1(3H)-one 100 was performed following the reported short procedure206 initially using N-bromosuccinimide (NBS) in the H2SO4/TFA mixture and stirring for 3 days (Scheme 4.3). However, this procedure gave a mixture of the multi-brominated phthalide rather

* Different NMR solvents were used to get better resolution of the methoxy groups, however, they always appeared as a singlet peak.
than the 6-bromo derivative 100. Therefore, in an alternative procedure \(^{208}\) (Scheme 4.3), phthalide 97 was treated with a nitrating mixture of H\(_2\)SO\(_4\)/HNO\(_3\) to afford 6-nitroisobenzofuran-1(3\(H\))-one 98 in 81% yield. Subsequent reduction with iron\(^{209}\) in a mixture of ethanol, water and acetic acid, followed by standard diazonium formation and then treatment with CuBr gave the 6-bromoisobenzofuran-1(3\(H\))-one 100 in 74% yield,\(^ {210}\) which was recrystallised from methanol.

Scheme 4.3 The synthesis of 6-bromoisobenzofuran-1(3\(H\))-one 100.

4.3.2. Synthesis of the isatin aromatic heads

The desired isatin heads were prepared from the corresponding aniline derivatives with or without the bromine coupling handles.

Access to the bromodimethoxy isatin 103: The synthesis of 4,6-dimethoxyindoline-2,3-dione 103 (Scheme 4.4) was undertaken using the Stolle procedure.\(^ {211}\) Therefore, the aniline 101 was reacted with oxalyl chloride to form an intermediate chlorooxalylanilide with spontaneous cyclization, in the absence of Lewis acid, to yield dimethoxyisatins 102 in 80% yield.\(^ {212}\)
Scheme 4.4 The synthesis of 5-bromo-4,6-dimethoxyindoline-2,3-dione 103.

Mono selective bromination of isatins at C5 can be achieved on small scale reactions by using N-bromoacetamide in acetic acid medium. Therefore, a solution of the isatin 98 in glacial acetic acid was cooled in an ice bath followed by portion wise addition of the NBS at 0 °C, and the mixture was then left to warm to room temperature with stirring for 8 h. The yellow solid was filtered, washed with saturated NaHCO₃ solution, and then with a water/ethanol mixture and then vacuum dried. The residue was then recrystallised from 1,4-dioxane to afford the bromoisatin 103 in 60% yield. The EI-MS spectrum of 103 showed a peak at 287 m/z that was assigned to (M,Br)⁺ ion. The ¹H NMR spectrum showed only one aromatic proton peak resonating at 6.36 ppm assigned to H7. This proton correlated to only one methoxy group in the 2D NMR (HMBC and NOESY) experiment. This is only possible when the proton is on C7. The proton in position 5 must show correlation to both methoxy groups which was not observed in 103. This confirmed that the bromination occurred at position 5 of the isatin ring.

Access to the 7-methylisatin 106: The synthesis of 5-bromo-7-methylindoline-2,3-dione 106 was achieved using Sandmeyer methodology, starting from 4-bromo-2-methylaniline 104 which was reacted with chloral hydrate and hydroxylamine hydrochloride in aqueous sodium sulphate to form an isonitrosoacetanilide 105 (Scheme 4.5), which presented as a gummy solid that was difficult to isolate. This gummy solid was dried and taken directly to the next cyclization step using concentrated sulphuric acid. The mixture was heated gradually to 80 °C for 10 min. After cooling to room temperature, the mixture was poured onto crushed ice and stirred for 1 h, whereby a solid precipitated and was filtered. The desired compound was isolated in 75% yield over 2 steps. The synthesis of the isatin 106 was previously reported by a different method, where the isatin core was synthesized first, and then was brominated using bromine solution.
Scheme 4.5 The synthesis of 5-bromo-7-methylindoline-2,3-dione 106.

Access to methoxymethylisatin 111: The structure of MPA 15 (Figure 4.1) has one methyl group in the para position to the OH group on the aromatic head. The isatin 4-methoxy-7-methylindoline-2,3-dione 111 was selected as a similar derivative with the OH group masked as a methoxy functionality, to avoid the metabolic drawback of MPA 15. The synthesis of this derivative started from the commercially available 4-methyl-3-nitrophenol 107 which was methylated using methyl iodide\(^2\) in DMSO with NaOH as a base to give 4-methoxy-1-methyl-2-nitrobenzene 108 in 80% yield (Scheme 4.6). The 5-methoxy-2-methylaniline\(^1\) 109 was then obtained by reducing the nitro group of 108 over Raney Nickel and using hydrazine monohydrate as hydrogen source, and heating in methanol, to afford the aniline 109 in 91% yield. Reaction of the aniline 109 with oxalyl chloride in benzene gave the intermediate chlorooxalylanilide 110, without spontaneous cyclization as in the case of the dimethoxy derivative 102 (Scheme 4.4). This was due to the lower reactivity of the monomethoxy intermediate 110. Therefore, the intermediate 110 was directly suspended in dichloroethane (DCE) and aluminium chloride was then added as a Lewis acid to promote the cyclization step. Acidic workup, followed by extraction with ethyl acetate and concentration of the solvent gave an orange residue that was subjected to column chromatography and elution with 30% ethyl acetate in petroleum spirit afforded the isatin 111 in 30% yield. The IR spectrum of the product showed strong amide absorption peak at 1635 cm\(^{-1}\) assigned to the CO group. The EI-MS spectrum showed a peak at 191 assigned to the molecular ion mass (M\(^+\)). Analysis of the \(^1\)C NMR spectrum of 111 showed two additional carbons peaks resonating at 180.9 and 160.1 ppm assigned to the two carbonyls C2 and C3, respectively.
Scheme 4.6 The synthesis of 4-methoxy-7-methylindoline-2,3-dione 111.

Addition of the coupling handle (bromine) on 111 for the next synthetic step was easily achieved as there was only one dominant bromination site at C5. Therefore, 4-methoxy-7-methylindoline-2,3-dione 111 was reacted with bromine in glacial acetic acid (Scheme 4.7) at 0 °C to room temperature for 10 h. The resulting solid was collected, washed with NaHCO₃, water and then recrystallised from acetic acid to yield the desired isatin 112 in 84% yield. Analysis of the ¹H NMR spectrum of the product showed the disappearance of the H5 that resonated at 6.61 ppm, and the EI-MS spectrum of 112 showed a peak at 271 that was assigned to the (M, ⁸¹Br)⁺ ion.

Scheme 4.7 The synthesis of 5-bromo-4-methoxy-7-methylindoline-2,3-dione 112.
4.4. Coupling of the Aromatic Head groups

4.4.1. Coupling with the isobenzofuran-1(3H)-one

4.4.1.1. Coupling to the linker and COOH tail

Linking of the aromatic head to the acidic tail was accessed utilizing Suzuki C-C cross coupling chemistry\(^\text{194,195,196}\) to access the biphenyl rigid system (Figure 4.2). This facile one step synthesis gave the three main components of the MPA designed analogues: the aromatic head, the rigid linker (phenyl) and the acidic tail (COOH). The chosen boronic acid was the commercially available 3-(3-boronophenyl)propanoic acid\(^\text{113}\). Suzuki cross coupling for the 6-halo-isobenzofuran-1(3H)-one derivatives was previously described\(^\text{206}\) using a diphasic medium of toluene and water as a solvent, disodium carbonate as a base and tetrakis(triphenylphosphine)palladium(0) as palladium catalyst and heating at reflux temperature.

In this work, 1,2-dimethoxyethane (DME) was initially used as a solvent because of its lower boiling point (~85 ºC) compared to that of toluene (~110 ºC) to retain the stability of the lactone ring when heating with water at refluxing temperatures. Therefore, the 6-bromo-isobenzofuran-1(3H)-ones\(^\text{90, 91, 94, 100}\) were reacted with 3-(3-boronophenyl)propanoic\(^\text{113}\), potassium phosphate and tetrakis(triphenylphosphine)palladium(0) in DME/H\(_2\)O mixture and the reaction was heated in a sealed system at 85 ºC for 8-14 h. After the specified reaction time, the solvent was concentrated and the obtained solids were suspended in HCl and were then extracted with ethyl acetate. After evaporating the solvent, the resulting residues were subjected to PLC (10% methanol in CH\(_2\)Cl\(_2\), 0.5% acetic acid) to afford the acid conjugates\(^\text{114-117}\). The reaction worked well, however the isolated yields of the final product were modest (30-35%). This was due to the poor solubility of the benzolactones\(^\text{90, 91, 94, 100}\) in DME. Interestingly, replacing the DME with 1,4-dioxane and keeping the temperature at 85 ºC (Scheme 4.8), greatly improved the yields up to 78%.

Table 4.1 shows the optimized reaction conditions. The IR spectra of the obtained benzolactone-acid conjugates\(^\text{114-117}\) showed broad OH absorption bands at 2972-2989 cm\(^{-1}\) accompanied by C=O absorption bands at 1699-1755 cm\(^{-1}\) indicating the presence of the COOH functional group. Analysis of the \(^1\text{H}\) NMR spectrum of 3-(3-(4-methoxy-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenyl)propanoic acid\(^\text{114}\) showed a peak at 10.54 ppm that was assigned to the COOH group, and the two propanoic CH\(_2\)
groups appeared as two triplets resonating at 2.99 and 2.68 ppm. The purity of the compounds 114-117 was found to be >95% as analysed by normal-phase HPLC using isopropanol with 0.1% TFA in hexane as the developing solvent. The calculated physiochemical properties of this series are shown in Table 4.2.

Table 4.1 Optimization conditions of the isobenzofuran-1(3H)-ones 114-117 coupling reaction with the boronic acid 113.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Reaction time (h)</th>
<th>Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME/H$_2$O</td>
<td>8-14</td>
<td>30-35</td>
</tr>
<tr>
<td>Dioxane/H$_2$O</td>
<td>4-6</td>
<td>54-78</td>
</tr>
</tbody>
</table>

The Suzuki coupling is a robust technique for the synthesis of biaryl bonds commonly utilising an aryl boronic acid and an aryl halide. The reaction mechanism of the Suzuki coupling (Figure 4.5) proceeds in 3 key steps; oxidative addition of the Pd(0) complex to the aryl bromide to give the Pd(II) complex, transmetallation of the aryl boronate complex to the Pd(II) complex, and reductive elimination to give the biaryl and restore the Pd(0) catalyst.
Figure 4.5 The mechanism of the Suzuki reaction to produce the biaryls.

Table 4.2 Physiochemical properties of the benzolactones-carboxylic acid conjugates 114-117.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Mwt</th>
<th>logP*</th>
<th>LogD† at pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>4-OCH₃</td>
<td>312.32</td>
<td>1.96±0.59</td>
<td>2.98 1.97 0.14</td>
</tr>
<tr>
<td>115</td>
<td>4-CH₃</td>
<td>296.32</td>
<td>2.83±0.52</td>
<td>2.85 2.08 0.34</td>
</tr>
<tr>
<td>116</td>
<td>4,6-(OCH₃)₂</td>
<td>342.35</td>
<td>1.67±0.60</td>
<td>2.82 1.84 0.01</td>
</tr>
<tr>
<td>117</td>
<td>H</td>
<td>282.29</td>
<td>2.37±0.52</td>
<td>2.89 1.90 0.07</td>
</tr>
</tbody>
</table>

* Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada)
† Calculated using PALLAS3.7.1.2 CompuDrug Chemistry Ltd, USA
The introduction of the rigid linker (the phenyl ring) was proposed to increase the lipophilicity of the compounds compared to the lead mycophenolic acid which has a LogD value of 0.67 at blood pH. Table 4.2 shows that all the synthesized benzolactone-carboxylic conjugates 114-117 have drug like qualities. This series can ionize in the different pH values as can be seen from the change in the LogD values. In acidic pH (stomach), they show similar LogD values around 2.85 as the ionization will be minimum (unionized), and therefore, 114-117 could be in the absorbable form (can cross the lipid layer). At the blood pH (7.4), the acid conjugates showed low LogD values indicating good blood solubility, and therefore, may present suitable properties for absorption from the stomach and distribution through the body with the circulating blood. At the intestine pH 5.5, where the oral bioavailable drugs are absorbed, the ionization shifts towards the lipophilic character without returning to the full unionized state, where the synthesized compounds have good lipophilicity scale (1.84-2.08, lower than that of the lead MPA 15 at the same pH), and therefore, the designed compounds might show good oral bioavailability properties.

4.4.1.2. Coupling to the linker and tetrazole tail

The first synthesis of the tetrazole ring used the acetonitrile intermediates which can then be cyclised to tetrazoles. Therefore, the commercially available boronic acid, 3-(3-boronophenyl)propanoic acid 118 was utilized in the coupling reaction with the bromobenzolactones. Due to the high cost of 118, the ester 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile 119 was also synthesized as an alternative to 118 and was used in the coupling reaction (Scheme 4.9). The same coupling conditions were used: 1,4-dioxane/H2O mixture, potassium phosphate as a base and tetrakis(triphenylphosphine)palladium(0) as a catalyst, and the mixture was heated under a N2 atmosphere for 7-15 h. The solvent was then evaporated and the resulting residues were suspended in HCl, and extracted with ethyl acetate. After evaporating the solvent and subjecting the residues to flash column chromatography, the acetonitrile intermediates 120 and 121 were obtained in 50% and 76%, respectively. Analysis of the 1H NMR spectra of 120 and 121 showed the CH2 protons adjacent to the CN group, resonating as a singlet peak at 4.83 ppm. The IR spectra of these derivatives 120 and 121 showed strong absorption bands at 2165-2169 cm\(^{-1}\) assigned to the CN group.
Scheme 4.9 The synthesis of the acetonitrile intermediates 120 and 121.

Synthesis of 119: The boronic ester 119 was synthesized starting from the commercially available 3-iodophenol 122 where it was dissolved in DMF with NaOH and the mixture was stirred until a pale brown solution was obtained (Scheme 4.10). Alkylation of the OH group was then achieved using the dropwise addition of 2-chloroacetonitrile 123 at room temperature and the mixture was stirred for 18 h. The mixture was then poured onto ice, where the resulting oil was extracted. Washing the oil extract with water and brine, and trituration with charcoal and concentration gave 2-(3-iodophenoxy)acetonitrile 124 in 80% yield. Analysis of the 1H NMR spectrum of the intermediate 124 showed a singlet peak at 4.68 ppm assigned to the CH2. Analysis of the EI-MS spectrum showed a peak at 259 m/z assigned to the molecular ion (M+).

Scheme 4.10 The synthesis of the acetonitrile boronic ester 119.
The intermediate 2-(3-iodophenoxy)acetonitrile 124 was then converted to the boronic ester using Miyaura borylation reaction, using bis(pinacolato)diboron 125, potassium acetate and PdCl₂(dppf)* catalyst in THF and the mixture heated at reflux for 24 h. The solvent was then evaporated, ethyl acetate was added and the resulting residue was sonicated for 10 min and filtered. The filtrate was triturated with MgSO₄ and charcoal, filtered through celite and then concentrated under vacuum. The resulting residue was recrystallised from ethyl acetate/hexane (3:2) to give the boronic ester 119 as a pink solid in 95% yield. Analysis of the ¹H NMR spectrum of 119 showed a singlet peak resonating at 1.26 ppm integrating for 12 protons assigned to the four methyl groups. Analysis of the ¹³C NMR spectrum showed one peak resonating at 83.7 ppm integrating for two carbons assigned to the dioxaborolan, and another peak at 25.2 ppm (four carbons) that was assigned to the methyl groups.

The Miyaura borylation reaction proceeds via the oxidative addition of the alkyl iodide to the palladium catalyst (Figure 4.6). The acetoxy anion from the base then reacts with the palladium complex replacing the iodide ion and forming the (acetate)palladium(II) complex. Transmetalation with the bis(pinacolato)diboron and subsequent reductive elimination then occurs to afford the boronic ester 119 and releasing the ligand complex.

* [1,1’-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)
Figure 4.6 Borylation mechanistic pathway using PdCl$_2$(dppf) for the synthesis of the boronic ester 119.218

The tetrazole ring synthesis: The benzolactone acetonitrile intermediates 120 and 121 were then used in the tetrazole synthesis step, utilizing the [2 + 3] cycloaddition of azides. The nitriles 120 and 121 were allowed to react with 4 equivalents each of NaN$_3$ and NH$_4$Cl in DMF and the mixture was heated at reflux for 48 h. DMF was then evaporated and the resulting residue was dried under vacuum. Ethanol was then added to the dry residue and the mixture was sonicated for 10 min, filtered and ethanol was concentrated and the residues were subjected to PLC using 90% CH$_2$Cl$_2$, 10% ethanol and 0.1% TFA. The isolated yields of the tetrazoles 126 and 127 were below 30%. Acid catalysis219 for this cycloaddition significantly reduced the reaction time (Scheme 4.11). However, the improvement in the yield was not significant (35%). The purity of the isolated tetrazoles were analysed by HPLC and was found to be >95%.
Scheme 4.11 The synthesis of the tetrazoles 126 and 127 from the acetonitrile derivatives 116 and 117.

Himo et al.219 reported different mechanisms of tetrazole formation using azide salts in the presence of ammonium salts. The reaction can either proceed via the known [2 + 3] cycloaddition (pathway A, Figure 4.7) or by a two-step sequence where the azide, as a nucleophile, attacks the nitrile carbon giving an intermediate compound (pathway B, Figure 4.7), followed by ring closure through simple 1,5-cyclization. The second mechanistic pathway B depends of the substituent adjacent to the nitrile group (A in Figure 4.7), the more electron-withdrawing group, the intermediate in pathway B becomes more stable and mechanism B is more favourable based on calculated energy barriers219 for the transition states. Also, the presence of a proton in the reaction medium can act as an activator to the nitrile group to be attacked. This mechanism is similar to the known mechanisms of acid-catalyzed nitrile hydrolysis and the Pinner synthesis,220 with the difference being that the nucleophile in this case (Figure 4.7) is an azide.

The key to this mechanistic pathway (B) is that the nitrile is activated by a proton, provided by the ammonium salts as well as other proton sources. In this reaction (Scheme 4.11), the addition of acetic acid catalyst may have provided sufficient concentrations of the activating proton, and the reaction proceeded via pathway B, and that was the reason for shortening the reaction time (48 h without acid and 12-24 h in presence of acid).
Access to the tetrazole via an alternative strategy: The modest yields (35%) of the tetrazole formation described above (Scheme 4.11) were not appropriate for the synthesis of other tetrazole derivatives. Another synthetic strategy was therefore designed to synthesize these derivatives in which the tetrazole moiety was attached to the boronic ester, prior to the coupling reaction with the 6-bromobenzolactones. The previously synthesized 2-(3-iodophenoxy)acetonitrile 124 was used to access the intermediate 128 utilizing the azide tetrazole formation discussed above. Therefore, 124 was mixed with NaN₃ and NH₄Cl in DMF containing a few drops of glacial acetic acid and the mixture was heated at reflux for 14 h under a N₂ atmosphere (Scheme 4.12). The solvent was then concentrated and the resulting residue was dried. Ethanol was added, and the mixture was sonicated for 10 min, filtered and ethanol was evaporated to yield a white fluffy solid of the tetrazole intermediate 128 in good yield (80%). The EI-MS spectrum for this tetrazole intermediate 128 showed a peak at 302 m/z assigned to the molecular ion (M+). This 5-((3-iodophenoxy)methyl)-1H-tetrazole 124 was then converted to the boronic ester using the same borylation method discussed in Scheme 4.10. Therefore, 128 was reacted with bis(pinacolato)diboron 125, potassium acetate and PdCl₂(dppf) catalyst in THF and the mixture was heated at reflux temperature for 18 h under a N₂ atmosphere (Scheme 4.12). The solvent was then concentrated and ethanol was added to the resulting residue and the mixture was further heated at reflux for 10 min, filtered hot and concentrated under vacuum to afford a white solid of potassium 5-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)methyl)tetrazol-
1-ide 129 (Scheme 4.12). Analysis of the 1H NMR spectrum of this boronic ester 129 showed a singlet peak resonating at 1.90 ppm and integrating 12 protons assigned to the four methyl groups. These four methyl carbons appeared also as a singlet peak in the 13C NMR spectrum, resonating at 22.6 ppm. ESI-MS spectrum showed a peak at 301.1 m/z that was assigned to the anion [m-K$^+$].

![Scheme 4.12: The synthesis of the tetrazole boronic ester intermediate 129.](image)

The tetrazole synthesis: The synthesized boronic ester-tetrazole conjugate 129 was then reacted in the same optimized coupling conditions, using 1,4-dioxane/water mixture, with 6-bromo-5,7-dimethoxyisobenzofuran-1(3H)-one 94 and 6-bromoisobenzofuran-1(3H)-one 100 (Scheme 4.13). The tetrazole rings are known to be stable in such mild coupling conditions as well as many other chemical conditions. Therefore, the mixture was heated at 85 °C for 20-24 h, the solvent then was concentrated and a solution of NaHCO$_3$ was added to the resulting residue and sonicated for 15 min. The resulting turbid solution was then washed with CH$_2$Cl$_2$ and the aqueous layer was filtered, cooled to 0 °C and neutralized with 2 M HCl. The resulting white solid was collected by filtration, washed with chilled methanol and dried under vacuum to afford the tetrazoles 130 and 131 in 53% and 57% yield, respectively (Scheme 4.13). The HPLC analysis of this series indicated purity >95%.
Scheme 4.13 Alternative route to access the tetrazole conjugates 130 and 131 via reaction with the boronic ester-tetrazole intermediate 129.

Interestingly, using this alternative route (Scheme 4.13) not only allowed the use of mild reaction conditions, thereby avoiding unwanted side products, but also improved the yield of the final tetrazole conjugate (from 35% in Scheme 4.11 to 56% in Scheme 4.13) without further optimization. This reaction (Scheme 4.13) was clean compared to the above mentioned cycloaddition tetrazole formation method (Scheme 4.11) as judged by less side products spots upon TLC analysis.

For all the tetrazole conjugates obtained by the two methods, the sodium azide cycloaddition, 126 and 127 (Scheme 4.11) and the coupling with the tetrazole-boronic ester intermediate, 130 and 131 (Scheme 4.13), the purity was analysed using the normal phase HPLC, utilizing a mixture of isopropanol with 0.1% TFA in hexane. This system was developed after the failure with the reverse phase HPLC where the tetrazole conjugates were eluted first within two minutes, with poor resolution. Table 4.3 showed the calculated physiochemical properties for the synthesized tetrazoles.
Table 4.3 Physiochemical properties of the benzolactones-carboxylic acid conjugates.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Mwt</th>
<th>clogP*</th>
<th>LogD at pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>126</td>
<td>5-OCH₃</td>
<td>338.32</td>
<td>0.68±0.70</td>
<td>2.33</td>
</tr>
<tr>
<td>127</td>
<td>5-CH₃</td>
<td>322.32</td>
<td>1.55±0.68</td>
<td>2.85</td>
</tr>
<tr>
<td>130</td>
<td>5,7-(OCH₃)₂</td>
<td>368.35</td>
<td>0.39±0.72</td>
<td>2.20</td>
</tr>
<tr>
<td>131</td>
<td>H</td>
<td>308.30</td>
<td>1.09±0.68</td>
<td>2.47</td>
</tr>
</tbody>
</table>

It can be inferred from table 4.3 that the designed and synthesized benzolactone-tetrazoles conjugates 126, 127, 130 and 131 have good ionization profiles when present at physiological pH. Like the synthesized carboxylic acid analogues 114-117, the tetrazole conjugates 126, 127, 130 and 131 are nearly non-ionizable in the acidic pH of the stomach, however, their LogD values lie in the acceptable scale range (1-4). The noticed increase in the lipophilicity compared to the carboxylic acid conjugates 114-117, was related to the introduction of the more lipophilic tetrazole moiety. After absorption, the tetrazole conjugates 126, 127, 130 and 131 would tend to be strongly ionisable in the blood pH as can be indicated by the low LogD values. The methyl substituent 127 was the only derivative with a positive LogD value at pH 7.4. This argues for the increased blood solubility and also the possibility of conjugation with blood soluble proteins. However, at the intestine pH 5.5, the conjugates have relatively good LogD values (1.42-2.08), very similar to the carboxylic acid conjugates 114-117 (Table 4.2), which indicates the possible oral bioavailability of these compounds.

Synthesis of a β-lactam derivative: During the synthesis of the benzolactone derivatives, it was also of interest to synthesize one benzolactone derivative with an amino group (NH₂) replacing the OH group, which is responsible for the metabolic

* Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada)
† Calculated using PALLAS 3.7.1.2 CompuDrug Chemistry Ltd, USA
drawback of the lead MPA 15 (Figure 4.1). Therefore, the synthesis of this amino analogue started with the 2-amino-3-bromo-5-methylbenzoic acid 132. The benzolactone formation reaction (Scheme 4.1) required protection of the NH$_2$ group in the presence of palladium catalyst, and heating at elevated temperature for a long time would produce undesired side products that might involve the NH$_2$ group, and therefore, a base stable group such as the acetyl or the pivaloyl group, was required. Initial trials with mild conditions such as TMA in CH$_2$CH$_2$ were used, however, this method ended up with the full recovery of the unprotected amino benzoic acid 132. Instead, an alternative method was used (Scheme 4.14) using pivaloyl chloride, excess n-BuLi as the base, in THF at -78 ºC. This method was previously described221 for the protection of the unsubstituted 2-aminobenzoic acid. Therefore, the amino benzoic acid 132 was dissolved in THF and the solution was cooled to -78 ºC and was stirred for 20 min. Pivaloyl chloride was then added dropwise at -78 ºC and the reaction was allowed to warm to room temperature and was stirred for 3 h. The reaction mixture was then diluted with ethyl acetate and water and the organic layer was separated and washed with water and brine. The combined organic layers were concentrated under vacuum to yield a colourless oil (Scheme 4.14).

![Scheme 4.14](image)

Scheme 4.14 Attempted reaction to synthesize the protected amino benzoic acid 134.

Surprisingly, analysis of the resulting oil showed that the amino-protected compound 134 was not formed, instead, the β-lactam product 133 was obtained in 47% yield. The remaining of the reaction mixture was un-reacted starting material 132. The EI-MS spectrum showed a peak at 295 m/z assigned for M+ of 133, rather than a peak at 313 m/z for 134. This 18 amu unit difference (as H$_2$O) in the molecular ions was an indication of the formation of the β-lactam ring system. The HRMS spectrum for the β-
lactam formula $C_{13}H_{15}BrNO_2$ (calculated; 296.0286 m/z), showed the ion peak at 296.0294 m/z, confirming the molecular formation of 133.

This reaction proceeded via nucleophilic attack of the N atom on the carbonyl of the carboxylic acid group, forming the β-lactam ring. Figure 4.8 shows suggested mechanistic pathways for such reaction. Pathway (A) is the formation of the mixed acid anhydride, then the nucleophilic attack of the amino group on the carbonyl group, forming the closed ring, and then the less nucleophilic amidic NH attacked another pivaloyl group giving the final product 133. The alternative pathway (B) is the protection of both functional groups, followed by the nucleophilic attack of the nitrogen on the electrophilic carbonyl and ring closure.

![Figure 4.8 Suggested mechanistic pathways for the formation of the β-lactam product 133.](image)

A similar reaction was reported for the synthesis of such β-lactam (Figure 4.9) where the reaction occurred after protecting the NH$_2$ with the pivaloyl group. Such evidence might suggest that the second pathway (B) might be the mechanism that occurred for 132, especially the reaction (Scheme 4.14) occurred in the presence of excess base.
It was interesting to utilize this β-lactam derivative 133 in the coupling reactions with the different boronic acids, especially it has already the coupling handle (bromide) attached. Therefore, 133 was heated with 3-(3-boronophenyl)propanoic acid 113, tetrakis(triphenylphosphine)palladium(0) and potassium phosphate in dioxane/water mixture, at 85 ºC for 18 h (Scheme 4.15). The solvent was then concentrated and the flask was cooled to 0 ºC, chilled HCl solution was added dropwise with stirring, the resulting solid was extracted with ethyl acetate, washed with water, brine and dried (MgSO$_4$), and the solvent was concentrated under vacuum. The resulting residue was subjected to a flash column chromatography using 50% CH$_2$Cl$_2$, 50% ethyl acetate and 1% acetic acid to afford 3-(3-(3-methyl-8-oxo-7-pivaloyl-7-azabicyclo[4.2.0]octa-1,3,5-trien-5-yl)phenyl)propanoic acid 137 as an oil in 60% yield. Analysis of the 1H NMR of 137 showed a singlet peak at 8.56 ppm assigned to the COOH group. EI-MS spectrum showed a peak at 365 assigned to the molecular ion (M+). This oily product was found to be > 98% pure by HPLC analysis, with a retention time of 27.9 min.
This β-lactam acid conjugate 137 has a LogD* value of 3.85 (at pH = 1), 2.83 (at pH = 5.5) and 0.99 (at pH = 7.4). The relatively unionized (clogP† = 3.75±0.65) form in the stomach indicated good lipid solubility that the compound can be found in the absorbable form. In the blood, 137 has the tendency to ionize providing good solubility and therefore, good distribution within the body. The slight ionization state in the jejunum (pH=5.5) makes 137 also a possible orally bioavailable candidate.

The reaction of the β-lactam intermediate 133 with the boronic acid (3-(cyanomethoxy)phenyl)boronic acid 118 was undertaken utilizing the same coupling conditions (Scheme 4.16). The coupling reaction occurred, forming the biphenyl system, and the β-lactam was open to give a benzoic acid derivative 138. The IR spectrum of 138 showed a broad peak at 3328 cm⁻¹ assigned to the NH group. Analysis of the ¹H NMR spectrum showed a peak resonating at 8.61 ppm that was assigned to the COOH group. The found mass by the HRMS was 367.1656 that corresponded to the formula C₂₁H₂₃N₂O₄ (MH⁺; calculated, 367.1658).

Scheme 4.16 Reaction of the β-lactam 133 with (3-(cyanomethoxy)phenyl)boronic acid 118.

The difference between this reaction (Scheme 4.16) and the previous one (Scheme 4.15) was only during the workup, which was the same except the HCl was not pre-cooled and was added at room temperature. It is believed that during this thermally uncontrolled procedure, the β-lactam ring was hydrolysed to give the COOH group of 138. The LogD profile for this compound is shown in Table 4.4.

* Calculated using PALLAS3.7.1.2 CompuDrug Chemistry Ltd, USA
† Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada)
Table 4.4 Calculated logP and LogD for the open β-lactam product 138.

<table>
<thead>
<tr>
<th>clogP(^*) (unionized)</th>
<th>LogD(^†)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 1</td>
</tr>
<tr>
<td>4.14±0.74</td>
<td>4.6</td>
</tr>
</tbody>
</table>

The presence of a carboxylic acid group within the structure is responsible for the unionized state of the compound in acidic pH environment (stomach), and therefore, would be present as a lipophilic state that can pass the gut wall. After reaching the blood (pH 7.4), the compound ionizes providing blood solubility. At pH 5.5 (jejunum), where absorption occurs, the LogD value is within the acceptable range (1-4)\(^\text{186}\) for orally bioavailable drugs.

4.4.2. Coupling with the isatin aromatic head groups

4.4.2.1. Coupling to the linker and COOH tail

Synthesis of the 5-aryl isatin derivatives starting from the corresponding 5-halo-isatin via the cross-coupling Suzuki reaction has been previously described,\(^\text{223,224}\) using tetrakis(triphenylphosphine)palladium(0) as a catalyst and potassium phosphate as a base. Therefore, the 5-bromoisatin derivatives (103, 106, 112 and the 5-bromoindoline-2,3-dione 139) were reacted with the 3-(3-boronophenyl)propanoic acid 113, tetrakis(triphenylphosphine)palladium(0) and potassium phosphate (Scheme 4.17) in either DME or diethylene glycol dimethyl ether (diglyme) based on the solubility of the 5-bromoisatin used: in case of 5-bromo-4,6-dimethoxyindoline-2,3-dione 103 and 5-bromo-4-methoxy-7-methylindoline-2,3-dione 112, the solvent used was diglyme. The reaction was then heated at 85 °C under nitrogen atmosphere for 4-6 h. After cooling to room temperature, the solvent was concentrated and HCl solution was added, and the resulting suspended solid was either collected by filtration or extracted with ethyl acetate. The combined residues were then dissolved in ethanol and were subjected to PLC (10% methanol in CH\(_2\)Cl\(_2\), 0.5% acetic acid) to yield the isatin-acid conjugates 140-143. Analysis of the \(^1\)H NMR spectrum for 3-(3-(2,3-dioxiindolin-5-
yl)phenyl)propanoic acid 143 showed two triplets resonating at 2.88 and 2.59 ppm, both integrating for two protons that were assigned to the two CH$_2$ groups introduced from the boronic acid. Analysis of the IR spectrum of 143 showed an absorption band at 2989 cm$^{-1}$ assigned to the OH of the COOH group. The purity of this series was >95% as analysed by HPLC, with retention times 5.34-35.84 min.

Scheme 4.17 The synthesis of the isatin-acid conjugates 140-143.

Table 4.5 shows the calculated physical properties of this series of compounds 140-143. For all the derivatives, the ionization increases as the pH increases, the LogD values at pH 5.5 ranges from 1.13 to 1.71, a good range for oral bioavailability. However, the increased solubility in the blood pH, as indicated by the negative LogD values, might argue the chance of binding with the blood soluble proteins.
Table 4.5 Physiochemical properties of the isatin-carboxylic acid conjugates

![Chemical structure](image)

R= H, 7-CH₃, 4-OCH₃-7-CH₃, 4,6-(CH₃)₂

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>Mwt</th>
<th>clogP*</th>
<th>LogD† at pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>140</td>
<td>4,6-(CH₃)₂</td>
<td>355.35</td>
<td>1.49±0.82</td>
<td>2.14</td>
</tr>
<tr>
<td>141</td>
<td>7-CH₃</td>
<td>309.32</td>
<td>2.40±0.37</td>
<td>2.53</td>
</tr>
<tr>
<td>142</td>
<td>4-OCH₃-7-CH₃</td>
<td>339.35</td>
<td>2.06±0.80</td>
<td>2.70</td>
</tr>
<tr>
<td>143</td>
<td>H</td>
<td>295.29</td>
<td>1.94±0.37</td>
<td>2.17</td>
</tr>
</tbody>
</table>

3.4.2.2. Coupling to the linker and tetrazole tail

In order to obtain the isatin-tetrazole conjugates, the acetonitrile derivatives were synthesized by reacting the 5-bromoisatin derivatives (103, 106, 112 and 139) with (3-(cyanomethoxy)phenyl)boronic acid 118 using diglyme/water mixture as a solvent in the presence of tetrakis(triphenylphosphine)palladium(0) and potassium phosphate and the mixtures were heated at 85 °C for 5-9 h (Scheme 4.18). The solvent was then concentrated and 1 N HCl solution was added, and the suspended solids were either collected by filtration or extracted with ethyl acetate. The combined residues were adsorbed onto silica and subjected to flash column chromatography (40% ethyl acetate in petroleum spirit) to yield the acetonitrile intermediate 144-147 in 35-60% yield. The IR spectrum of 2-(3-(2,3-dioxoindolin-5-yl)phenoxy)acetonitrile 147 showed an absorption band at 2166 cm⁻¹ that was assigned to the CN group. Analysis of the ¹H NMR spectrum of 147 showed a peak resonating at 5.21 ppm and integrating for two protons that was assigned to the CH₂ group.

* Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada)
† Calculated using PALLAS3.7.1.2 CompuDrug Chemistry Ltd, USA
Among the isatin-acetonitrile intermediates 144-147, 2-(3-(4,6-dimethoxy-2,3-dioxoindolin-5-yl)phenoxy)acetonitrile 144 was not isolated from the crude mixture due to product instability. The EI-MS spectrum of a sample taken from the reaction mixture showed a peak at 338 that assigned to the molecular ion (M+). The HRMS spectrum showed a peak at 339.0980 m/z that was assigned to the formula C18H15N2O5 for (MH+; calculated, 339.0981 m/z). The reaction for 144 was repeated several times in order to isolate a pure compound, however, once the solid was separated from the reaction mixture, it was found to decompose to many overlapping spots on the TLC plate. Subjecting the solid to a flash column chromatography was not successful and analysis of the EI-MS spectra of the isolated fractions did not show any indications of 144.

Conversion to tetrazoles: The reaction of the isatin-acetonitrile derivatives 145-147 with sodium azide and ammonium chloride was attempted to afford the isatin-tetrazole conjugates (Scheme 4.19). Several attempts were made using different molar ratios of the azide/ammonium chloride up to 10 equivalents, and heating at elevated temperatures for longer times up to 72 h with and without acid catalysis, however, the tetrazole conjugates 148-150 were not formed. Upon workup and separation of the oily gummy material from the reaction, TLC analysis showed that the starting material disappeared and just a polar polymeric spot was found. No evidence indicating the formation of the tetrazole conjugate was observed in the mass spectra of these polymerized residues.
Scheme 4.19 Attempted access to the isatin-tetrazole conjugates 148-150 via the cycloaddition reaction with sodium azide/ammonium salts.

Such reaction of the isatin derivatives with the sodium azide has not been previously reported. The nucleophilicity of the sodium azide and the electrophilic C3 of isatin might be involved in such reaction, however, no evidence was found in the mass spectra to support this hypothesis. This reaction was attempted before the design of the alternative coupling reaction (Scheme 4.13) with the synthesized tetrazole-boronic ester salt 129, and therefore, it would be interesting to try to access the isatin-tetrazole conjugates 148-150 utilizing such coupling reaction, in which the electrophilicity of the isatin C3 will not interfere with the reaction as in the case of sodium azide.

4.5. Concluding remarks

This chapter discussed the synthesis of a series of benzolactone-carboxylic acid conjugates 114-117, benzolactone-tetrazole conjugates 126, 127, 130, 131 and isatin-carboxylic acid conjugates 140-143 as analogues of the lead compounds mycophenolic acid 15. The designed and synthesized analogues carry the same features as the parent lead compound in that they all have the three components: the aromatic head, the rigid linker and the acidic tail. All of the synthesized compounds showed good physiochemical properties such as the low molecular weight and good LogD profiles, having a range of 1-4 in the pH 5.5. Therefore, this series can be further developed as promising leads against CHIKV depending on the activities in the preliminary antichikungunya testing. The formation of isatin-tetrazole conjugates 148-151 might be possible using the coupling with the designed and synthesized boronic ester 129 (Scheme 4.20).
Scheme 4.20 Possible coupling reaction to access the isatin-tetrazole conjugates 148-151 via reaction with the boronic ester 129.

A facile and applicable synthetic strategy was developed to access different analogues for the mycophenolic acid 15 via the introduction of the widely used cross coupling reactions. The obtained carboxylic acid conjugates can be further derivatised via the carboxylic acid reactions such as formation of esters or amides as prodrugs. The tetrazole conjugates can also be further derivatised via the substitution on the tetrazole NH by different alkylation/arylation reactions. The isatin conjugates can also be further derivatised utilizing the different nucleophilic reactions on C3 or ring expansion reactions (Figure 4.10). This will allow the further investigate the structure activity relationship of this series against the CHIKV.
Figure 4.10 Possible derivatisation of the synthesized conjugates.
5.1. Introduction

The CHIKV non-structural protein 2 (nsP2) is a significant enzyme that plays an important role during the viral replication cycle. It consists of 324 residues with two domains; the N and C domains that have different cellular functions. The nsP2 of alphaviruses is a multifunctional protein. The N-terminus (amino terminal) was found to be the RNA triphosphatase that performs the first of the viral RNA capping reactions and a nucleotide triphosphatase (NTPase) that fuels the RNA helicase activity performed by the other domain. It also performs 5'-triphosphatase (RTPase) activity that removes the γ-phosphate from the 5' end of RNA. Both NTPase and RTPase activities are completely dependent on Mg\(^{2+}\) ions. The proteolytic domain has been allocated to its C-terminal (carboxy terminal) section which forms a papain like cysteine protease (also known as thiol protease). The nsP2 proteolytic activity is critical for virus replication and responsible for the cleavages of the non-structural polyprotein complex during the viral life cycle.

During the life cycle, and after entering the host cell, two non-structural protein precursors are translated from the viral mRNA, and are then cleaved generating nsP1, 2, 3 and 4. During translation, nsP123 binds to free nsP4, with some cell proteins forming the replication complex, which synthesizes a full-length negative-strand RNA intermediate required for replication. When the nsP123 concentration increases, it is cleaved into nsP1, nsP2, nsP3 and nsP4 which form, along with host cell proteins, the positive strand replicase, which produces the 26S sub-genomic positive strand RNAs and genomic (49S) RNAs. The proteolytic activity of the CHIKV nsP2 is responsible for the cleavage of the replication machinery into individual working proteins. The alphaviruses nsP2 proteins have also been described as virulence factors responsible for the transcriptional and translational shutoff in infected host cells and the inhibition of interferon (IFN)-mediated antiviral responses contributing to the controlling of translational machinery by viral factors. This controlling comes through interactions with cellular RNA binding proteins, including heterogeneous nuclear
ribonucleoproteins (hnRNPs), ribosomal protein S6 (RpS6), and cellular filament components. Recently discovered, 22 cellular components are believed to interact with nsP2 or nsP4, contributing to the CHIKV replication, such as heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4). It was also noted that the interaction of nsP2 with the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in the cellular machinery control induced by the CHIKV infection.

These critical functions are associated with nsP2 C domain protease and also the N domain that controls some metabolic processes of some cellular substrates, and therefore, this enzyme represents an important target in developing drugs against the CHIKV virus.

Both N and C domains are composed of α-helices and β-strands (Figure 5.1). The N terminus is dominated by α-helices (red spirals in Figure 5.1) whereas, the C-terminal domain contains helices and strands (cyan colour in Figure 5.1). The central β-sheets are flanked by α-helices. The crystal structure of CHIKV nsP2 protease was solved in 2012. Being a cysteine protease enzyme (within domain C), the catalytic mechanism involves a nucleophilic cysteine thiol in a catalytic dyad. Analysis of the CHIKV nsP2 crystal structure shows 6 cysteine residues; three in the N-terminus (Cys1013, Cys1057 and Cys1121) and three in the C-terminus (Cys1233, Cys1274 and Cys1290) as shown in Figure 5.1. Since the proteolytic activity is isolated in the C-terminus, one of the three cysteine residues in the C-domain might be the catalytic head.

Figure 5.1 CHIKV nsP2 crystal structure showing the N- and C-terminal domains, cysteine residues shown in yellow balls and stick form (PDB code: 3TRK, no reference cited thus far).
Generally, the first step in the mechanism of cysteine protease catalysis is the deprotonation of a thiol group within the enzyme active site by an adjacent amino acid containing a basic side chain, usually a histidine residue. Among the three cysteine residues in the C-terminus (Figure 5.2), the Cys1274 residue is less likely to be involved in the catalytic mechanism as only one His residue (His1314) is nearby, whereas for the other cysteine residues, four histidine residues (His1222, His1228, His1229 and His1236) are nearby and could be associated in the deprotonation mechanism (Figure 5.2).

![Figure 5.2](image)

Figure 5.2 Schematic representation of the CHIKV nsP2 C-Domain showing the positions of the cysteine residues (in yellow) and histidine residues (in green), generated from the crystal structure PDB file code: 3TRK.

For the nsP2 protease activity, the enzyme must hold its substrate at the catalytic site to start the cysteine cleavage mechanism. This site can be described as the enzyme “mouth”, and will be critical for the enzyme’s function. Blocking this site, will therefore, antagonise the enzyme function and will interfere with the viral replication cycle inside the infected host cell.

In 2012, Singh Kh et al. reported the development of a homology model of CHIKV nsP2 protein based on the crystal structure of the nsP2 protein of Venezuelan equine encephalitis virus (VEEV), before the release of the actual nsP2 crystal
structure. The critical residues in nsP2 were identified by docking three different peptides in order to identify the residues responsible for non-structural protein cleavage; nsP1-2, nsP2-3 and nsP3-4 peptides. These three peptide sequences represent the substrates for the nsP2 proteolytic processing with a remarkable preference of nsP3-4>nsP1-2>nsP2-3.70 The active site was investigated and was found to lie in the C-terminal domain.69 The key residues Gln1039, Lys1045, Glu1157, His1222, Lys1239, Ser1293, Glu1296 and Met1297 were found to interact with the nonstructural protein sequence complex to be cleaved, and were considered an individual functional unit. Only two residues are located in the N-domain; Gln1039 and Lys1045; all the other residues are located in the C-domain. In similar work, Bassetto et al.71 reported the identification of \textit{in silico} CHIKV nsP2 inhibitors based also on a homology model of CHIKV nsP2 protein, not the actual crystal structure.

Blocking the protease activity will be an applicable strategy for designing inhibitors for that particular enzyme. However, the reported studies69,71 only included the C domain as the main target site for the enzyme. They also did not describe the active proteolytic site in sufficient detail, nor did they discuss the possibility of targeting sites in the N domain. Herein, we describe the protease active site revealing some important criteria for the future design of inhibitors. We also describe here for the first time the binding site within the nsP2 N domain. Blocking the later site might not only block the multiple functions of the N domain,65 but could affect the C protease domain through an allosteric effect, invoking indirect inhibition of the C domain.

5.2. Results and discussion

The possible druggable sites at both the C and N domains of the CHIKV nsP2 were investigated. These sites were then used for the identification of possible inhibitors through virtual screenings.

5.2.1. Protease active site (domain C)

From the CHIKV nsP2 crystal structure analysis, one major cavity can be detected within the enzyme surface lying as a central region between domains C and N. It also blocks the access through the two of the cysteine residues within domain C; Cys1233, Cys1290. Therefore, this cavity is more likely to be the protease active site (Figure 5.3), where the protein holds the peptide segment to be cleaved.
Figure 5.3 Crystal structure of the CHIKV nsP2 showing the enzyme mouth cavity in green space filling lying in the centre between domain N and C.

A closer inspection of the binding site revealed that the cavity looks as a U-shaped cavity or tunnel (hereafter called site_1) that extends inward from the enzyme surface and opens and widens towards the outer surface of the enzyme (Figure 5.4). The tunnel itself is narrow and is surrounded by side walls and floor on the exterior side of the enzyme.

Figure 5.4 Site_1 U-shaped cavity that is lying between the nsP2 domains N and C. It has the two openings on the enzyme surfaces. The cavity mouth is wide and surrounded by hydrophobic side wall and a floor.
Site_1 makes contact with the residues: Gln1039, Ala1040, Lys1045-Tyr1047, Gly1176, Pro1191, Leu1192, Tyr1201, Asn1202, Leu1203, Glu1204, His1222, Thr1223, Pro1224, Arg1226, Asp1235, Mes1238, Lys1239, Leu1243. The cavity is mainly hydrophobic due to the presence of the residues Ala, Tyr, Gly, Pro and Lys, with some amino acids able to form H-bonds such as His, Tyr, Gln, Glu as well as the polar part of Lys. The central blue bridge (Figure 5.4) in the middle of the cavity is a hydrophilic bridge that is formed by the polar heads of the N domain Lys1045 and the C domain Lys1239. Domain C residue Cys1233 is buried in one of the α-helices behind this cavity and closer to domain N, confirming the hypothesis that this mouth cavity might be the access to the catalytic proteolytic activity of the enzyme. Therefore, blocking this cavity might block the proteolytic activity of the enzyme and consequently inhibit viral replication.

5.2.2. N domain binding site

Lying on the opposite side of the enzyme surface is another hydrophobic pocket that extends within the N domain of the enzyme before the junction with domain C (Figure 5.5).

Figure 5.5 Hydrophobic pocket within the N domain of the CHIKV nsP2 a) Front view of the pocket, b) side view of the pocket, divided into 3 sections; the narrow linker cavity which open towards site_1 side, a middle section and a wide terminal mouth.
This pocket (hereafter called site_2) extends under the N domain β-sheet and ends with a small cavity that opens on the domain C side surface, just above site_1 (Figure 5.6).

![Electrostatic surface of the CHIKV nsP2 showing site_1, site_2 and the linker cavity that opens from site_2 towards site_1](image)

Figure 5.6 Electrostatic surface of the CHIKV nsP2 showing site_1, site_2 and the linker cavity that opens from site_2 towards site_1

Site_2 is mainly lined by residues: Asn1011, Cys1013, Trp1014, Ala1046, Tyr1047, Ser1048, Glu1050, Val1077, Tyr1079, Asn1082, Trp1084, Gly1090, Lys1091, Leu1205 and Mse1242. It is also a hydrophobic cavity due to the presence of hydrophobic residues with some amino acids able to form H-bonds such as Ser, Tyr, Trp, Gln, and also the polar moiety of Lys. Targeting this site by inhibitors, might not only block the NTPase and RTPase N domain functions, but may also act as an allosteric site for the protease binding site on the opposite C domain side of the enzyme; small molecules bound to this site may alter the function of the enzyme or change the enzyme conformation and consequently block the enzyme function, stopping the viral replication.

5.3. Virtual screening with the CHIKV nsP2

A virtual screening study was performed on both sites (site_1, site_2) using the Life chemicals cysteine protease inhibitors library (28,960 compounds). This library was designed using a ligand based approach – first, a set of 585 compounds active in assays
related to cysteine proteases was assembled. This Life Chemicals collection was
searched for compounds similar to the reference dataset using MDL public keys and the
Tanimoto similarity cut-off of 85% to generate a library of 28,960 compounds.

The virtual screening was performed using two successive docking scores,
FRED (fast rigid exhaustive docking) for fast precise screening, with the top hits then
subjected to a ranking scoring using the AUTODOCK algorithm. The important
residues within both sites have been identified. Some in silico inhibitors were also
predicted that could be developed as selective CHIKV nsP2 inhibitors. The results of
the first Fred screening and the second Audodock re-ranking on both sites are shown in
tables 5.1-5.6.

Table 5.1 The top 25 compounds docked by Fred in nsP2_site_1 and their interacting
residues. Numbering is based on Fred output list (visualised by VIDA*).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>H-bonding residues</th>
<th>Other interacting residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1†</td>
<td>Mg$^{2+}$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Lys 1239, Asp 1235</td>
<td>π-cation Lys 1045</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-</td>
<td>3 x π-cation Lys 1239</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Lys 1045</td>
<td>Lys 1239</td>
</tr>
</tbody>
</table>

* VIDA is a visualising software developed by Openeye (OpenEye Scientific Software, Santa Fe,
 NM. http://www.eyesopen.com)
† Mg ion within the crystal structure
<table>
<thead>
<tr>
<th></th>
<th>Chemical Structure</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>π-cation Lys 1239, π-sigma Lys 1239</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2x π-cation Lys 1239</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Leu 1203, π-cation Lys 1239, π-sigma Lys 1239</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>π-cation Lys 1045, π-cation Lys 1239, π-sigma Lys 1239</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Lys 1045 x 2, Asp 1235, π-cation Lys 1239 x 2, π-sigma Lys 1239</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>π-cation Lys 1239 x 3</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Interactions</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>π-cation Lys 1239 x 2, π-sigma Lys 1239, π-cation Lys 1045</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>π-cation Lys 1239 x 2, π-sigma Lys 1239</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Lys 1045, π-sigma Ile 1221, π-cation Lys 1045, π-cation Lys 1239, π-sigma Lys 1239, π-sigma Ala 1040</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Lys 1045, π-cation Lys 1239 x 2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>π-cation Lys 1239, π-sigma Lys 1239</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>π-cation Lys 1239, π-sigma Lys 1239</td>
</tr>
</tbody>
</table>
| 17 | ![Chemical Structure](image1) | \(\pi\)-cation Lys 1239 x 2
\(\pi\)-sigma Lys 1239 |
| 18 | ![Chemical Structure](image2) | \(\pi\)-cation Lys 1239 x 2
\(\pi\)-sigma Lys 1239 |
| 19 | ![Chemical Structure](image3) | \(\pi\)-\(\pi\) His 1222
\(\pi\)-cation Lys 1239
\(\pi\)-sigma Lys 1239 |
| 20 | ![Chemical Structure](image4) | Lys 1045 x2
\(\pi\)-cation Lys 1239 x 3 |
| 21 | ![Chemical Structure](image5) | \(\pi\)-cation Lys 1239 x 3
\(\pi\)-sigma Lys 1239 |
| 22 | ![Chemical Structure](image6) | Asn 1202
Lys 1045
\(\pi\)-cation Lys 1239 x 2
\(\pi\)-sigma Pro 1191 |
| 23 | ![Chemical Structure](image) | His 1222 | π-cation Lys 1239
π-cation Lys 1045 |
| 24 | ![Chemical Structure](image) | Glu 1204
Asn 1202 | π-sigma Pro 1191
π-sigma Lys 1239 |
| 25 | ![Chemical Structure](image) | | π-cation Lys 1239 x 3
π-sigma Glu 1204 |
| 26 | ![Chemical Structure](image) | | π-sigma Lys 1239 x 3 |
Table 5.2 Autodock output for the nsP2_site_1 Fred hit list. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 1.0, 2.0 and 3.0 Å.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Binding Energy Kcal/mol</th>
<th>Predicted K_i nM</th>
<th>Number of clusters &</th>
<th>Lowest energy cluster poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-11.36</td>
<td>4.72</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>-7.26</td>
<td>4.79×10^4</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>-9.83</td>
<td>61.92</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>-7.22</td>
<td>5.12×10^4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>-10.5</td>
<td>19.96</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>-9.46</td>
<td>116.7</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>-10.0</td>
<td>46.58</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>-8.68</td>
<td>435.31</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>-8.39</td>
<td>709.36</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>-9.88</td>
<td>57.32</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>-7.13</td>
<td>5.9×10^3</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>-10.16</td>
<td>35.58</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>-9.03</td>
<td>241.5</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>-7.69</td>
<td>2.29×10^3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>-9.37</td>
<td>134.58</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>-8.45</td>
<td>644.95</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>-9.03</td>
<td>240.22</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>-9.18</td>
<td>185.76</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>-9.9</td>
<td>55.24</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>-9.75</td>
<td>71.74</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>-7.92</td>
<td>1.57×10^3</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>-8.3</td>
<td>822.33</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>24</td>
<td>-8.63</td>
<td>472.65</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>-9.89</td>
<td>56.66</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>-10.24</td>
<td>30.98</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

* Predicted docked poses are grouped together according to their root-mean-square (RMS) values compared to the input ligand structure. Poses that have similar RMS values (within the tolerance value selected) are grouped in one cluster.

* Entries are the same as in Table 5.1, entry 1 was assigned for the Mg ion.
Table 5.3 The top 5 poses for the nsP2_site_1 based on Autodock ranking, their ClogP, calculated binding energies, K_i values and interacting residues.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>clogP*</th>
<th>Binding energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues</th>
</tr>
</thead>
</table>
| 2 | ![Structure 2](image) | 4.08±0.69 | -11.36 | 4.72 | Lys 1045 (Hb, 1.9 Å)
Lys 1239 (2Hb, 1.9, 2.5 Å)
Lys 1239 (π-cation)
Leu 1192 (π-sigma) |
| 6 | ![Structure 6](image) | 5.13±0.97 | -10.50 | 19.96 | Glu 1043 (2Hb, 2.1, 2.2 Å)
Lys 1239 (Hb, 1.7 Å)
Lys 1239 (π-cation) x 3 |
| 26 | ![Structure 26](image) | 5.88±0.94 | -10.24 | 30.98 | Glu 1043 (Hb, 1.9 Å)
Lys 1239 (Hb, 1.7 Å)
Lys 1239 (π-cation)
Lys 1239 (π-sigma) |
| 13 | ![Structure 13](image) | 6.07±0.88 | -10.16 | 35.58 | Lys 1045 (Hb, 2.4 Å)
Lys 1239 (Hb, 2.1 Å)
Pro 1191 (π-sigma)
Lys 1045 (π-cation)
Lys 1239 (π-cation) |
| 8 | ![Structure 8](image) | 5.67±1.05 | -10.0 | 46.58 | Lys 1045 (2Hb, 2.1, 2.2 Å)
Lys 1239 (Hb, 1.8 Å)
Lys 1045 (π-cation)
Lys 1239 (π-sigma) x 2
Lys 1239 (π-cation) |

*Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada).
Table 5.4 The top 25 compounds docked by Fred in **nsP2_site_2** and their interacting residues. Numbering is based on Fred output list (visualised by VIDA).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>H-bonding residues</th>
<th>Other interacting residues</th>
</tr>
</thead>
</table>
| 1 | ![Structure 1](image1.png) | Trp 1084
Gln 1241 | π-cation Lys 1091 |
| 2 | ![Structure 2](image2.png) | Ser 1048 | π-cation Lys 1091 |
| 3 | ![Structure 3](image3.png) | Trp 1084
Asn 1202 | |
| 4 | ![Structure 4](image4.png) | Ser 1048
Trp 1084 | |
| 5 | ![Structure 5](image5.png) | Trp 1084
Asn 1202 | |
| 6 | ![Structure 6](image6.png) | Trp 1084
Gln 1241 | π-cation Lys 1091 |
<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Structures/Chemical Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Trp 1084</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Trp 1084 x 2, Asn 1202</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Trp 1084 x 2, π-sigma Ala 1046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Asn 1202, Trp 1084 x 2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Trp 1084, Gln 1241</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ser 1048, Trp 1084</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Trp 1084, π-cation Lys 1091</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Trp 1084</td>
</tr>
<tr>
<td>----</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Trp 1084 Gln 1241</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Trp 1084 x 2</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Ser 1048 Trp 1084</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Trp 1084 Asn 1202</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Trp 1084</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Asn 1082</td>
</tr>
</tbody>
</table>

* Selenomethionine
| 21 | ![Chemical Structure](image1) | Ser 1048
Trp 1084 | π-sigma Trp 1084 |
| 22 | ![Chemical Structure](image2) | Asn 1202
Trp 1084 |
| 23 | ![Chemical Structure](image3) | Trp 1084 x 2
Ser 1048 | π-cation Lys 1091 x 2 |
| 24 | ![Chemical Structure](image4) | Trp 1084
Ser 1048 |
| 25 | ![Chemical Structure](image5) | Gln 1241
Tyr 1047 | π-cation Lys 1091 |
Table 5.5 Autodock output for the nsP2_site_2 Fred hit list. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 1.0, 2.0 and 3.0 Å.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Binding Energy (\text{Kcal/mol})</th>
<th>Predicted (K_i) nM</th>
<th>Number of clusters</th>
<th>Lowest energy cluster poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-8.32</td>
<td>799.94</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>-9.74</td>
<td>72.63</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>-9.24</td>
<td>167.47</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>-8.97</td>
<td>264.9</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>-8.8</td>
<td>353.41</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>-7.65</td>
<td>(2.47 \times 10^3)</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>-9.23</td>
<td>170.77</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>-9.8</td>
<td>65.79</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>-9.76</td>
<td>70.47</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>-9.28</td>
<td>156.76</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>-8.42</td>
<td>667.9</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>-9.9</td>
<td>55.69</td>
<td>3</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>-8.38</td>
<td>722.18</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>-8.8</td>
<td>355.69</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>-8.88</td>
<td>312.02</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>-8.72</td>
<td>404.11</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>-8.45</td>
<td>636.79</td>
<td>7</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>-8.82</td>
<td>345.39</td>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>-9.4</td>
<td>129.44</td>
<td>7</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>-8.23</td>
<td>929.53</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>-9.67</td>
<td>81.91</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>22</td>
<td>-9.2</td>
<td>180.54</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>-8.68</td>
<td>431.68</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>-8.15</td>
<td>(1.06 \times 10^3)</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>-8.53</td>
<td>562.66</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

* Entries are the same as in Table 5.4.
Table 5.6 The top 5 poses in the nsP2_site_2 based on Autodock ranking, their ClogP, calculated binding energies, K_i values and interacting residues.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>clogP*</th>
<th>Binding energy $K_{cal/mol}$</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues</th>
</tr>
</thead>
</table>
| 12 | ![Structure](image1.png) | 4.57±0.65 | -9.90 | 55.69 | Ser 1048 (Hb, 1.6 Å)
Tyr 1079 (Hb, 2.1 Å)
Trp 1084 (Hb, 1.8 Å)
Gln 1241 (Hb, 2.4 Å)
Lys 1091 (π-cation) |
| 8 | ![Structure](image2.png) | 4.13±0.68 | -9.80 | 65.79 | Trp 1084 (Hb, 1.7 Å)
Lys 1091 (Hb, 1.8 Å) |
| 9 | ![Structure](image3.png) | 3.28±1.00 | -9.76 | 70.47 | Glu 1050 (Hb, 2.3 Å)
Tyr 1079 (Hb, 2.3 Å)
Trp 1084 (2Hb, 2.1, 2.2 Å)
Lys 1091 (Hb, 1.9 Å) |
| 2 | ![Structure](image4.png) | 6.12±0.49 | -9.74 | 72.63 | Ser 1048 (Hb, 1.7 Å)
Trp 1084 (Hb, 2.2 Å)
Lys 1091 (π-cation) |
| 21 | ![Structure](image5.png) | 4.86±1.49 | -9.67 | 81.91 | Trp 1084 (Hb, 1.8 Å)
Lys 1091 (π-cation) x2 |

*Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada).

5.3.1. Analysis of the C domain virtual screening results

The CHIKV nsP2 plays an important role during the replication life cycle, and is composed of two domains. Domain C, which is the proteolytic machinery, processing the non-structural protein complex into individual functional proteins, and the N domain, which performs regulatory cellular functions through the NTPase and RTPase activities. These vital roles of the enzyme with the availability of a crystal structure, makes it an attractive target for the drug design for this virus. We investigated both domains for the possible binding sites. Within domain C which contains 3 cysteine residues (Figure 5.2) that might be involved in the proteolytic mechanism, access to these residues is most likely to occur through the site_1 (Figure 5.4), a possible site for...
holding the protein to be cleaved by the protease activity. The site extends between domains N and C with residues from both lining the site tunnel. The tunnel opens to the outer surface as a wide mouth lined mainly by residues from domain C. Our hypothesis is that bound small molecules to this site, not only freezes both domains together, preventing its function, but also blocks the sites through π-stacking interactions, mostly, hydrophobic/aromatic interactions. Our study did not reveal the participation of the cysteine residues (Cys1233, Cys1290), however, other residues have been found to strongly participate in the interactions in this site. Figure 5.7 shows the 3D and the 2D representations of the docked poses.
Figure 5.7 Three and two dimensional representations of the top 5 ranked poses (Table 5.3) inside the nsP2 site_1 pocket.
Figure 5.7 shows that compounds 2, 13 and 8 were able to insert at least a phenyl ring inside the U-shaped tunnel whereas poses 6 and 26 were found to prefer the outer surface of the cavity (the outer mouth cavity). All compounds were able to bind to Lys1045 or Glu1043 from the N domain and to Lys1239 from the C domain. These interactions with residues in the two domains N and C make the compounds good possible ligands for this pocket. When bound to the pocket in the predicted way, compounds will be able to freeze domain N in relation to domain C, blocking the protease cavity of the enzyme, rendering the access to the cysteine residues for the catalytic cleavage not possible.

Poses 2 and 13 were able to form π stacking interactions with the side wall of the pocket via interactions with Leu1192 and Pro1191, respectively (Figure 5.7). This pocket side wall represents the enzyme outer surface, with this part of the enzyme surface being close to the linker cavity of site_2 (see Figure 5.6).

Poses 2 and 13 were able to orient in such way that they have aromatic rings relaxing before the side wall of the pocket forming interactions with Leu1192 and Pro1191, respectively. This unique ability for the two ligands (2 and 13) was related to: a) the presence of a relatively smaller linear terminal phenyl-furan sequence, such that this moiety can insert inside the tunnel, being stabilized by H-bonds with the tunnel hydrophilic bridge, b) the flexibility of the other terminal phenyl ring; in the docked pose 2, the terminal phenyl is attached to the relatively flexible non-aromatic piperazine moiety whereas in the docked pose 13, the terminal phenyl is attached to rigid aromatic central moiety via a flexible CH₂ linker. This flexibility enables the terminal phenyl rings to find the right position for interaction with the amino acid residues Leu1192 and Pro1191. These two classes of compounds can be described as relatively small rigid aromatic head groups linked in a linear manner through relative flexible joints to small aromatic tails. This orientation allows the insertion inside the tunnel forming stacking interactions with the cavity residues.

Poses 6 and 26 are derivatives of the main skeleton of N-aryl-2-((4-oxo-3-aryl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide, with different aryl groups. The 3,5-dihydro-4H-pyrimido[5,4-b]indol-4-one head is important in this class of compounds as it forms a strong π-stacking interaction with the C domain central Lys1239 (Figure 5.7), and is able to insert one the terminal phenyl rings inside the right
opening of the tunnel (on the right hand side when looking to front Figure). In both derivatives, the 2-mercaptoacetamide linker is important; the carbonyl oxygen can accept H-bond from the polar head of Lys1239 of the tunnel central bridge, and the NH participates in H-bonding with the N domain Glu1043. The aromatic tail; the relatively more flexible benzo[1,4]dioxane in compound 6 and the rigid naphthalene moiety in compound 26 blocked the access of the left opening of the tunnel (on the left hand side when front looking to the Figure). These three segments, bulky aromatic head, mercaptoacetamide linker and the aromatic tail were responsible for the orientation of this class in such a way that they block the entrance of the U-shaped tunnel from the two openings, and therefore, can be developed as selective blockers for this site. Figure 5.8 shows the superimposition of compound 6 and 26 inside site_1.

![Figure 5.8 Superimposition of pose 6 (violet) and pose 26 (yellow) inside the nsP2_site1 binding pocket.](image)

The mercaptoacetamide linker was also important in pose 8 where it connected the bulky head the phenylthieno[3,2-d]pyrimidin-4(3H)-one to the tail of the tetrahydroquinoline. The terminal phenyl substituent of the head was inserted inside the right hand side opening of the tunnel and was stabilized by interaction with the N domain tunnel bridge residue Lys1045 (Figure 5.7), whereas the main thieno[3,2-d]pyrimidin-4(3H)-one moiety was stabilized by interaction with the C domain tunnel bridge residue Lys1239 (Figure 5.7). The mercaptoacetamide linker forms H-bonds with both residues of the bridge tunnel residues. The benzo moiety of the tail forms an
interaction with Lys1045 blocking the left tunnel opening. In comparison with poses 6 and 26 where the linker is attached to the rigid benzo moiety of the head groups, the linker in pose 8 is attached to the relatively flexible moiety of the rigid tail where certain flexibility might allow such stabilizing interaction with the tunnel bridge. Such stabilization was not possible in case of 6 and 26.

5.3.2. Analysis of the N domain virtual screening results

Site_2 is located within the N domain and lies as a channel that is partially covered by two of the N domain β-sheets. It represents the main pocket within domain N that might be important for the N domain functions. This pocket can also lead to access to the cysteine residues within C domain. Therefore, the hypothesis is that blocking the pocket will inhibit the enzymatic functions of this domain, and secondly, it might be an allosteric site for blocking the enzymatic activity of domain C. Figure 5.9 shows the 3D and 2D representations of the top ranked docked poses (Table 5.6) within the nsP2 site_2 N domain pocket.

Pose 12

Pose 8
Figure 5.9 Three and two dimensional representations of the top 5 ranked compounds (Table 5.6) inside the nsP2 site_2 pocket.
Site_2 can be divided into 3 sections (Figure 5.5), the narrow linker cavity which opens towards site_1 side, a middle section and a terminal wide mouth. Two important interactions emerged in the top ranked poses, one strong H-bond with Trp1084 (in the range of 1.7-2.2 Å) which is located in the middle section and another interaction with Lys1091 in the terminal wide mouth section (Figure 5.9, the snapshots were taken with the wide mouth component in the front). This later interaction was either through H-bonds with the polar part of Lys1091 as in poses 8 and 9, or through π-cation stacking interaction with the positively charged head of Lys1091 as in compounds 12, 2 and 21. In poses 12, 8, 9 and 2, the terminal hydrophobic/aromatic moiety was inserted inside the narrow linker cavity of the pocket (Figure 5.9, the rear part of the snapshots).

All compounds interacted with residues within domain N without interacting with domain C except pose 12, which forms a strong H-bond (2.4 Å, Figure 5.9) with the Gln1241 residue, located in one of the α-helices of domain C. This unique interaction was responsible for the better binding profile compared to the other docked poses as can be inferred from Table 5.6 where pose 12 was predicted to bind to the pocket with a binding energy of -9.90 kcal/mol with a predicted inhibition constant (K_i) of 55.69 nM.

The presence of the bi-heterocyclic system in the middle of the pocket, namely the benzo[d]thiazole moiety, in poses 12 and 9 was responsible for H-bond formation through the sulfur atom with the N domain β-sheet Tyr1079 residue; this β-sheet extends outwards like an umbrella over the pocket.

The presence of a sulfoxide group in the third wide mouth pocket section (front view of the snapshots taken in Figure 5.9) is favourable as both oxygens of this group can accept H-bonds from the N domain Ser1048 (around 1.6 Å, Table 5.6) as in case of poses 12 and 2, or with the near by amino acid Glu1050 (2.3 Å) in case of pose 9.

Poses 12, 8 and 9 can insert hydrophobic tails within the linker cavity that opens on site_1 side. This indicates that this site may affect the other protease site somehow through this linker cavity. Figure 5.10 shows a 3D representation of the nsP2 surface with pose 12 (Table 5.3, within site_1) and pose 8 (Table 5.6, within site_2). It shows the possible clashes between the compounds in the linker cavity. It also shows the
possible allosteric effect of ligands in site_2 on the protease active site. This opens other possible investigations into using two inhibitors together as an effective inhibitory mechanism for that critical enzyme in the viral life cycle.

![Image](image_url)

Figure 5.10 Pose 2 (Table 5.3) within the nsP2 site_1, shown in red colour. Pose 8 (Table 5.6) within the nsP2 site_2, shown in yellow colour. The hydrophobic tail of pose 8 within site_2 is protruding through the linker cavity towards pose 2 in site_1.

5.4. Concluding remarks

We have examined the CHIKV nsP2, a critical enzyme for the viral life cycle, for potential druggable pockets that could be targeted by small molecules. Two major pockets where identified within the N and C domains. The hypothesis described here investigated the possibility of inhibiting the enzyme multi-functions through blocking the active sites of the two domains. A database search on the two hydrophobic pockets was performed and this search detected the residues important for significant bindings as well as the preferred pharmacophores of the potential *in silico* inhibitors. Within domain C proteolytic site, Lys1239 and Lys1045 were found to interact with most of the identified ligands. Both residues represent a hydrophilic bridge in the C domain hydrophobic pocket that can form H bonds through their polar heads and stacking interactions through their side chains. Within domain N, Trp1084 and Lys1091 were found to be interacting with all of the docked poses, with the possibility for interaction with the C domain Gln1241. Some small molecules were also identified for each site that look promising *in silico* (nano-molar) inhibitors that might be starting points for
lead development targeting this enzyme. Another hypothesis is the possibility of using dual inhibitors for the enzyme, targeting both domains at the same time by a combination therapy. The CHIKV nsP2 enzyme is unfortunately not available for direct binding assays, therefore, the identified compounds were purchased and currently are being evaluated for their anti-chikungunya activities. This represents the first study in understanding the CHIKV nsP2 enzyme as well as identifying some selective potential inhibitors, and this computer model can be further used for screening large libraries to identify more hits. Depending on the activities, a retro-synthetic analysis can be designed for the active compounds, allowing in-depth \textit{in silico} with \textit{in vitro} optimization studies that might lead to the discovery of potent selective inhibitor for the virus.
6.1. Introduction

The CHIKV genome is approximately 11.8 Kb in size and consists of a single stranded, positive sense RNA genome with two open reading frames (ORFs), one in the 5` end which encodes two polyproteins, the precursors of the non-structural proteins. The second ORF at the 3` end encodes the structural proteins, the capsid (C), envelope glycoproteins E1 and E2 and two small cleavage products (E3, 6K). Like the other members of the alphaviruses, the CHIKV starts the life cycle by entering the target host cells by pH dependent endocytosis via a receptor mediated interaction. A recent study identified prohibitin1 (PHB1) as a microglial cell expressed CHIKV binding protein.

After entering the cell, the endosome acidic environment triggers conformational changes in the viral envelope complex made of E1 and E2 proteins, resulting in dissociation of the E2-E1 heterodimers and E1 homotrimers are formed. The E1 trimer inserts into the target cell membrane via its hydrophobic fusion peptide (fusion loop) and refolds to form a hairpin-like structure. Exposure of the E1 fusion peptide leads to releasing of the nucleocapsid into the host cell cytoplasm. During the replication cycle inside the host cell, the capsid protein is released, and the pE2 and E1 glycoproteins are translated in the Golgi and are moved to the plasma membrane, where pE2 is cleaved by furin-like protease activity into E2 and E3.

Glycoprotein E2 is responsible for receptor binding whereas E1 is responsible for membrane fusion. E3 contains the 64-amino-terminal residues of p62 and mediates proper folding of pE2 and its subsequent association with E1. E3 also protects the E2-E1 heterodimer from premature fusion with cellular membranes. Furin maturation of p62 into E3 and E2 during transport to the cell surface primes the spikes for subsequent fusogenic activation for cell entry. Mature virions bud at the plasma membrane via interactions between E2 and genome-containing viral nucleocapsids present in the cytoplasm, ready for infecting new cells. The crystal structures of both the immature and the mature glycoprotein complexes have recently been solved (Figure 6.1).
E1 is folded into three β-sheet rich domains (I, II and III). E2 is an all β protein belonging to the immunoglobulin superfamily, with three domains A, B and C. Domain B is at the membrane upper end and domain C is towards the viral membrane: Domain A is at the centre while domain C binds to the adjacent domain II of E1. The long β – ribbon of E2 makes most of the connection with E3. Furin loop is E2-E3 junction in the immature complex; this junction contains a functional proprotein convertase motif which is cleaved by the cellular porteases; furin-like proprotein convertases during the maturation of the glycoproteins. The amino acid His60 in this junction is the critical residue that determines the spectrum of furin and furin-like convertases that process E2-E3 glycoprotein complex. The U shaped fusion loop of E1 is inserted in a groove between E2 domains A and B being stabilized by hydrogen bonds with E2 histidine side chains. In the neutral pH, E3 maintains E2 domain B in an orientation with respect to domain A in such way that it creates the groove accommodating the E1 fusion loop, protecting the virus from premature fusion with other cellular membranes. Some residues in domain B of E2 are believed to be associated with cell recognition. The fusogenic activity of the E1 fusion peptide is highly dependent on pH change. The histidine residues of E2 are believed to be involved as the pH sensor for the activation of the fusion protein at lower pH due to the increased probability of histidines to become positively charged at lower pH values, based on the fact that the imidazole ring of the histidine residue is the only amino acid side chain whose apparent dissociation constant from protons (pKa) falls within the physiological range. Within the E1 fusion
peptide sequence, the glycine residue (Gly91) is critical for the fusion process. Also, it was found that one histidine residue at E1 230, which is located outside of the fusion sequence, is also critical for the fusion.\(^{96}\)

Blocking the \textit{in vitro} CHIKV infection in the host cells targeting the envelope proteins has been demonstrated by blocking the intracellular furin-mediated cleavage of viral envelope glycoproteins (E2E3 or p62 precursors), this blocking was achieved by an irreversible furin-inhibiting peptide which significantly reduce the processing of E3E2 CHIKV glycoproteins. This led to the formation of immature viral particles and impaired viral spreading through other uninfected cells.\(^{100}\) This reflects the importance of considering the envelope glycoproteins as an attractive target for selective drug development.

The usage of the three-dimensional structure of the target proteins (crystal structures) in the virtual screening (\textit{in silico}) of chemical libraries has been a powerful approach to identify lead compounds with some successful examples in a number of systems.\(^{226,227}\) Such structure based drug design techniques, including the identification of new binding sites and virtual screening search, have been successfully used for identification of lead compounds for the dengue virus envelope protein (E protein).\(^{228,229}\) Dengue virus is also an arbovirus and is transmitted by the same vector mosquito of the CHIKV. Herein, we report for the first time the novel binding sites in the CHIKV envelope glycoproteins that can be used as sites for inhibitors that could alter the function of the envelope proteins and consequently, inhibit the virus fusion function. To increase the chances of possible hits, we examined both the immature and the mature glycoprotein crystal structures for possible binding sites. Two sites were chosen that were common in both the immature and the mature proteins based on their locations and functions. We then used virtual screening combining two different docking algorithms with a number of chemical databases to identify suitable compounds predicted to bind in these sites. FRED (fast rigid exhaustive docking) was used for fast and precise screening using multiple scoring functions, followed by re-docking ranking of the top hits using AUTODOCK scoring function. This led to the identification of favoured hits that have suitable binding profiles to the CHIKV glycoproteins. This hypothesis represents a new strategy for inhibiting this particular virus by targeting the envelope proteins which will lead to impaired protein function and thus inhibiting the virus, and will help the further synthetic development and optimization of selective inhibitors, as
previously and successfully achieved for the dengue virus envelope protein inhibitors.229,230

6.2. Results and discussion

6.2.1. Identification of novel binding sites

Both the crystal structure of the immature complex (PDB file: 3N4095) and the mature complex (PDB file: 3N4295) were used. Binding sites within the receptors were detected using the Discovery Studio 3.5 software (Accelrys Software Inc.: San Diego, CA, 2012). The algorithm is based on a grid search and "eraser" algorithm which derives binding sites from cavities in the structure of the receptor. The binding site found is displayed as a set of points. The volume of each cavity is defined as the product of the number of site points and the cube of the grid spacing. Six main sites were detected in both the immature and the mature crystal structures and only one site was detected in the mature crystal structure that is not present in the immature form (Figure 6.2). Table 6.1 shows the identified sites. Suitable cavities were then checked further based on functionality, presence of hydrophobic residues, presence of charged residues and solvent accessibility.

![Figure 6.2 Crystal structure of (a) the immature glycoproteins (generated from file pdb: 3N40) and (b) the mature glycoproteins (generated from the file pdb: 3N42) showing the identified binding cavities as solid filled surface.](image)
Table 6.1 The identified receptor cavities in the immature (3N40) and mature (3N42) crystal structures, grid coordinates x, y and z, cavity volumes, points count and location for each cavity site.

<table>
<thead>
<tr>
<th>Site</th>
<th>3N40 (immature structure)</th>
<th>3N42 (mature structure)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 (red)</td>
<td>x, y, z: -15.381, -1.269, 16.434</td>
<td>x, y, z: -15.687, 2.019, -19.939</td>
<td>Between E1 domain II and E2 domain C</td>
</tr>
<tr>
<td></td>
<td>Volume: 687.25</td>
<td>Volume: 651.375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 5498</td>
<td>Points count: 5211</td>
<td></td>
</tr>
<tr>
<td>Site 2 (light green)</td>
<td>x, y, z: -30.631, 17.481, 33.684</td>
<td>x, y, z: -33.937, -18.731, -31.939</td>
<td>Between E1 domain II and the β-ribbon of E2</td>
</tr>
<tr>
<td></td>
<td>Volume: 395</td>
<td>Volume: 357.375</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 3160</td>
<td>Points count: 2859</td>
<td></td>
</tr>
<tr>
<td>Site 3 (dark green)</td>
<td>x, y, z: -30.631, 4.981, 37.934</td>
<td>x, y, z: -33.437, -6.731, -33.189</td>
<td>Adjacent to site 2</td>
</tr>
<tr>
<td></td>
<td>Volume: 157.625</td>
<td>Volume: 156.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 1261</td>
<td>Points count: 1249</td>
<td></td>
</tr>
<tr>
<td>Site 4 (blue)</td>
<td>x, y, z: -38.131, 31.481, 24.934</td>
<td>x, y, z: -42.937, -28.731, -22.939</td>
<td>Behind the fusion loop, between E3, E2 domain B, E2 domain A</td>
</tr>
<tr>
<td></td>
<td>Volume: 126.25</td>
<td>Volume: 183.875</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 1010</td>
<td>Points count: 1471</td>
<td></td>
</tr>
<tr>
<td>Site 5 (black)</td>
<td>x, y, z: -44.631, 14.731, 23.184</td>
<td>x, y, z: -44.437, -14.731, -23.439</td>
<td>between the β-ribbon of E2 and E3</td>
</tr>
<tr>
<td></td>
<td>Volume: 93.125</td>
<td>Volume: 124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 745</td>
<td>Points count: 992</td>
<td></td>
</tr>
<tr>
<td>Site 6 (yellow)</td>
<td>x, y, z: -57.631, 16.731, 36.184</td>
<td>x, y, z: -16.187, -18.231, -36.439</td>
<td>Within E3 cavity</td>
</tr>
<tr>
<td></td>
<td>Volume: 29.5</td>
<td>Volume: 20.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 236</td>
<td>Points count: 164</td>
<td></td>
</tr>
<tr>
<td>Site 7 (orange)</td>
<td>x, y, z: Does not exist</td>
<td>x, y, z: -59.187, -15.731, -26.189</td>
<td>Replacing the furin loop</td>
</tr>
<tr>
<td></td>
<td>Volume: Does not exist</td>
<td>Volume: 22.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Points count: 178</td>
<td>Points count: 1471</td>
<td></td>
</tr>
</tbody>
</table>

6.2.2 Virtual screening with the CHIKV envelope proteins

Two chemical compounds libraries were used; The NCI set library of 265,242 compounds and the Life Chemicals protein-protein interactions inhibitors library of 31,143 compounds. The databases were filtered with the drug-likeness-index; limit the
range for Molecular Weight ≤ 500, calculated octanol–water partition coefficient (clogP ≤ 5), and hydrogen bond donors, and acceptors (OH’s and NH’s ≤ 5; N’s and O’s ≤ 10), using Filter v2.0.2 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com), producing 55,841 compounds from the NCI library and 4,124 compounds from the Life Chemicals library. Fast exhaustive virtual screening was performed using FRED v2.2.5 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com), which is a fast and effective docking application whose performance is significantly more reliable, i.e. lower variance, than most other programs. FRED performs a systematic, exhaustive, nonstochastic examination of all possible poses within the protein active site, filters for shape complementarily and pharmacophoric features before selecting and optimizing poses using the Chemgauss scoring function. Omega2 (Systematic high-throughput conformer generation, OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com), was used to generate multiple conformers for each compound in the database libraries using the default settings. Omega2 takes into account the flexibility of a molecule by generating all representative conformers. For the NCI library, 2,312,012 conformers were generated, and 334,064 conformers were generated from the Life Chemicals compounds. The work-flow diagram is shown in (Figure 6.3), the life chemical library was screened on site 2 (light green colour in Figure 6.2) in both of the immature and the mature glycoproteins. The NCI set compounds were screened on site 4 (blue colour in Figure 6.2) of the two envelope protein forms. The binding sites were prepared for docking using Fred receptor setup software (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com). The grid boxes were determined based on the x, y and z co-ordinates given in Table 1. After the docking calculations, the poses returned were scored and ranked with a Gaussian shape function independently by the five available scoring functions (PLP, Chemgauss3, Chemscore, OECHemscore, and Screenscore) and by a consensus of all. The top ranked poses from the exhaustive docking were then optimized using systematic solid body optimization by chemgauss3. VIDA v4.2.0 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) was used to visualise the docked poses within the receptor active site, and to inspect the critical interacting residues in each pocket with the individual docked poses. Top 20 hits were then recorded for each of the four sites (Tables 6.2, 6.5, 6.8, 6.11).
The top 20 docked poses ranked in each of the four binding sites were then extracted as PDB files, and were processed with Autodock Tools 1.5.6rc3 (ADT) graphical interface. The Gasteiger charges were calculated and the nonpolar hydrogen atoms were merged, torsion angles were defined, they were then saved as pdbqt files for Autodock calculations. Crystal structures (3N40, 3N42) were used by Autodock Tools 1.5.6rc3 to setup the receptor binding sites. The grid box co-ordinates in each site were determined based on the co-ordinates in Table 1. AutoGrid 4.2 algorithm was used to evaluate the binding energies between the inhibitors and the enzyme and to generate the energy maps for the docking run. Fifty runs were generated using Autodock 4.2 Lamarckian genetic algorithm for the searches. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 2.0 Å, the docked poses were ranked according to the binding energies and ligand efficiencies, and finally the five lowest energy poses (Tables 6.3, 6.4, 6.6, 6.7, 6.9, 6.10, 6.12, 6.13) were selected as the resultant complexes with the enzymes. Compounds are commercially available and have drug like qualities and also can be accessed through chemical syntheses for further optimization process.

Figure 6.3 Work-flow diagram of the virtual screening procedures used for CHIKV envelope proteins.
Table 6.2 Fred output virtual screening top 20 hits and their target residues, for the immature glycoprotein receptor (3N40) site_2.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>H-bonding</th>
<th>Other interactions</th>
</tr>
</thead>
</table>
| 1 | ![Structure Image](1) | E1 Lys 52
E1 Thr 53
E2 Tyr 301 | |
| 2 | ![Structure Image](2) | | π-sigma (E1 Val 54) |
| 3 | ![Structure Image](3) | | π-sigma (E2 Arg 100) |
| 4 | ![Structure Image](4) | E1 Thr 53
E1 Ile 55
Lys 52 | π-cation (E1 Lys 52) |
| 5 | ![Structure Image](5) | E1 Ile 55 | π-sigma (E1 Val 54) |
| 6 | ![Structure Image](6) | E1 Val 231
E1 His 230
E1 Ile 55 | π-cation (E1 Lys 52) |
| 7 | ![Structure Image](7) | E1 His 230
E1 Val 231 | |
<table>
<thead>
<tr>
<th>No.</th>
<th>Image</th>
<th>Interaction</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>E2 Tyr 301</td>
<td>π-cation (E2 Arg 100)</td>
</tr>
</tbody>
</table>
| 9 | ![Chemical Structure](image9.png) | E1 Ile 55 (2 Bonds)
E2 Tyr 301 (2 Bonds) | |
| 10 | ![Chemical Structure](image10.png) | | |
| 11 | ![Chemical Structure](image11.png) | E1 Thr 53, Ile 55
E2 Arg 100, Tyr 301 | |
| 12 | ![Chemical Structure](image12.png) | | π-cation (E1 Lys 52) |
| 13 | ![Chemical Structure](image13.png) | | E2 Glu 232 |
| 14 | ![Chemical Structure](image14.png) | E1 Val 231, His 230 | |
| 15 | ![Chemical Structure](image15.png) | E1 Tyr 301
E2 Glu 232 | π-sigma (E1 Val 54) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>E1 Ile 55 x 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18| ![Chemical Structure 19](image4) | E1 Val 54, Thr 53
E2 Tyr 301 |
| 19| ![Chemical Structure 20](image5) | E2 Tyr 301 x 2 |
| 20| ![Chemical Structure 21](image6) | |
Table 6.3 Autodock output for the *immature glycoprotein receptor* (3N40) site_2 Fred hit list. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 2.0, 3.0 Å.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Binding Energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Number of clusters</th>
<th>Lowest energy cluster poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-8.37</td>
<td>734.41</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>-8.23</td>
<td>930.55</td>
<td>12</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>-8.38</td>
<td>721.49</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>-7.67</td>
<td>2.39×10^7</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>-9.43</td>
<td>121.87</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>-10.06</td>
<td>42.15</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>-8.99</td>
<td>255.48</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>-8.04</td>
<td>1.29×10^7</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>-8.3</td>
<td>819.29</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>-9.36</td>
<td>138.19</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>-8.8</td>
<td>354.66</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>-9.18</td>
<td>187.59</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>-8.19</td>
<td>987.11</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>-7.91</td>
<td>1.6×10^7</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>-7.85</td>
<td>1.75×10^7</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>-8.8</td>
<td>357.02</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>-8.7</td>
<td>416.95</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>-8.43</td>
<td>657.11</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>-8.97</td>
<td>267.05</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>-8.98</td>
<td>263.45</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>
Table 6.4 Top 5 hits identified for site 2 using the *immature glycoprotein receptor* (3N40), showing the molecular weights, calculated logP (clogP), predicted binding energies, inhibitory constants (K_i) and the interaction residues.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Molecular weight</th>
<th>clogP*</th>
<th>Binding energy</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>396.47</td>
<td>0.31±0.89</td>
<td>-10.06</td>
<td>42.15</td>
<td>E1 Lys52, E1 Ile55, E2 Tyr301, E2 Arg100</td>
</tr>
<tr>
<td></td>
<td>411.91</td>
<td>3.43±0.66</td>
<td>-9.43</td>
<td>121.87</td>
<td>E1 Lys52, E1 Ile55, E2 Tyr301, E2 Arg100</td>
</tr>
<tr>
<td></td>
<td>392.52</td>
<td>3.60±0.43</td>
<td>-9.36</td>
<td>138.19</td>
<td>E1 Lys52, E1 Ile55, E2 Tyr301, E2 Glu232</td>
</tr>
<tr>
<td></td>
<td>372.46</td>
<td>2.93±0.44</td>
<td>-9.18</td>
<td>187.59</td>
<td>E1 Lys52, E1 Ile55, E2 Tyr301, E2 Glu232, E2 Arg100</td>
</tr>
<tr>
<td></td>
<td>327.36</td>
<td>3.47±0.71</td>
<td>-8.99</td>
<td>255.48</td>
<td>E1 Lys52, E1 Ile55, E2 Tyr301, E2 Arg100</td>
</tr>
</tbody>
</table>

*Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada).
Table 6.5 Fred output virtual screening top 20 hits and their target residues, for the mature glycoprotein receptor (3N42) site_2.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>H-bonding</th>
<th>Other interactions</th>
</tr>
</thead>
</table>
| 1 | ![Structure](image1) | E1 Ile 55, Lys 52
E2 Tyr 237, Arg 36 | π–cation (E2 Arg 36)
π–cation (E1 Lys 52) |
| 2 | ![Structure](image2) | E1 Ile 55, Lys 52, Glu112
E2 Tyr 237, Glu 66 | π–cation (E1 Lys 55)
π–cation (E2 Arg 36)
π–sigma (E2 Ile 167) |
| 3 | ![Structure](image3) | E1 LYS 52 x 2 | π–sigma (E1 Val 54) |
| 4 | ![Structure](image4) | E1 Lys 52
E2 Tyr 237 | |
| 5 | ![Structure](image5) | E1 Ile 55, Lys 52
E2 Glu 35, Tyr 237 | π–cation (E1 Lys 52) |
| 6 | ![Structure](image6) | E1 Lys 52
E2 Glu 35 | |
| 7 | ![Structure](image7) | E1 Ile 55
π–sigma (E1 Val 54)
π–cation (E1 Lys 52) | |
<table>
<thead>
<tr>
<th></th>
<th>Compound Structure</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>E1 Lys 52, π-sigma (E2 Arg 36), π-cation (E1 Lys 52)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>E1 Ile 55, E2 Tyr 237 x 2, π-cation (E1 Lys 52), π-cation (E2 Arg 36)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>E1 Ile 55, Val 231, E2 Tyr 237, π-cation (E1 Lys 52)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>E1 Ile 55, Lys 52 x 2, π-sigma (E1 Val 54)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>E1 Lys 52, π-sigma (E1 Val 54)</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>E2 Tyr 237, π-cation (E1 Lys 52)</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>E1 Ile 55</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>E1 Lys 52, π-cation (E2 Arg 36)</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>E1 Lys 52, π-cation (E2 Arg 36)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>E1 Lys 52 x 2, π-sigma (E1 Val 54)</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>E1 Lys 52 x 2, π-cation (E2 Arg 36), π-cation (E1 Lys 52)</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>E1 Lys 52</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>E1 Lys 52, π-cation (E1 Lys 52), π-cation (E2 Arg 36)</td>
</tr>
</tbody>
</table>
Table 6.6 Autodock output for the *mature glycoprotein receptor* (3N42) site_2 Fred hit list, Cluster analysis was performed on docked results, with a root-mean-square tolerance of 2.0, 3.0 Å.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Binding Energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Number of clusters</th>
<th>Lowest energy cluster poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-8.8</td>
<td>357.4</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>-8.51</td>
<td>581.05</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>-7.63</td>
<td>2.57 × 10³</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>-9.36</td>
<td>138.07</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>-9.17</td>
<td>190.7</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>-9.98</td>
<td>48.38</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>-9.26</td>
<td>163.4</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>-8.05</td>
<td>1.25 × 10³</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>-8.98</td>
<td>262.77</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>-9.71</td>
<td>75.78</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>-7.83</td>
<td>1.81 × 10³</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>-7.97</td>
<td>1.44 × 10³</td>
<td>9</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>-8.65</td>
<td>454.1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>-8.29</td>
<td>842.46</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>-8.53</td>
<td>554.46</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>-8.36</td>
<td>741.07</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>-9.12</td>
<td>207.45</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>-8.16</td>
<td>1.05 × 10³</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>19</td>
<td>-8.19</td>
<td>993.62</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>-8.88</td>
<td>311.61</td>
<td>6</td>
<td>31</td>
</tr>
</tbody>
</table>
Table 6.7 Top 5 hits identified for site 2 using the *mature glycoprotein receptor* (3N42), showing the molecular weights, calculated logP (clogP), predicted binding energies, inhibitory constants (K_i) and the interaction residues.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Molecular weight</th>
<th>clogP*</th>
<th>Binding energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues*</th>
</tr>
</thead>
</table>
| 1 | ![Structure 1](image1.png) | 376.50 | 2.37±0.60 | -9.98 | 48.38 | E1 Lys52
E1 Thr53
E1 Ile55
E2 Arg36
E2 Glu168 |
| 2 | ![Structure 2](image2.png) | 354.43 | 4.12±0.64 | -9.71 | 75.78 | E1 Lys52
E1 Ile55
E2 Arg36
E2 Glu168
E2 Tyr237 |
| 3 | ![Structure 3](image3.png) | 376.50 | 3.90±0.72 | -9.36 | 138.07 | E1 Lys52
E1 Ile55
E2 Tyr237 |
| 4 | ![Structure 4](image4.png) | 390.50 | 3.03±0.75 | -9.26 | 163.4 | E1 Lys52
E1 Thr53
E1 Ile55
E2 Arg36
E2 Tyr237 |
| 5 | ![Structure 5](image5.png) | 350.39 | 2.83±0.90 | -9.17 | 190.7 | E1 Lys52
E1 Thr53
E1 Ile55
E2 Arg36
E2 Tyr237 |

*Calculated using ACD Labs v.12.0 (ACD/Labs, Toronto, Canada). Numbers of E2 residues in the mature form are different than the corresponding residues in the immature form.
Table 6.8 Fred output virtual screening top 20 hits and their target residues, for the immature glycoprotein receptor (3N40) site_4.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>H-bonding</th>
<th>Other interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>E1 Val 229 x 2
E2 Leu 305</td>
<td>Sigma–π (E2 His 93, x 2)
π–σ (E2 Leu 80)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>E2 His 82, Leu 305</td>
<td>π–π (E2 His 93)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>π–σ (E2 Leu 80)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>E2 Gln 300,
E1 Fusion Loop Trp 98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>E1 Fusion Loop Phe 87,
Val 229
E2 His 82</td>
<td>π–σ (E1 fusion loop Met88)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>E1 Leu 305</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>E1 Fusion Loop Phe 87
E2 His 82, His 93 x 2</td>
<td>π–σ (E2 Leu 80)</td>
</tr>
</tbody>
</table>
| 8 | ![Chemical Structure](image1.png) | E1 Val 229 x 2
E2 Leu 305 x 2 | π-sigma (E2 Leu 80) |
| 9 | ![Chemical Structure](image2.png) | E1 Val 229, Gly 227,
Fusion Loop Phe 87
E2 His 82 | |
| 10 | ![Chemical Structure](image3.png) | E2 His 93
Cation–π (E2 His93)
π-sigma (E1 fusion loop Met88)
π-π (E1 fusion loop Trp 89)
π-sigma (E2 Leu 80) | |
| 11 | ![Chemical Structure](image4.png) | E1 Fusion Loop Phe 87
E2 His 82 x 2 | |
| 12 | ![Chemical Structure](image5.png) | E2 His 82, Asn 136 | π-sigma (E2 Leu 80) |
| 13 | ![Chemical Structure](image6.png) | E2 Leu 305, His 82
E1 Fusion Loop Phe 87 x 2 | |
<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>CHIKV Envelope</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.9 Autodock output for the immature glycoprotein receptor (3N40) site_4 Fred hit list, Cluster analysis was performed on docked results, with a root-mean-square tolerance of 2.0, 3.0 Å.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Binding Energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Number of clusters</th>
<th>Lowest energy cluster poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-9.47</td>
<td>114.55</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>-10.07</td>
<td>41.32</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>-11.23</td>
<td>5.91</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>-9.78</td>
<td>67.42</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>-9.79</td>
<td>66.16</td>
<td>3</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>-11.2</td>
<td>6.19</td>
<td>4</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>-10.03</td>
<td>44.5</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>-8.64</td>
<td>465.62</td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>-8.39</td>
<td>704.34</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>-9.64</td>
<td>85.29</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>-10.45</td>
<td>21.98</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>-9.49</td>
<td>110.32</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>-7.31</td>
<td>4.39×10^3</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>-10.69</td>
<td>14.49</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>-10.15</td>
<td>36.19</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>-7.78</td>
<td>2.0×10^3</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>17</td>
<td>-7.61</td>
<td>2.62×10^3</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>-11.3</td>
<td>5.18</td>
<td>6</td>
<td>41</td>
</tr>
<tr>
<td>19</td>
<td>-7.42</td>
<td>3.64×10^3</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>-9.2</td>
<td>181.14</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 6.10 Top 5 hits identified for site 4 using the immature glycoprotein receptor (3N40), showing the molecular weights, calculated logP (clogP), predicted binding energies, inhibitory constants (K_i) and the interaction residues.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Molecular weight</th>
<th>clogP</th>
<th>Binding energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>361.89</td>
<td>4.76±0.54</td>
<td>-11.30</td>
<td>5.18</td>
<td>E1 Val229, E2 His82, E2 His93, E2 Leu80, E2 Leu305</td>
</tr>
<tr>
<td>2</td>
<td>361.89</td>
<td>4.71±0.48</td>
<td>-11.23</td>
<td>5.91</td>
<td>E1 Val229, E2 His82, E2 His93, E2 Leu80, E2 Leu305</td>
</tr>
<tr>
<td>3</td>
<td>341.47</td>
<td>4.49±0.47</td>
<td>-11.20</td>
<td>6.19</td>
<td>E1 Val229, E2 His82, E2 His93, E2 Leu80, E2 Leu305</td>
</tr>
<tr>
<td>4</td>
<td>337.41</td>
<td>3.42±0.34</td>
<td>-10.69</td>
<td>14.49</td>
<td>E2 His82, E2 His93, E2 Leu80</td>
</tr>
<tr>
<td>5</td>
<td>379.39</td>
<td>1.83±0.90</td>
<td>-10.45</td>
<td>21.98</td>
<td>E1 Phe87, E2 His82, E2 His93, E2 Ser91, E2 Leu80, E2 Leu305</td>
</tr>
</tbody>
</table>

*Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada).
Table 6.11 Fred output virtual screening top 20 hits and their target residues, for the *mature glycoprotein receptor* (3N42) site_4

<table>
<thead>
<tr>
<th>Entry</th>
<th>Structure</th>
<th>H-bonding</th>
<th>Other interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>E2 His 18, His 29</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>E2 Leu 16, Leu 241, E1 Fusion Loop, Trp 89</td>
<td>π–sigma (E2 Leu 16)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>E2 Arg 13, Thr 175, Leu 16 x 2, E1 Fusion Loop, Trp 89</td>
<td>π–sigma (E2 Leu16)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>E1 Fusion Loop, Phe 87 x 2, E2 His 18, His 29</td>
<td>π–cation (E2 His 29)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>E1 Fusion Loop, Trp 89, E2 Arg 13, Leu 16, His 18</td>
<td>π–sigma (E2 Thr 175)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>E2 His 29</td>
<td>Cation–π (E2 His 29)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>E2 Arg 13, His 18, His 29, E1 Val 229</td>
<td>π–cation (E2 His 18)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>E2 His 18, Leu 241</td>
<td>π–π (E2 His 29)</td>
</tr>
<tr>
<td>No.</td>
<td>Image</td>
<td>Textual Description</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>E2 Arg 13, Gln 236, Leu 16, E2 His 29
E1 Fusion Loop Trp 89</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>E2 Arg 13 x 2, Gln 236, Thr 175</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>E2 His 18, Leu 241
π–cation (E2 His 18)
π–π (E2 His 29)
π–σ (E2 Leu 16)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>E2 Leu 16, E2 Arg 13
π–σ (E1 fusion loop Met 88)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>E2 Arg 13, Gln 236
π–σ (E1 fusion loop Met 88)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>E1 Val 229 x 2, E2 His 29, Leu 241
π–σ (E1 fusion loop Met 88)
Cation–π (E2 His 29)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>E2 His 29, Thr 228
π–cation (E2 His 29)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>E2 Arg 13, Leu 241, Leu 16
π–σ (E2 Thr 175)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>E2 Arg 13, Gln 236</td>
<td>π–sigma (E2 Leu 16)</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>E1 Fusion Loop Trp 89 E2 Leu 241, Leu 16</td>
<td>π–sigma (E2 Leu 16)</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>E2 Arg 13</td>
<td>π–sigma (E2 Thr 175) π–cation (E2 His 73) π–cation (E2 His 29)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>E2 Leu 16</td>
<td>π–cation (E2 His 18) π–cation (E2 His 29)</td>
</tr>
</tbody>
</table>
Table 6.12 Autodock output for the mature glycoprotein receptor (3N42) site_4 Fred hit list, Cluster analysis was performed on docked results, with a root-mean-square tolerance of 2.0, 3.0 Å.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Binding Energy Kcal/mol</th>
<th>Predicted K_i (nM)</th>
<th>Number of clusters</th>
<th>Lowest energy cluster poses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-9.62</td>
<td>88.92</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>-8.42</td>
<td>678.5</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>-9.58</td>
<td>95.8</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>-10.25</td>
<td>30.49</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>-8.96</td>
<td>270.32</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>-8.76</td>
<td>380.09</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>-8.78</td>
<td>368.52</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>-9.98</td>
<td>48.35</td>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>-9.63</td>
<td>87.87</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>-8.54</td>
<td>551.47</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>-10.0</td>
<td>46.61</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>-7.75</td>
<td>2.09 x 10^3</td>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>-8.78</td>
<td>366.14</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>-9.48</td>
<td>112.05</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>-10.91</td>
<td>10.03</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>-7.87</td>
<td>1.72 x 10^3</td>
<td>4</td>
<td>38</td>
</tr>
<tr>
<td>17</td>
<td>-7.32</td>
<td>4.29 x 10^3</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>-7.51</td>
<td>3.13 x 10^3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>-9.88</td>
<td>57.61</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>20</td>
<td>-8.89</td>
<td>302.63</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>
Table 6.13 Top 5 hits identified for site 4 using the *mature glycoprotein receptor* (3N42), showing the molecular weights, calculated logP (clogP), predicted binding energies, inhibitory constants (K_i) and the interaction residues.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Molecular weight</th>
<th>clogP*</th>
<th>Binding energy</th>
<th>Predicted K_i (nM)</th>
<th>Interaction residues*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>358.46</td>
<td>3.64±0.39</td>
<td>-10.91</td>
<td>10.03</td>
<td>E1 Thr228, E1 Gly229, E2 His18, E2 His29</td>
</tr>
<tr>
<td>2</td>
<td>379.39</td>
<td>1.83±0.90</td>
<td>-10.25</td>
<td>30.49</td>
<td>E1 Phe87, E2 His18, E2 His29, E2 Ser27, E2 Leu16, E2 leu241</td>
</tr>
<tr>
<td>3</td>
<td>361.89</td>
<td>4.98±0.48</td>
<td>-10.00</td>
<td>46.61</td>
<td>E1 Val229, E2 His18, E2 His29</td>
</tr>
<tr>
<td>4</td>
<td>361.89</td>
<td>4.98±0.48</td>
<td>-9.98</td>
<td>48.35</td>
<td>E1 Val229, E2 His18, E2 His29</td>
</tr>
<tr>
<td>5</td>
<td>352.36</td>
<td>2.47±1.22</td>
<td>-9.88</td>
<td>57.61</td>
<td>E1 Trp89, E2 His18, E2 His29, E2 Leu16</td>
</tr>
</tbody>
</table>

*Calculated using ACDLabs v.12.0 (ACD/Labs, Toronto, Canada). *Numbers of E2 residues in the mature form are different than the corresponding residues in the immature form.
6.3 Analysis of the docking calculations

The essential role of the CHIKV envelope protein in the fusion process, its location on the surface of the mature virus (spikes) and the availability of the crystal structures make it a suitable target for structure-based drug design. The CHIKV glycoprotein exists in two forms, the immature form and the mature form. The immature form represents the early stages of the envelope protein after the replication cycle, translated in the endoplasmic reticulum and processed in the Golgi for maturation, moved to the plasma membrane, where it is cleaved by furin-like protease activity in the host infected cell into E2 and E3. The furin cleavage occurs at the furin loop, which represents the junction between E2-E3. The difference between the two crystal structures is the removal of the furin susceptible peptide motif that resulted in slight changes in the volumes of the predicted binding sites. We searched for possible binding sites within both the immature and the mature crystal structures. Six common sites were detected in both structures (Table 1). Among the detected sites, site 2 (the light green colour in Figure 6.2) and site 4 (the blue colour in Figure 6.2) were interesting. Site 2 represents a surface cavity that lies between the E1 domain II and E2 β-ribbon that connects E2 domain A to E2 domain C; it also extends downwards as a channel between E1 domain II and E2 domain A. E2 domains A and B move relative to each other in the pre- and post-fusion structures. Therefore, small molecules that bind to this site may stabilize the E1-E2 heterodimer and prevent their dissociation during the fusion process. Another hypothesis is that it may also stabilize the orientation of E2 domain A with respect to domain B in a way that inhibits the exposure of the fusion peptide in conditions of low pH in the endosome, preventing the fusion process. Moreover, being a groove in this area looking like the enzyme mouth (Figure 6.4), bound small molecules in this site might act as indirect allosteric inhibitors for the furin susceptible peptide motif, and therefore, might impair the cleavage step by the furin proteases. The indirect allosteric inhibition mechanism might be through the inhibition of the interaction between the CHIKV envelope protein, and hence the furin susceptible motif (furin loop), and the acting protease (therefore, the Life Chemicals protein-protein inhibitors library was used here), or through trapping the glycoprotein conformation in one inactive form (relative to the furin cleavage step), which does not interact with the acting proteases. The site 2 volume in the immature form is 9.5% bigger than that in the mature form.
Therefore, both structures were included in the virtual screening study in an attempt to find positive hits for this site.

Figure 6.4 Surface representation of the location of site 2 (green), parts of E2 and E3 are shown in orange where the furin loop takes a greyish orange at the top, E1 domain II surface is shown in grey. Site 2 is located in a mouth like cavity that might interact during the furin cleavage. Generated from the PDB file: 3N40.

Site 2 makes close contact with residues from E1 and E2. The E1 residues are: Glu50-Val60, Val229-Pro237; the E2 residues are: Ala97-Arg102 (corresponds to Ala33-Arg38 in the mature form), Gln300-Arg308 (Gln236-Arg244 in the mature form). Hydrogen bonding within these residues involve E1 Lys52, Thr53, Ile55, Val231, His230, and E2 Tyr301 (Tyr237 in the mature form), Glu232 (Glu168 in the mature form), and Arg100 (Arg36 in the mature form). Val54, Lys52, Arg100, Ile167 are able to form other types of strong noncovalent molecular interactions. Generally, valine, alanine and proline amino acids within this pocket are also able to participate in the hydrophobic interactions.

Surprisingly, we could not find a common hit ligand that fits in site 2 in both the immature and the mature forms. However, inspection of the top 5 docked poses in each site reveals that they have the common sequence: heterocycle-S-CH$_2$-CO-N, the amidic nitrogen in this sequence might be NH, and also can be a part of another ring system. Figure 6.5 shows the 2D representations of the top docked poses in site 2 for both the immature and the mature forms of the envelope glycoproteins. The presence of an electron rich system results in strong noncovalent molecular interactions such as the π-
cation interaction with E2 Arg100 (Arg36 in the mature form) and with E1 Lys52. The heterocyclic ring adjacent to the sulphur in most of the top ranked poses can accept H-bonding with E1 Lys52, Ile55, and Thr53. Being able to bind to residues in both E1 and E2, the ligands identified for this site are most likely to confirm our hypothesis and stabilize the E1-E2 heterodimer and prevent the dissociation.

Figure 6.5 2D representation of the docked poses within the binding site 2. (a) Top ranked pose (number 1 in Table 6.4) within the immature glycoprotein complex site 2. (b) Top ranked pose (number 1 in Table 6.7) within the mature glycoprotein binding site 2. H-bonds are shown in green and blue dashes, while π interactions are shown as orange lines.

Site 4 (blue colour in Figure 6.2) can be described as a narrow channel extending just behind the fusion loop and surrounded by both E2 domains A and B. Comparison between the two sites in the immature and the mature forms indicates that the site volume is 31.3% bigger in the mature form (Figure 6.2), and looks like an umbrella above this site in the immature form. Small molecules binding to this narrow channel will have significant effects; this might not only freeze the relative movement of E2 domains A and B, but might also freeze the fusion loop through stabilizing interactions, and consequently, prevent the exposure of the fusion loop. The fusion loop is stabilized by the histidine residues of E2, which act as the pH sensors for the activation of the fusion protein at lower pH. This site cavity lies in contact with several histidine residues of E2. Therefore, blocking this site may also impair the pH sensor activation mechanism. All the identified hits were found to bind to both E1 and E2 residues, involving the histidine residues of E2, moreover, two hits were found to
bind to the fusion loop amino acids, confirming the ability of freezing the fusigenic activity of the envelope proteins.

Site 4 forms close contact with the E1 fusion loop residues Pro86-Gly91, E1 Gly227-His230. The fusion loop Gly91 and His230 (outside of the fusion sequence) were found to be critical for the fusion. This emphasizes the importance of our hypothesis that binding to this site will impair the fusion process. From E2, residues Arg77-His82 (Arg13-His18 in the mature form), Ser91-Val96 (Ser27-Val32 in the mature form) and residues Leu305-Ala310 (Leu241-Ala246 in the mature form) form close contacts with the binding site.

Interestingly, a common hit ligand was found in both the blue sites (ranked 5 in Table 6.10, and ranked 2 in Table 6.13). It shows the same interactions within the two binding pockets and more importantly, it forms two H-bonds (5.4, 6.3 Å) with E1 fusion loop amino acid Phe87 backbone carbonyl, three amino acids away from Gly91, the critical residue for the fusion process. It also binds to E2 His82, His93 (His18, His29 in the mature form) via H-bonding and π-cation interactions (Figure 6.6). Moreover, the predicted binding affinity and inhibitory constant (K_i, in the nano molar range), along with the acceptable clogP value of 1.8 (Tables 6.10, 6.13), make it a very attractive candidate for developing anti-chikungunya drug targeting the envelope proteins.
A further interesting observation is the presence of same chiral skeleton; the (S)-1-(2-hydroxy-3-phenoxypropyl)-4-phenylpiperazin-1-ium in a series of compounds (1, 2 and 3 in Table 6.10) and (3, 4 in Table 6.13). The compounds only differ in the substituents on the terminal phenyl rings. The chirality of this series indicates the selectivity of the compounds and reflects the importance of the stereochemistry in designing inhibitors for this site. The enantiomers of these compounds (within the library) did not pass the first FRED virtual screening. Within the immature narrow binding pocket (site 4), these series were able to form H-bonds with the E1 Val229, E2 His82, E2 Leu305. However, in case of the 31.3% bigger pocket of the mature site 4, this series was able to achieve the H-bonding with E1 Val229, E2 His29 whereas it failed to form H-bonds with the E2 Leu241, but was still able to achieve the π stacking interaction with E2 His18 and His29 (Figure 6.7). The importance of this stereo-selectivity in inhibiting the envelope protein, was also noticed recently in the inhibitors of the dengue virus envelope proteins mediated fusion, where compounds with certain stereochemistry of the OH group (the (S) enantiomers) were shown to have stereospecific effects on the activities. The importance of the (S) configuration of the compounds (Figure 6.7) can be related to the ability of the OH groups of the compounds
to achieve H-bonds with the E2 histidine residues (His82 of the immature form and His29 of the mature form), whereas these H-bonds might not be possible with the other enantiomers. Superimposition of the two compounds (number 1 in Table 6.10 and number 3 in Table 6.13) within the binding pockets (site 4 in both enzyme forms) revealed the positioning of the docked poses in a similar way with slight changes in the orientation of the hydroxyl groups and the central piperazinium moiety (Figure 6.8). It is also clear that the chlorine atoms seem not essential for interactions. This superimposition not only indicates the reliability of the interactions of this class of compounds with the residues within this site in the two forms of the enzyme, but also confirms our hypothesis that this series might be developed as selective CHIKV envelope protein inhibitors.

Figure 6.7 2D representation of the docked poses within the binding site 4. (a) Top ranked pose (number 1 in Table 6.10) within the immature glycoprotein complex site 4. (b) Top ranked pose (number 3 in Table 6.13) within the mature glycoprotein binding site 4. H-bonds are shown in green and blue dashes, while π interactions are shown as orange lines.
Figure 6.8 Superimposition of compound 1 (in Table 6.10) within the *immature glycoprotein* site 4 (compound and residues are shown in violet colour) and compound 3 (in Table 6.13) within the *mature glycoprotein* binding site 4 (compound and pocket residues are shown in green colour). Slight differences can be observed for the orientation of the hydroxyl groups and the central piperazinium ring.

Although ranked 5 in Table 6.13, this ligand shows extraordinary H-bonding (2.41 Å) with the fusion peptide amino acid Trp89 backbone (Figure 6.9), just one amino acid away from Gly91, the critical amino acid for the fusion process. The pose is also stabilized inside the pocket by the interactions with the E2 His18, His29 and Leu16 (Table 6.13). This also emphasizes the possibility of inhibiting the fusion process through designing ligands for this pocket.
Figure 6.9 Pose 5 (Table 6.13) within the mature glycoprotein binding site 4, showing the 2.4 Å H-bond interaction (yellow line) with Trp89. Gly91 is shown in orange.

6.4. Concluding remarks

Thus far, the CHIKV envelope protein has not been investigated as a possible target for the drug design against the virus. Therefore, we have investigated for the first time the possible binding target sites within the immature and the mature forms of the CHIKV envelope proteins. We managed to identify two sites that look critical to the protein functions; mainly the fusion process, based on the functionality and the location of the sites. A virtual screening search was performed on the two sites in both forms of the enzymes to increase the chances of finding reliable positive hits. Five hits for each site in both forms of the CHIKV envelope proteins were identified revealing some important features for further developing antagonists for these proteins. To test our hypothesis, the identified hits need to be evaluated against the CHIKV, which is currently under investigation. Our study represents a good template for designing selective inhibitors for the chikungunya virus envelope proteins via in silico and in vitro optimization process. This developed computer model can be further used for screening larger database libraries such as the FDA approved drugs libraries that would facilitate the identification of effective therapies against the CHIKV. Our hypothesis might also be a useful tool for inhibiting other alphaviruses such as Sindbis virus and Semliki Forest virus as well as other fusion mediated viruses.
7.1. Introduction

Trypanosoma brucei gambiense and T. b. rhodesiense are the causative agents of the Human African Trypanosomiasis (HAT), also known as sleeping sickness. Another neglected disease as the Chikungunya virus, the major topic of this thesis. *Trypanosoma brucei rhodesiense* is found in Eastern and Southern Africa, whereas *Trypanosoma brucei gambiense* occurs in Western and Central Africa and is responsible for over 90% of all reported cases of infection.\(^{238}\) This disease threatens about 60 million people living in sub-Saharan Africa and causes an estimated 25,000 deaths per year.\(^{239}\) It has a major impact on the affected nations causing suffering and poverty and if left untreated, the disease is usually fatal.\(^{240}\) The lack of full-scale screening programmes and poor diagnostic tools has led to under-reporting of cases, which is likely to be at least threefold higher than the measured value.\(^{241}\)

Both subspecies are transmitted by the bite of the infected tsetse fly. *T. b. gambiense* HAT is primarily a chronic human disease whereas *T. b. rhodesiense* HAT is primarily zoonotic with a huge animal reservoir, causing the acute form of sleeping sickness. After the bite, the parasite starts to multiply in the blood (phase I, febrile illness with flu-like symptoms, which can last for several weeks or months). During this phase, the parasite lives within the bloodstream and subsequently migrates to other areas of the human body, such as the lymph nodes, spleen, and spinal fluid, causing symptoms similar to those caused by malaria (rash, fever, shaking chills, body aches, and general fatigue). If phase I is left untreated, the parasite then crosses the blood brain barrier attacking the central nervous system (phase II) and neurological symptoms start to appear, causing progressive mental deterioration, sleep disturbances, long lasting coma (disruption of the sleep/wake cycle and psychological effects) and finally death if not treated.\(^ {242}\)

Unfortunately, vaccines are not available for this disease. The unavailability of vaccines is mainly due to the high degree of antigenic variation expressed by the glycoprotein forming their surface coat.\(^ {243}\) Therefore, the main defence against the
parasite would be chemotherapeutics. The treatment options are limited with only few drugs available. The four registered drugs to treat HAT, are suramin 152 and pentamidine 153 for early stage infections, whereas melarsoprol 154 (contains arsenic) and eflornithine 155 are for the late-stage treatment (Figure 7.1). All these drugs were developed approximately 30 years ago and suffer high toxicity, the emergence of resistance and lack of efficacy. Melarsoprol 154 is the most toxic and causes reactive encephalopathy in 5–10% of treated patients, with 1–5% mortality.

![Figure 7.1](https://example.com/sleeping-sickness-treatment-graphic.png) Older generation of African sleeping sickness treatment drugs.

Recently, there has been some progress in the treatment of HAT, with the nifurtimox 156–eflornithine 155 (Figure 7.1) combination (NECT) chemotherapy developed to reduce resistance frequency. However, these options are still under investigation due to inactivity against some trypanosome species or phases of the infection, as well as toxicity, the parenteral mode of administration, and the emergence of resistance.

Other trypanocidal agents that are active against the first stage of HAT and are orally bioavailable are pafuramidine 157 and fexinidazole 158 (Figure 7.2).
Although it was used in phase III clinical trials in 2007, pafuramidine 157 use was terminated in 2008 because of hepatic toxicity. More recently, the novel boron-containing molecule 159 (Figure 7.2) emerged as an orally active drug candidate that completed preclinical studies in 2011.254 It showed promising activity against the blood and the brain parasite. The mechanism by which compound 159 acts as a trypanocidal agent is still unknown. It entered phase I clinical trials in France in 2012 for evaluation against phase 1 and phase 2 HAT. The present treatment options indicate that new therapeutics with acceptable efficacies and safety profiles are urgently needed new therapeutic opportunities.255

![Chemical structures]
Figure 7.2 New generation of African sleeping sickness treatment promising agents.

High throughput screening (HTS) is one approach that can be used to identify new lead compounds for such neglected diseases. Therefore, in a previous work,256 the HTS library of 87,926 compounds (WEHI 2003)256 was tested against the related trypanosome subspecies, *Trypanosoma b. brucei* and against a mammalian cell line HEK293, to determine a selectivity index for each compound. Cluster analysis, considering chemical alerts such as toxicophores, the likelihood of CNS penetration, and drug-like structural features yielded a subset of twelve compounds as promising medicinal chemistry starting points for drug development. A consortium of Australian medicinal chemists was formed among different Australian universities, to optimize the obtained hits, and some of these hits were introduced to our group for optimization.
This chapter discusses the synthesis and anti-trypanocidal activity of new analogues for the bis-sulfonamide hit, WEHI-1203255 (160, Figure 7.3), which showed an IC\textsubscript{50} 1.3 µM, with a selectivity index (SI) of >32. This hit compound 160 has excellent physiochemical properties, good calculated aqueous solubility of 100 µM, an acceptable polar surface area of 84 Å2, and an acceptable CLogP value231 of 2.5. The analogues were synthesized and tested for their ability to inhibit the growth of \emph{T. brucei} limiting the changes to the two sulfonamide moieties to study the preliminary structure activity analysis. The cytotoxicity profiles of the compounds were evaluated using (HEK293) cell line and selectivity index was estimated for each analogue. The SI of the compounds was determined where possible by directly comparing the IC\textsubscript{50} values from the \emph{T. b. brucei} and (HEK 293) assay. If this was not possible, an estimated IC\textsubscript{50} value was calculated by comparing the dose at which the compound was active >50% in the \emph{T. b. brucei} assay and the highest dose at which there was no activity (<50%) in the (HEK 293) assay.

\textbf{Figure 7.3} Lead compound 160 (WEHI 1203255), IC\textsubscript{50}= 1.3 µM.

7.2. Results and discussion

7.2.1. \textit{Synthesis of the bis-sulfonamide analogues}

The retro-synthetic analysis of the lead compound 160 (Figure 7.4) revealed that it could be accessed through three facile synthetic steps: the sulfonation of the commercially available 7-nitrotetrahydroquinoline 161, followed by the reduction of the nitro group to afford the aminotetrahydroquinoline 163. A second sulfonation of the amino group would result in the final bis-sulfonamide compound 160 (Figure 7.4). This strategy enabled us to access 26 separate derivatives in a short timeframe, reliable yields and at reasonable cost.
The first step in the synthetic pathway was the sulfonation of the secondary amine of commercially available 7-nitrotetrahydroquinoline 161 using the appropriate sulfonyl chloride. The reaction (Scheme 7.1) was initially attempted using CH$_2$CH$_2$ as a solvent in the presence of TEA as a base and stirring the reaction mixture at room temperature for 24 h, however, the yields of the isolated compounds were less than 40%, with the remaining being un-reacted starting 7-nitrotetrahydroquinoline 161. Pyridine behaves as a better solvent and a stronger base for the tetrahydroquinoline sulfonation,257,258 and was therefore used throughout in this reaction. Therefore, the 7-nitrotetrahydroquinoline 161 was dissolved in anhydrous pyridine, and the mixture was then stirred at 0 °C. The appropriate sulfonyl chloride (liquid) was then added dropwise and the mixture was stirred for 24 h (Scheme 7.1). The reaction mixture was then quenched with cold water, after which the resultant oil or solid was extracted using ethyl acetate. Column chromatography afforded the desired sulfonamides 162, 164-166 in 70-88% yield. Analysis of the 1H NMR spectrum of 1-(ethylsulfonyl)-7-nitro-1,2,3,4-tetrahydroquinoline 162 showed quartet peak integrating for two protons and resonating at 3.22 ppm, and another triplet peak, integrating three protons, resonating at 2.95 ppm. These peaks were assigned to the ethyl CH$_2$ and CH$_3$ groups, respectively. Analysis of the EI-MS spectrum of 162 showed a peak at 270 m/z corresponding to the molecular ion (M+).
Scheme 7.1 Sulfonation of the tetrahydroquinoline 161 to afford intermediates 162-165.

The nitro group of the sulfonamides 162, 164-166 was then reduced, initially using the reduction methodology developed in our lab, where the sulfonamides 162, 164-166 were dissolved in a mixture of acetic acid, ethanol and water in the presence of iron powder as a catalyst, with sonication at 30 ºC; however, under these conditions, yields of the reduced products were under 50%. Therefore the Raney nickel catalysed reduction was performed by dissolving the nitro derivatives in methanol, followed by the addition of Raney Nickel (as a suspension in water) under a N₂ atmosphere. The mixture was then vigorously stirred (Scheme 7.2) and hydrazine monohydrate, as a hydrogen source, dissolved in methanol was then added dropwise resulting in the production of H₂ gas. After the H₂ gas evolution ceased, the mixture was heated at reflux, filtered hot through celite, and the methanol and excess hydrazine hydrate were removed, affording the aniline derivatives 163, 167-169 in 80-90% yields, which were easily purified by recrystallization from either methanol or toluene. Analysis of the EI-MS spectrum of 7-amino-1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinoline 163 showed a peak at 240 m/z which was assigned for the molecular ion (M+). Analysis of the ¹H NMR spectrum of 163 showed a broad singlet peak resonating at 3.62 ppm that was assigned for the NH₂.
The amino groups in the sulfonamides 163, 167-169 were then reacted with the appropriate sulfonyl chloride (the second sulfonation) in pyridine at room temperature (Scheme 7.3). After aqueous workup, extraction, washing with HCl and evaporation of the solvents, the bis-sulfonamides compounds 160 and 170-194 were isolated and were purified using column chromatography to afford the final analogues in 70-80% yield. Analysis of the EI-MS spectrum of N-(1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2-fluorobenzenesulfonamide 160 showed a peak at 398 m/z that was assigned as the molecular ion (M+). Analysis of the 13C NMR spectrum of 160 showed a doublet peak at 159.6 ppm ($J = 254.9$ Hz) that was assigned to the carbon attached to the F atom (compound 160, Figure 7.4). HPLC analysis of these bis-sulfonamides showed a purity range > 95% for all the synthesized derivatives.

Scheme 7.3 The synthesis of the bis-sulfonamides 160, 170-194 (see Table 7.1 for R^1 and R^2).
7.2.2. Trypanocidal activity and structure activity relationship (SAR)

The results for the testing against *Trypanosoma b. brucei*, the calculated ClogP and the selectivity index are listed in Table 7.1. The initial activity was screening at 1 µM and 10 µM and derivatives that showed significant activity were then tested to obtain the IC₅₀ values. The first series of derivatives examined the changes in the aromatic sulfonyl moiety where the lead compound 160 has a fluorine atom in the *ortho* position. This lead compound was also resynthesised and tested with IC₅₀/SI= 4.1/>20, confirming the initial activity results from the (WEHI 2003) compounds library. Changing the *ortho*-fluoro substituent to the *para* (compound 170) and *meta* (compound 171) positions, did not improve the activity where the IC₅₀/SI profile was 7.8 µM/>10 for both derivatives, indicating decreased trypanocidal activity and increased toxicity. Increasing the number of the fluorine atoms had a negative effect on the activity, where the addition of a second fluoro substituent into the adjacent *ortho* position (compound 172) resulted in a decreased activity (82% activity at 10 µM) as did the presence of five fluoro substituents (compound 173, 40% activity at 1 µM). This implied the importance of the mono-fluoro atom only in the *ortho* position, with no advantages with the presence of the extra fluorine atoms.

The fluorine atom is the smallest halogen size, therefore, it was interesting to test the presence of other halogen atoms. The addition of a bromo substituent at the *para* position (compound 174) resulted in increased toxicity and did not improve the activity (IC₅₀/SI= 9.9 µM/>8).

Replacing the benzene moiety with its bioisostere thiophene²⁵⁹,²⁶⁰ (compound 175) resulted in a similar activity (IC₅₀/SI= 4.0 µM/>20) compared to the lead 160. The same activity profile of 160 and the simpler 175 might be attributed to the lipophilic nature thiophene ring in 175 that might have the same effect as the fluorine atom in 160. The addition of another halogen to this thiophene (Br, compound 176) showed improved trypanocidal activity (IC₅₀/SI= 2.6 µM/>7), however, the selectivity index value was reduced compared to the unsubstituted thiophene analogue 175. Interestingly, replacement of the bulky bromo substituent in 176 by a chloro substituent (compound 177) was not tolerated, as the activity decreased (IC₅₀/SI= 13.1 µM/>6). The activity of 177 was 3 fold less than that of 175 and 5 fold less than that of 176.
Table 7.1 R^1, R^2, molecular weight, ClogP, IC$_{50}$ and Selectivity index for compounds 160, 170-19.

![Chemical structure](attachment:image.png)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R^1</th>
<th>R^2</th>
<th>Mwt</th>
<th>ClogP*</th>
<th>IC$_{50}$ (µM)</th>
<th>S.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>F</td>
<td>398.47</td>
<td>2.48±0.82</td>
<td>4.1±0.643</td>
<td>20.2</td>
</tr>
<tr>
<td>170</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>F</td>
<td>398.47</td>
<td>2.98±0.82</td>
<td>7.8±2.695</td>
<td>10.7</td>
</tr>
<tr>
<td>171</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>F</td>
<td>398.47</td>
<td>3.09±0.82</td>
<td>7.8±2.155</td>
<td>10.6</td>
</tr>
<tr>
<td>172</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>F</td>
<td>416.46</td>
<td>2.33±0.87</td>
<td>82% @ 10 µM</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>F</td>
<td>470.43</td>
<td>3.37±1.07</td>
<td>40% @ 1 µM</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>Br</td>
<td>477.36</td>
<td>3.50±0.88</td>
<td>9.9±3.319</td>
<td>8.4</td>
</tr>
<tr>
<td>175</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>S</td>
<td>386.50</td>
<td>2.27±0.79</td>
<td>4.0±0.625</td>
<td>20.5</td>
</tr>
<tr>
<td>176</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>Br</td>
<td>465.40</td>
<td>3.49±0.87</td>
<td>2.6±2.573</td>
<td>>7</td>
</tr>
<tr>
<td>177</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>S</td>
<td>420.95</td>
<td>3.28±0.88</td>
<td>13.1±4.344</td>
<td>6.3</td>
</tr>
<tr>
<td>178</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>Cl</td>
<td>394.50</td>
<td>3.13±0.77</td>
<td>3.4±0.910</td>
<td>24.4</td>
</tr>
<tr>
<td>179</td>
<td>$-\text{CH}_2\text{CH}_3$</td>
<td>IN</td>
<td>332.43</td>
<td>1.57±0.76</td>
<td>IN</td>
<td>-</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>-CH₂CH₃</td>
<td>[compound image]</td>
<td>386.41</td>
<td>2.82±0.96</td>
<td>IN</td>
<td>-</td>
</tr>
<tr>
<td>181</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>408.53</td>
<td>3.66±0.77</td>
<td>4.7</td>
<td>>18</td>
</tr>
<tr>
<td>182</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>436.58</td>
<td>4.54±0.77</td>
<td>3.9</td>
<td>>22</td>
</tr>
<tr>
<td>183</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>470.60</td>
<td>4.85±0.79</td>
<td>13.0</td>
<td>>6.6</td>
</tr>
<tr>
<td>184</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>412.49</td>
<td>3.01±0.82</td>
<td>10.0</td>
<td>>8</td>
</tr>
<tr>
<td>185</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>400.53</td>
<td>2.80±0.79</td>
<td>IN</td>
<td>-</td>
</tr>
<tr>
<td>186</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>408.53</td>
<td>3.66±0.77</td>
<td>IN</td>
<td>-</td>
</tr>
<tr>
<td>187</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>408.53</td>
<td>3.66±0.77</td>
<td>IN</td>
<td>-</td>
</tr>
<tr>
<td>188</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>422.56</td>
<td>4.12±0.77</td>
<td>16.0</td>
<td>>5</td>
</tr>
<tr>
<td>189</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>422.56</td>
<td>4.12±0.77</td>
<td>IN</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td>-CH₂CH₂CH₃</td>
<td>[compound image]</td>
<td>464.64</td>
<td>5.50±0.78</td>
<td>11.4</td>
<td>>7</td>
</tr>
<tr>
<td>191</td>
<td>[compound image]</td>
<td>[compound image]</td>
<td>440.57</td>
<td>2.26±0.83</td>
<td>IN</td>
<td>-</td>
</tr>
<tr>
<td>192</td>
<td>[compound image]</td>
<td>[compound image]</td>
<td>448.57</td>
<td>3.12±0.81</td>
<td>3.1±0.893</td>
<td>2.45</td>
</tr>
</tbody>
</table>
Replacing the aromatic moiety with aliphatic chains as in compounds \(\text{179} \) and \(\text{180} \) completely abolished the activity which indicates the importance of the aromatic ring in that position for the trypanocidal activity. The \(\pi \) system of the aromatic ring may be involved in the interaction site, whereas with aliphatic side chains, such interactions don’t exist. Interestingly, the introduction of a small hydrophobe such as a methyl group on the \(\text{para} \) position on the phenyl ring of the aromatic sulfonyl moiety (compound \(\text{178} \)) improved the activity slightly (IC\(_{50}/\text{SI}=3.4 \mu\text{M}/24 \)), mostly due to the increased difference between the effective and toxic concentrations compared to \(\text{160} \). As the mode of action and the target of the compounds are not yet known, the role of this hydrophobe methyl group cannot be confirmed, however, it might be involved in a hydrophobic interaction within the target site.

Addition of another hydrophobe (a methyl group) on the ethyl side chain of the other sulfonyl group (second changeable moiety) as in compound \(\text{181} \), was also tolerated (IC\(_{50}/\text{SI}=4.7 \mu\text{M}/18 \)) where no significant difference in the activity compared to \(\text{178} \) was observed with a slight narrowing of the selectivity index compared to \(\text{178} \). In the case of compound \(\text{185} \), this extra hydrophobe on the ethyl side chain was not tolerated and activity dropped. When the \(\text{p-tolyl} \) group of \(\text{181} \) was replaced by a thiophene ring (compound \(\text{185} \)), the activity was completely abolished due to this extra hydrophobic methyl (the propyl aliphatic group), compared to \(\text{175} \).

The \(\text{para} \) position of the methyl hydrophobe in \(\text{181} \) was important for activity as can be indicated by the inactivity of compounds \(\text{186} \) (\(\text{ortho} \) position) and \(\text{187} \) (\(\text{meta} \) position). The weak activity of \(\text{188} \) and \(\text{190} \) and inactivity of \(\text{189} \) (no \(\text{p-methyl} \) group) also gives indications about the importance of the \(\text{para} \) position, with no advantages with the presence of the extra hydrophobic methyl groups. Figure 7.5 shows the SAR for this series of bis-sulfonamides.
Addition of the hydrophobic methyl groups on either the ethyl side chain or on the aromatic sulfonyl moieties seemed to act as a tuner for the activity. Compound 185 was completely inactive whereas compound 184 showed similar activity (IC$_{50}$/SI = 3.1 µM/>8) compared to the lead 160, with a narrowing in the selectivity index observed. Increasing the bulkiness of compound 181 to 182 (replacing the small methyl hydrophobe with the more bulky isopropyl group) resulted in an improved activity profile and decreased the toxicity (IC$_{50}$/SI = 3.9 µM/>22). Increasing the bulkiness by replacing the isopropyl in 182 by a phenyl ring (compound 183) decreased the activity (IC$_{50}$/SI = 13 µM/>7) by 3 fold compared to 182, but did not completely abolish the activity. This difference can be attributed to the difference of the electronic effect; the methyl and isopropyl group have a positive inductive effect on the benzene ring while the phenyl ring at the para position has a negative inductive effect. This also confirms that the π system of the aromatic ring (directly attached to the sulphonamide group) might be involved in the activity.

When the aliphatic sulfonyl side chain (sulfonyl group attached to the tetrahydroquinoline N) was replaced with aromatic ring, the activity was either completely abolished as in case of compound 191 or toxicity was increased as in compounds 192-194. Interestingly, compound 192 carrying the para methyl group was the best in this series (IC$_{50}$/SI = 3.1 µM/>2), confirming the importance of the para
position on this aromatic moiety. The aliphatic sulfonyl groups directly attached to the tetrahydroquinoline ring is important for activity rather than an aromatic replacement.

7.3. Concluding remarks

In this chapter, we synthesized 26 bis-sulfonamide analogues of the lead compound 160, which had good physiochemical properties and was discovered during the high throughput screening (HTS) of the WEHI 2003 library of 87,926 compounds. The analogues were accessed through three facile synthetic steps. Some of the analogues displayed good activity profile ranging from 2 to 4 µM. The preliminary structure activity relationship revealed that the presence of an aliphatic side chain on the tetrahydroquinoline 160 is important for activity and should not be replaced by aromatic groups. The second sulfonation of the amino group of the sulfonated tetrahydroquinoline 166-169 must be with aromatic sulfonyl groups, as when aliphatic groups were used, activity was completely abolished. The bis-sulfonamide 176 with the bromo-thiophene group, displayed IC$_{50}$ value of 2.6 µM with a selectivity index >7. The $para$ position of the aromatic ring on the bis-sulfonamides 178, was found to be critical for tuning the activity, where the activity changed with changing the size of the hydrophobe substituents in that position. Small hydrophobe groups were favoured over the bulky aromatic groups in that $para$ position. Therefore, this position should be investigated more with a variety of possible substitutions. The target site and mode of action of the bis-sulfonamides are still yet unknown, and need further investigations.
8.1. Chapter 2: The Search for Anti-CHIKV Lead Compounds

8.1.1. Conclusions

The modifications in the AAPM series (Figure 8.1) were advantageous in decreasing the steric hindrance around the exchangeable chloro substituent, and also in simplification of the synthetic steps required throughout the synthesis. The alkene 63, with the less hindered cyclopropyl group, represents the most promising alkene to perform more amination reactions under moderate conditions, as can be indicated by the formation of the morpholine analogue 77.

![Figure 8.1 Modifications of the AAPM series by simplification and decreasing the steric hindrance.](image)

Different conditions were investigated to synthesize the AAPM with the amines 33 or 47, however, all attempts failed due to the polymerization of 33 and the decomposition of 47 under the reaction conditions. The degradation of 47 was observed during the attempted synthesis of 65 (Figure 8.2) where the amine 66 peak was
observed in the mass analysis. Furthermore, during the synthesis of 72, the amine 47 is believed to decompose providing the hydrogen source for the reduction reaction to occur giving the NH₂ group in 72 (Figure 8.2).

![Figure 8.2 The un-synthesized AAPM 65, the decomposition product 66 and compound 72 that was produced in a reaction with the amine 47.](image)

8.1.2. Future directions

Some alternative access routes to the AAPM derivatives are to be considered. The synthesized new furopyrimidine 42 can be considered for the amination reaction with the original pyrimidine core, as it is less sterically hindered. The furan ring can then be open using PCls\(^{160}\) to give the final aminated products (Scheme 8.1).
Using the pyridine core, an alternative synthesis method to access the AAPM derivatives can be investigated (Scheme 8.2). The suggested synthesis starts with the reaction of the aminopyridine 196 with the amino-acid chloride 197 to afford the amide 198. Subsequent addition reaction with the ketone 38 using n-BuLi and N,N,N',N'-
tetramethylethylenediamine (TMEDA)261 at -70 °C would afford the alcohol 199. Finally, a dehydration reaction would afford the alkene 200 as the AAPM derivative.

![Scheme 8.2](image)

Scheme 8.2 An alternative synthetic route for the AAPM derivatives starting from aminopyridine 196.

8.2. Chapter 3: The CHIKV nsP3

8.2.1. Conclusions

The CHIKV nsP3 protein represents an attractive target for developing selective inhibitors for the virus. This was illustrated by the virtual screening of the NCI set library of 1990 compounds, using the available crystal structure of the macro domain of the nsP3. The hits that achieved higher scores than the co-crystallized ligand (ADP-ribose) were selected for further refining using a second round of docking and scoring. This resulted in 7 hits that scored higher than the co-crystallized ligand. Pose\textsubscript{3} (Figure 8.3) was *in silico* optimized giving pose\textsubscript{3_2}, which achieved higher scoring and improved interactions inside the nsP3 macro domain binding pocket. The optimized pose\textsubscript{3_2} also has improved drug-like qualities and fits more to Lipinski’s guidelines.231 The optimized hit was accessed through three facile chemical synthesis steps. The compounds are still under antiviral evaluations and the accuracy of the model predictions would depend on the biological activity of the compounds.
Figure 8.3 The virtual screening hit pose_3 that was \textit{in silico} optimized and synthesized.

8.2.2. Future directions

The parallel virtual screening, \textit{in silico} optimization and \textit{in vitro} evaluation of the obtained hits, would be an applicable structure-based approach for the drug design of selective inhibitors for the CHIKV. Molecular dynamic simulation would also help in optimizing the developed computer model, assisting in obtaining more reliable hits.

Based on the \textit{in vitro} activity of the compounds, the retro-synthesis analyses can be investigated for the active hits, allowing the generation of more analogues which would represent good templates for the discovery of a lead compound, and developing the medicinal chemistry against the CHIKV.

8.3. Chapter 4: Mycophenolic acid analogues

8.3.1. Conclusions

A series of benzolactone-acid conjugates 114-117, benzolactone-tetrazole conjugates 126, 127, 130, 131 and isatin-acid conjugates 140-143 was synthesized as
mycophenolic acid analogues as inhibitors for the CHIKV (Figure 8.4). Two side products were obtained; the β-lactam ring structure and the open β-lactam product. All the synthesized analogues have drug-like qualities. The access to the isatin-tetrazole conjugates was attempted using the cycloaddition reaction with NaN₃, however, no compounds were obtained due to the reactivity of the isatin core which is believed to interfere with the tetrazole ring formation reaction.

![Figure 8.4 Mycophenolic acid derivatives, the coloured features represent the main moieties used in the analogues design.](image)

8.3.2. Future directions

The access to the isatin-tetrazole conjugates could be achieved through the Suzuki coupling with potassium $5'-(3-(4,4,5,5$-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)methyl)tetrazol-1-ide 129. The synthesized conjugates are currently under anti-chikungunya evaluation, and based on the derived structure activity relationship, further medicinal chemistry derivatisation could be achieved such as formation of esters or amides as prodrugs.
The analogues were designed as mycophenolic acid analogues and are assumed to inhibit the IMPDH enzyme. Therefore, it would be interesting to evaluate these analogues as inhibitors for this enzyme in specific enzyme inhibition tests. Furthermore, a number of crystal structures of the IMPDH enzymes with mycophenolic acid are available within the protein data bank. Therefore, the ability of the analogues to bind to the active site of the enzyme could be \textit{in silico} evaluated, giving more impact to the rational drug design of this series of compounds as specific enzyme inhibitors.

8.4. Chapter 5: The CHIKV nsP2

8.4.1. Conclusions

The CHIKV protease (nsP2) is critical for the viral replication cycle and therefore, represents an attractive target for drug design. The druggable binding pockets within the nsP2 crystal structure were investigated where two hydrophobic pockets were observed, one within the protease C domain and one within the N domain (Figure 8.5). A computer virtual screening model was developed combining two virtual screening algorithms, FRED and Autodock. The model was used to screen a library of protease inhibitors within the two domains and resulted in favoured hit list for each pocket.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{druggable_pockets.png}
\caption{Figure 8.5 The druggable pockets within the CHIKV nsP2.}
\end{figure}
Within domain C druggable site, Lys1239 (from domain C) and Lys1045 (from domain N) were found to interact with most of the identified ligands, stabilizing them within the U-shaped pocket, blocking the protease function. Within domain N pocket, Trp1084 and Lys1091 were found to be interacting with all of the docked ligands, with the possibility for interaction with the C domain Gln1241. Ligands for this pocket would block the enzyme NTPase/RTPase functions, and might act as allosteric inhibitors for the domain C protease site.

8.4.2. Future directions

The anti-CHIKV evaluation of the identified hits is still ongoing. The results of these assays would be used evaluate the prediction accuracy of the model. The ongoing testing is based on whole cell assays and the ability of the compounds to inhibit the viral induced cytopathic effect and viral replication. The CHIKV nsP2 enzyme is not available as a testing kit for evaluating the direct binding with the model hits, and this would need further investigations and collaborations.

Based on the derived model prediction accuracy, it could be used for screening more compound libraries, with the in vitro evaluation of the identified hits. Molecular dynamic simulation studies on the developed model should reveal more insights for the precise molecular interactions with the bound ligands, allowing improved structure-based drug design approach.

8.5. Chapter 6: The CHIKV envelope proteins

8.5.1. Conclusions

The binding sites within the CHIKV envelope proteins (mature and immature forms) were identified with two binding sites found common in the two enzyme forms. A virtual screening computer model combining two successive docking algorithms was developed for these proteins. This model was used for the screening of two chemical libraries within the identified sites in the two enzyme forms. The top 5 hits in each pocket were selected as promising in silico inhibitors. The green pocket (Figure 8.6)
represents a surface cavity that lies between the E1 domain II and E2 β–ribbon that connects E2 domain A to E2 domain C, it also extends downwards as a channel between E1 domain II and E2 domain A. The blue pocket (Figure 8.6) is a narrow channel extending just behind the fusion loop and surrounded by both E2 domains A and B. These pockets make contact with residues from E1 and E2 and therefore, ligands for these pockets can affect the relative movement of E1 and E2 domains in the pre- and post-fusion states. Furthermore, the blue pocket makes contact with the fusion loop residues, and therefore, designing antagonists for this pocket would be an applicable strategy to block the fusion function.262

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure86.png}
\caption{Possible druggable cavities within the CHIKV envelope proteins (parts of the whole protein), the blue and the green pockets. E1 is coloured in violet, E2 is coloured in orange and E3 is shown in red.}
\end{figure}

\section*{8.5.2. Future directions}

The anti-CHIKV activity of the compounds is to be investigated to evaluate the prediction accuracy of the model. To get more insights into the accuracy of the model, molecular dynamic simulations are to be developed for these models. This developed structure-based computer model can be further used for screening larger database libraries such as the FDA approved drugs libraries that would facilitate the identification of lead compounds against the CHIKV.
Based on the structural similarities of the CHIKV envelope proteins with the other members of alphaviruses, this developed computer model as well as the discovered hits could be also evaluated against other viruses.

8.6. Chapter 7: New Leads for African Trypanosomiasis

8.6.1. Conclusions

A bis-sulfonamide lead compound was discovered during the high throughput screening (HTS) of the WEHI 2003 library of 87,926 compounds that were tested against *Trypanosoma brucei*. A series of 26 bis-sulfonamides were synthesized through three facile synthetic steps (Scheme 8.3) and were evaluated against *Trypanosoma brucei* and the cytotoxicity profiles of the compounds were evaluated using the HEK293 cell line. The lead compound was resynthesized and re-evaluated confirming the activity.

![Scheme 8.3](image)

Scheme 8.3 The three facile synthesis steps designed for the synthesis of the bis-sulfonamides 160, 170-194.
A structure activity relationship was developed for this series based on the activities, with some of the analogues displaying good activity profile ranging from 2 to 4 µM with acceptable selectivity indices from the medicinal chemistry prospective.

8.6.2. Future directions

To further assess the structure activity relationship, another possible derivatisation is the use of amides instead of the sulfonyl linkages (Figure 8.7) giving a series of compounds with the general formula A. Another possibility is the change of the core ring, to investigate the importance of the tetrahydroquinoline ring, for example to the indoline ring, giving a series of compounds with the general formulas B and C, taking into account the preliminary structure activity relationship results. These changes will give a full picture for the requirements of activity for this class of the bis-sulfonamide based skeleton. More biological evaluation are required to assess the mode of action and the target sites for these molecules.

![Figure 8.7 Possible derivatisation of the bis-sulfonamide class of compounds.](image_url)
CHAPTER 9: Experimental

9.1. Chemistry

9.1.1. General experimental

Unless otherwise stated, chemicals were purchased from Sigma Aldrich (Australia). 1,2,3,4-Tetrahydro-7-nitroquinoline was purchased from Shanghai Xunxin Chemical Co., Ltd. (China). (3-(Cyanomethoxy)phenyl)boronic acid was purchased from Combi-Blocks, Inc., USA. All 1H, 13C and 19F NMR spectra were recorded at 500, 125 and 282 MHz, respectively on a Varian Inova 500 MHz spectrometer. Chemical shifts (δ) are reported in parts per million relative to TMS using CDCl$_3$ as a solvent unless otherwise noted. The solvents used for 13C NMR were the same used for the 1H NMR unless otherwise noted. Coupling constants (J) are reported in Hertz (Hz). Multiplicities are reported as singlet (s), broad (br), doublet (d), doublet of doublets (dd), doublet of doublets of doublets (ddd), doublet of triplet (dt), multiplet (m), pentet (p), sextet (sex) or septet (sp). Electron impact (EI) and electrospray (ES) mass spectra (MS) were recorded on a Shimadzu QP-5000 spectrometer and high resolution (HR) on a VG AutoSpec spectrometer. Electrospray (ESI) mass spectra were recorded on a Micromass Platform LCZ spectrometer and high resolution on a Micromass QTOF2 spectrometer. Ion mass to charge (m/z) values are stated with their relative abundances as a percentage in parentheses. Peaks assigned to the molecular ion are denoted by M+ or M− (when using the ESI-). Thin Layer Chromatography (TLC) was performed using Merck Silica Gel F254 aluminium sheets. Column chromatography purifications were performed using flash Silica gel (0.04-0.06 mm, 230 – 400 mesh). Infrared (IR) spectra were recorded on a (Shimadzu FT-IR spectrometer) fitted with a Smart Omni-Sampler germanium crystal accessory. All IR spectra were recorded as neat samples. In the IR spectra, strong, medium and weak peaks are assigned as s, m and w, respectively. Melting points were determined using a Gallenkamp (Griffin) melting point apparatus. Temperatures are expressed in degrees Celsius (ºC) and are uncorrected. Microwave reactions were performed using a Discover CEM Focused Microwave Synthesis System in 10 mL closed vessels. HPLC purity check was performed using Waters 1525 HPLC pump, Waters$^{\text{TM}}$ 486 absorbance detector (using the wavelength, 254 nm) and Nova-
Pak® Silica 3.9x150 mm C\textsubscript{18} column. HPLC solvents used in this work: solvent A was hexane, solvent B was isopropanol containing 0.1% TFA, solvent C was isopropanol and solvent D is ethyl acetate. Retention times in minutes for the HPLC results are expressed as \(R_t \). Reactions performed at -78 °C and -116 °C were cooled using \(\text{N}_2 \) \text/o}EtOAc and \(\text{N}_2 \) \text/o}EtOH slush baths, respectively. The concentration of \(n \)-BuLi was determined by titration using phenanthroline and 2-butanol in toluene (ca. 1 M). Known compounds were synthesized either according to the reported procedure (references are provided) or using new methods which were described in detail, and the spectral data collected for these reported intermediates matched those reported in the literature. The assignments of the protons and carbons in the spectra were based on the given nomenclatures, unless otherwise stated.

9.1.2. Experimental for chapter 2

2-Methyl-1-(3-nitrophenyl)propan-1-one \(\text{38} \)

\[
\text{O}_2\text{N} \begin{array}{c} \text{O} \\
\end{array} \text{C} \]

To conc. \(\text{H}_2\text{SO}_4 \) (25 mL) cooled to -20 °C, was added dropwise pre-cooled 2-methyl-1-phenylpropan-1-one \(\text{37} \) (20 g, 0.135 mol), and the mixture was stirred for 10 min at -20 °C. A pre-cooled nitrating mixture of conc. \(\text{H}_2\text{SO}_4 \) (15 mL) and conc. \(\text{HNO}_3 \) (8.3 g) was added dropwise at a rate that the temperature remained at -10 to -5 °C. After complete addition, the reaction mixture was stirred for 1 h at 0 °C. It was then poured onto crushed ice, and extracted with \(\text{CH}_2\text{Cl}_2 \) (2 x 50 mL). The combined organic layers were washed with water (50 mL) and brine (50 mL), dried (\(\text{MgSO}_4 \)) and concentrated under reduced pressure. The oily residue was then subjected to flash column chromatography and elution with 40% \(\text{CH}_2\text{Cl}_2 \) in petroleum spirit gave the \textit{meta}-nitro compound \(\text{38} \) (13.5 g, 52%) as a yellow oil; IR (cm-1): \(\nu \) 1667 (s, C=O), 1528 (s, NO\textsubscript{2}), 1355 (s, NO\textsubscript{2}).

1H NMR (\(\text{CDCl}_3 \)): \(\delta \) 8.75 (t, \(J = 1.8 \) Hz, 1H, phenyl\textsubscript{2} H), 8.40 (ddd, \(J = 8.3, 2.3, 1.1 \) Hz, 1H, phenyl\textsubscript{4}), 8.27 (d, \(J = 7.9 \) Hz, 1H, phenyl\textsubscript{6} H), 7.68 (t, \(J = 8.0 \) Hz, 1H, phenyl\textsubscript{5} H), 3.57 (sp, \(J = 6.8 \) Hz, 1H, propanone\textsubscript{2} H), 1.17 (d, \(J = 7.2 \) Hz, 6H, \(\text{CH}_3 \textsubscript{2} \)). 13C NMR, \(\delta \): 202.4 (CO), 149.3 (phenyl C3), 137.7 (phenyl C1), 134.2 (phenyl C6), 130.2 (phenyl C5), 127.4 (phenyl C4), 123.4 (phenyl C2), 36.0 (C2), 19.1 (2 \(\text{CH}_3 \)).
EI-MS m/z 193 (M+, 26), 176 (9), 150 (100%), 134 (19), 121 (22), 104 (70). HRMS (ESI) calcd for C_{10}H_{12}NO_{3} (MH+), 194.0817; found, 194.0823.

1-(4,6-Dichloropyrimidin-5-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol 40

![Chemical Structure](image)

Under a N₂ atmosphere, a fresh solution of LDA was prepared by dropwise addition of n-BuLi (1.56 mL of 2 M solution, 3.11 mmol) to a solution of diisopropyl amine (314.7 mg, 3.11 mmol) in a pre-cooled (-78 °C) dry THF (20 mL), and the mixture was stirred for 30 min at -78 °C. To this solution, was added dropwise, a solution of 4,6-dichloropyrimidine 28 (385.9 mg, 2.59 mmol) in dry THF (10 mL), also pre-cooled to -78 °C, and the mixture was allowed to stir for 45 min at -78 °C. The solution was then cooled to -116 °C and the mixture was allowed to stir for 10 min, after which, a solution of 2-methyl-1-(3-nitrophenyl)propan-1-one 38 (500 mg, 2.59 mmol) in dry THF (10 mL), pre-cooled to -116 °C, was added dropwise over 10 min period. After complete addition, the resulting solution was allowed to stir for a further 45 min at -116 to -100 °C. The reaction was then quenched with a saturated solution of NH₄Cl (25 mL). To the resulting biphasic mixture was added H₂O (20 mL) before the organic layer was partitioned from the reaction mixture. The aqueous layer was further extracted with CH₂Cl₂ (3 x 50 mL) and the combined organic layers were washed with 1 M HCl (25 mL), dried (MgSO₄) and the solvent concentrated under reduced pressure. The resulting crude oil was subjected to flash column chromatography and elution with 15% ethyl acetate in petroleum spirit gave 1-(4,6-dichloropyrimidin-5-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol 40 (442.8 mg, 50%) as pale yellow crystals, mp: 141-142 °C; IR (cm⁻¹): ν 3354 (w, OH), 1556 (w, NO₂), 1375 (s, NO₂). ¹H NMR (CDCl₃): δ 8.63 (s, 1H, pyrimidine_2 H), 8.41 (t, J = 1.0 Hz, 1H, phenyl_2), 8.16 (ddd, J = 8.4, 2.1, 1.0 Hz, 1H, phenyl_4 H), 7.80 (ddd, J = 7.8, 2.0, 0.8 Hz, 1H, phenyl_6 H), 7.52 (t, J = 8.1 Hz, 1H, phenyl_5 H), 3.64-3.58 (m, 1H, propanol_2 H), 3.38 (br, OH), 1.11 (d, J = 6.6 Hz, 3H, CH₃), 0.93 (d, J = 6.6 Hz, 3H, CH₃). ¹³C NMR, δ: 161.4 (pyrimidine C4, C6), 155.1 (pyrimidine C2), 148.0 (phenyl C3), 145.4 (phenyl C1), 136.3 (pyrimidine C1), 132.5
Experimental

(phenyl C6), 129.1 (phenyl C5), 122.8 (phenyl C4), 121.8 (phenyl C2), 81.7 (propanol C1), 34.9 (propanol C2), 18.1 (CH₃), 17.1 (CH₃). EI-MS m/z 342 (M⁺, 35Cl₂, 5), 302 (20), 300 (70), 298 (100%), 284 (15), 282 (20). HRMS (ESI) calcd for C₁₄H₁₄Cl₂N₃O₃ (MH⁺), 342.0407; found, 342.0397.

4,6-Dichloro-5-(2-methyl-1-(3-nitrophenyl)prop-1-en-1-yl)pyrimidine 41

\[
\begin{align*}
\text{O}_2\text{N} &\quad \text{Cl} \\
&\quad \text{Cl} \\
&\quad \text{Cl} \\
&\quad \text{N} \\
\end{align*}
\]

A solution of 1-(4,6-dichloropyrimidin-5-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol 40 (315 mg, 0.963 mmol) in SOCl₂ (10 mL) was heated at reflux for 48 h under a N₂ atmosphere. The mixture was then cooled to room temperature, quenched by the dropwise addition of cold H₂O (20 mL), and neutralised with 2 M KOH, and was extracted with CH₂Cl₂ (3 x 50 mL). The combined organic layers were dried (MgSO₄), the solvent concentrated under vacuum and the resulting residue was subjected to flash column chromatography (50% CH₂Cl₂ in petroleum spirit) to yield the alkene 41 (220 mg, 70%) as a pale yellow crystalline solid, mp: 93-94 °C; IR (cm⁻¹): ν 2986 (w, C-H aliphatic), 1506 (s, NO₂), 1349 (s, NO₂). ¹H NMR (CDCl₃): δ 8.74 (s, 1H, pyrimidine_2 H), 8.17 (s, 1H, phenyl_2 H), 8.14 (d, J = 8.0 Hz, 1H, phenyl_4 H), 7.60 (d, J = 7.5 Hz, 1H, phenyl_4 H), 7.50 (t, J = 7.5, 1H, phenyl_5 H), 1.94 (s, 3H, CH₃), 1.73 (s, 3H, CH₃). ¹³C NMR, δ: 162.2 (pyrimidine C4, C6), 157.1 (pyrimidine C2), 148.3 (phenyl C3), 141.2 (phenyl C1), 140.1 (propene C1), 135.8 (phenyl C6), 134.2 (pyrimidine C5), 129.4 (phenyl C5), 126.0 (propene C2), 124.8 (phenyl C4), 122.6 (phenyl C2), 22.5 (CH₃), 21.8 (CH₃). EI-MS m/z 327 (M⁺ ³⁷Cl₂, 10), 325 (M⁺ ³⁵Cl²Cl, 65), 323 (M⁺ ³⁵Cl₂, 100%) 278 (6), 276 (10), 205 (15). HRMS (ESI) calcd for C₁₄H₁₂³⁵Cl₂N₃O₂ (MH⁺), 324.0302; found, 324.0298.
4-Chloro-6,6-dimethyl-5-(3-nitrophenyl)-5,6-dihydrofuro[2,3-d]pyrimidine 42

A solution of 1-(4,6-dichloropyrimidin-5-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol 40 (50 mg, 0.147 mmol) in conc. H$_2$SO$_4$ (5 mL) was stirred for 4 h at room temperature. The mixture was then poured onto crushed ice, and a saturated solution of Na$_2$CO$_3$ was added dropwise until no more CO$_2$ gas evolved. The mixture was then extracted with CH$_2$Cl$_2$ (2 x 20 mL) and the combined organic layers were washed sequentially with water (20 mL) and brine (20 mL) and then dried (MgSO$_4$). The solvent was concentrated under reduced pressure and the residue was subjected to flash column chromatography and elution with 40% ethyl acetate in petroleum spirit gave 42 (38 mg, 85%) as a pale yellow oil, IR (cm$^{-1}$): ν 2922 (w, C-H aliphatic), 1522 (s, NO$_2$), 1350 (s, NO$_2$), 1238 (m, C-O). 1H NMR (CDCl$_3$), δ: 8.16 (s, 1H, pyrimidine-$2\ H$), 8.22 (d, $J = 7.5\ Hz$, 1H, phenyl-$4\ H$), 7.90 (s, 1H, phenyl-$2\ H$), 7.59 (t, $J = 7.9\ Hz$, 1H, phenyl-$5\ H$), 7.29 (d, $J = 7.6\ Hz$, 1H, phenyl-$6\ H$), 4.55 (s, 1H, $C_5\ H$), 1.73 (s, 3H, CH$_3$), 1.15 (s, 3H, CH$_3$). 13C NMR, δ: 174.1 (pyrimidine C2), 159.8 (O-C-N), 157.8 (phenyl C3), 148.3 (pyrimidine C4), 138.9 (phenyl C1), 134.1 (phenyl C6), 130.2 (phenyl C5), 123.5 (phenyl C4), 123.4 (phenyl C2), 119.1 (CCl-C), 90.5 (CH(CH$_3$)$_2$), 55.2 (C5), 29.9 (CH$_3$), 24.9 (CH$_3$) ppm. EI-MS m/z 305 (M+ 35Cl, 50), 288 (100%), 270 (30), 248 (20), 230 (17). HRMS (ESI) calcd for C$_{14}$H$_{13}^{35}$ClN$_3$O$_3$ (MH$^+$), 306.0645; found, 306.0648.

4-Amino-6-chloro-5-(2-methyl-1-(3-nitrophenyl)prop-1-en-1-yl)pyrimidine 43

A suspension of the alkene 41 (100 mg, 0.306 mmol) in NH$_4$OH (25%, 2 mL) was added to a 10 mL microwave reaction vessel, sealed and heated to 120 °C in a microwave reactor with a maximum pressure of 15 Bar using a power of 50 W,
allowing 10 min (ramping) and then held for 50 min. At this time, the pressure regularly dropped below the 15 Bar maximum and the temperature was increased to 130 °C for a further 30 min. After cooling, the resulting suspension was extracted with ethyl acetate (2 x 25 mL), the combined organic layers were washed with brine (25 mL), dried (MgSO₄) and concentrated under vacuum before being subjected to flash column chromatography (80% ethyl acetate in petroleum spirit) to give 4-amino-6-chloro-5-(2-methyl-1-(3-nitrophenyl)prop-1-en-1-yl)pyrimidine 43 (84.5 mg, 90%) as a yellow crystalline solid, mp: 144-145 °C; IR (cm⁻¹): ν 3329 (w, NH₂), 1562 (s, NO₂), 1347 (s, NO₂). ¹H NMR (CDCl₃): δ 8.31 (s, 1H, pyrimidine_2 H), 8.13-8.11 (m, 2H, phenyl_2,4 H), 7.57 (d, J = 7.5 Hz, 1H, phenyl_6 H), 7.49 (t, J = 8.0 Hz, 1H, phenyl_5 H), 5.27 (br, NH₂), 2.17 (s, 3H, CH₃), 1.97 (s, 3H, CH₃). ¹³C NMR (CDCl₃), δ: 162.0 (pyrimidine C6), 159.0 (pyrimidine C4), 157.3 (pyrimidine C2), 148.2 (phenyl C3), 141.1 (phenyl C1), 140.5 (propene C1), 135.3 (phenyl C6), 129.3 (phenyl C5), 125.3 (propene C2), 124.1 (phenyl C4), 122.3 (phenyl C2), 116.7 (pyrimidine C5), 22.3 (CH₃), 21.9 (CH₃). ESI-MS m/z 307 (M+ Cl), 305 (M+ Cl). HRMS (ESI) calcd for C₆H₁₄Cl₃N₂O₂ (MH+), 305.0799; found, 305.0799.

Cyclopropyl(4,6-dichloropyrimidin-5-yl)(phenyl)methanol 50

![Structure of 50](image)

Under a N₂ atmosphere, a fresh solution of LDA was prepared by dropwise addition of n-BuLi (1.64 mL of 2.5 M solution, 4.109 mmol) to a solution of diisopropyl amine (415.8 mg, 4.109 mmol) in dry THF (20 mL) pre-cooled to -78 °C, and the mixture was stirred for 30 min at -78 °C. To this solution was added dropwise at -78 °C, a solution of 4,6-dichloropyrimidine 28 (510 mg, 3.424 mmol) in dry THF (10 mL) and the mixture was allowed to stir for 45 min at -78 °C. The solution was then cooled to -116 °C and allowed to stir for 10 min, after which a pre-cooled (-116 °C) solution of cyclopropyl(phenyl)methanone 49 (500 mg, 3.424 mmol) in dry THF (10 mL) was

¹ Numbers on the structure correspond to the cyclopropyl ring, not related to the compound name. Compound was unstable for HRMS or IR.
added dropwise over a 10 min period. After complete addition, the resulting solution was allowed to stir for a further 45 min at -116 to -100 °C, then quenched with a saturated solution of NH₄Cl (25 mL). To the resulting biphasic mixture was added H₂O (20 mL) before the organic layer was partitioned from the reaction mixture. The aqueous layer was further extracted with CH₂Cl₂ (3 x 50 mL) and the resulting organic layers were combined and washed with 1 M HCl (25 mL). The organic layer was then dried (MgSO₄) and the solvent concentrated under reduced pressure. The resulting crude oil was subjected to flash chromatography and elution with 15% ethyl acetate in petroleum spirit gave the alcohol, cyclopropyl(4,6-dichloropyrimidin-5-yl)(phenyl)methanol 50 (373 mg, 37%) was obtained as a yellow solid, mp: 146-147 °C; ¹H NMR (CDCl₃), δ: 8.61 (s, 1H, pyrimidine_2 H), 7.38 (d, J = 7.0 Hz, 2H, phenyl_2,6 H), 7.35-7.31 (m, 3H, phenyl_3,4,5 H), 2.83 (s, br, OH), 2.06 (p, J = 7.0 Hz, 1H, C₁_H), 0.90 (q, J = 7.0 Hz, 1H, C₃ H), 0.77 (t, J = 6.5 Hz, 2H, C₃ H, C₂ H), 0.57 (q, J = 6.5 Hz, 1H, C₂ H). ¹³C NMR, δ: 161.9 (pyrimidine C₄, C₆), 155.3 (pyrimidine C₂), 145.9 (phenyl C₁), 138.1 (pyrimidine C₅), 128.9 (phenyl C₂, C₆), 128.3 (phenyl C₃, C₅), 126.2 (pyrimidine C₄), 78.3 (methanol C), 20.1 (C₁), 4.1 (C₃), 2.3 (C₂) ppm. ESI-MS m/z 295.1 (M+³⁵Cl), 297.0 (M+³⁷Cl).

Cyclopropyl(3-nitrophenyl)methanone⁵³ ⁵³

![Cyclopropyl(3-nitrophenyl)methanone](image)

Cyclopropyl(phenyl)methanone 49 (1.0 g, 6.849 mmol) was added dropwise to a precooled mixture of conc. H₂SO₄ (10 mL) and conc. HNO₃ (10 mL) at -15 °C, over 10 min. The mixture was then allowed to stir at -10 °C for 2 h before being poured onto crushed ice, and extracted with ether (2 x 30 mL). The combined organic layers were washed sequentially with water (20 mL), and brine (20 mL) and then dried (MgSO₄). The solution was passed through short pad of silica gel, and the eluent was evaporated to leave a pale yellow oil of cyclopropyl(3-nitrophenyl)methanone 53 (915 mg, 70%). IR (cm⁻¹): ν 1662 (s, C=O), 1526 (s, NO₂), 1350 (s, NO₂). ¹H NMR (CDCl₃), δ: 8.84 (s, | This reference reports only the elemental analysis of 53. | 211 |
1H, phenyl_2 H), 8.42 (d, J = 8.1 Hz, 1H, phenyl_4 H), 8.33 (d, J = 7.8 Hz, 1H, phenyl_6 H), 7.70 (t, J = 7.8 Hz, 1H, phenyl_5 H), 2.74-2.69 (m, 1H, CO-C=H), 1.32 (t, J = 3.7 Hz, 2H, CH2-CH2). 13C NMR, δ: 198.4 (CO), 139.1 (phenyl C3), 133.9 (phenyl C1), 130.6 (phenyl C6), 129.8 (phenyl C5), 126.9 (phenyl C4), 122.9 (phenyl C2), 17.5 (cyclopropyl CH), 12.5 (cyclopropyl CH2-C=H) ppm. EI-MS m/z 191 (M+, 20), 150 (100%), 104 (70), 77 (75). HRMS (ESI) calcd for C10H10NO3 (MH+), 192.0661; found, 192.0654.

Nitration of Cyclobutyl(phenyl)methanone 56, formation of 57 and 58

Cyclobutyl(phenyl)methanone 56 (5 g, 31.25 mmol) was added to a round bottom two-neck flask fitted with a magnetic stirrer and a thermometer, containing conc. H2SO4 (20 mL) and the mixture was cooled to -15 ºC in ice/salt bath. A pre-cooled nitrating mixture of H2SO4 (10 mL) and conc. HNO3 (10 mL) was added dropwise in a rate that the mixture temperature did not exceed 0 ºC. After complete addition, the mixture was stirred for 1 h at 0 - 5 ºC. The mixture was then poured onto crushed ice, and extracted with CH2Cl2 (2 x 30 mL). The combined organic layers were then washed with a saturated solution of NaHCO3 (20 mL), water (20 mL), and brine (20 mL) and then dried (MgSO4) and concentrated under reduced pressure. The resulting oil was then subjected to flash column chromatography and elution with 30% ether in petroleum spirit gave:

Cyclobutyl(3-nitrophenyl)methanone 57 (1.73 g, 27%) as a pale yellow oil,

![Cyclobutyl(3-nitrophenyl)methanone 57](image)

IR (cm⁻¹): ν 2989 (w, C=H aliphatic), 1675 (s, C=O), 1527 (s, NO2), 1350 (s, NO2). 1H NMR (CDCl3), δ: 8.69 (s, 1H, phenyl_2 H), 8.39 (d, J = 7.9 Hz, 1H, phenyl_4 H), 8.23 (d, J = 7.5 Hz, 1H, phenyl_6 H), 7.67 (t, J = 7.5 Hz, 1H, phenyl_5 H), 4.04 (p, J = 8.3 Hz, 1H, CO-CH), 2.46-2.33 (m, 4 H, cyclobutyl), 2.19-2.10 (m, 1H, cyclobutyl), 1.99-1.93 (m, 1H, cyclobutyl). 13C NMR, δ: 198.8 (CO), 148.7 (phenyl C3), 137.1 (phenyl C1), 134.1 (phenyl C6), 130.1 (phenyl C5), 127.4 (phenyl C4), 123.4 (phenyl C2), 42.5
(CO-CH), 25.2 (CH₂-CH₂-CH₂), 18.3 (CH₂-CH₂-CH₂) ppm. EI-MS m/z 205 (M+, 5), 188 (10), 150 (100%). HRMS (ESI) calcd for C₁₁H₁₂NO₃ (MH+), 206.0817; found, 206.0810.

Further elution afforded:

Cyclobutyl(2-nitrophenyl)methanone 58 (640 mg, 10%) as a yellow oil.

![Cyclobutyl(2-nitrophenyl)methanone](image)

Yellow oil, IR (cm⁻¹): ν 2990 (w, C-H aliphatic), 1675 (s, C=O), 1528 (s, NO₂), 1350 (s, NO₂). ¹H NMR (CDCl₃), δ: 8.09 (d, J = 8.1 Hz, 1H, phenyl₁ H), 7.70 (t, J = 7.6 Hz, 1H, phenyl₃ H), 7.59 (t, J = 8.0 Hz, 1H, phenyl₅ H), 7.38 (d, J = 7.6 Hz, 1H, phenyl₆ H), 3.66 (p, J = 8.5 Hz, 1H, CO-CH), 2.45-2.38 (m, 2H, cyclobutyl 2H), 2.23-2.17 (m, 2H, cyclobutyl 2H), 2.05-1.93 (m, 2H, cyclobutyl 2H). ¹³C NMR, δ: 204.1 (CO), 146.3, (phenyl C2), 137.3 (phenyl C1), 134.3 (phenyl C5), 130.7 (phenyl C4), 128.0 (phenyl C6), 124.6 (phenyl C3), 45.6 (CO-C), 25.6 (CH₂-CH₂-CH₂), 18.1 (CH₂-CH₂-CH₂) ppm. EI-MS m/z 205 (M+, 5), 188 (5), 169 (7), 150 (100%). HRMS (ESI) calcd for C₁₁H₁₂NO₃ (MH+), 206.0817; found, 206.0809.

1-(4-Chloropyridin-3-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol 59

![1-(4-Chloropyridin-3-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol](image)

Under a N₂ atmosphere, diisopropyl amine (400 mg, 3.953 mmol) was added to dry TFH (20 mL) in an oven dried 50 mL flask. The flask was then sealed with a rubber cap, and the flask was degassed by applying vacuum and flushing with N₂ gas. The solution was cooled to -78 °C before n-BuLi (2.47 mL of 1.6 M solution, 3.953 mmol) was added dropwise by a syringe, and the mixture was allowed to stir at -78 °C for 40 min (Flask A). In a separate oven dried 50 mL flask, 4-chloropyridine·HCl 55 (230 mg, 1.554 mmol) was added and the flask was sealed with a rubber cap and the flask was
flushed with N₂ for 10 min and then sealed; the flask was then cooled to -78 ºC (Flask B). The LDA solution formed in Flask A was then transferred (under N₂) through a double sided needle to Flask B, and the resultant mixture was stirred at -78 ºC for 45 min, where the solution became dark yellow in colour and the 4-chloropyridine.HCl was completely dissolved as can be indicated from the disappearance of the solid. A pre-cooled solution (-78 ºC) of 2-methyl-1-(3-nitropheryl)propan-1-one 38 (300 mg, 1.554 mmol) in dry THF (10 mL) was added slowly under N₂ to Flask B, using a double sided needle, and the reaction was stirred at -78 ºC for another 45 min. The mixture was allowed to warm up to room temperature (over 12 h) and was then quenched with a mixture of water/THF. The mixture was then acidified with 2 M HCl (20 mL). The aqueous acidic layer was separated and the organic layer was further extracted with 2 M HCl (2 x 25 mL). The combined acidic extracts were washed with ether (25 mL). The acidic extract was then cooled to 0 ºC and conc. ammonia solution was added dropwise to give a slightly basic solution (pH paper). The mixture was then extracted with CH₂Cl₂ (2 x 30 mL), the combined organic layers were dried (MgSO₄), and then concentrated under reduced pressure. The residue was subjected to a flash column chromatography and elution with 40% ethyl acetate in petroleum spirit gave 1-(4-chloropyridin-3-yl)-2-methyl-1-(3-nitropheryl)propan-1-ol 59 (200 mg, 42%) as a pale yellow solid, mp: 132-133 ºC; IR (cm⁻¹): υ 3180 (w, OH), 1525 (s, NO₂), 1352 (s, NO₂).

¹H NMR (CDCl₃), δ: 9.12 (s, 1H, pyridine_2 H), 8.40 (d, J = 5.1 Hz, 1H, pyridine_6 H), 8.13 (s, 1H, phenyl_2 H), 8.09 (d, J = 7.8 Hz, 1H, phenyl_4 H), 7.69 (d, J = 7.8 Hz, 1H, phenyl_6 H), 7.47 (t, J = 7.8 Hz, 1H, phenyl_5 H), 7.21 (d, J = 5.1 Hz, 1H, pyridine_5 H), 3.25 (s, br, OH), 3.12-3.09 (m, 1H, propanol_2 H), 1.01 (d, J = 6.6 Hz, 3H, CH₃), 0.95 (d, J = 6.9 Hz, 3H, CH₃).

¹³C NMR, δ: 149.7 (phenyl C3), 149.6 (pyridine C6), 149.4 (phenyl C1), 147.9 (pyridine C2), 146.2 (pyridine C3), 142.4 (pyridine C4), 137.6 (phenyl C6), 133.3 (phenyl C5), 128.8 (pyridine C5), 126.4 (phenyl C2), 122.2 (phenyl C4), 79.7 (propanol C1), 32.9 (propanol C2), 17.6 (CH₃), 17.4 (CH₃) ppm. EI-MS m/z 306 (M+ Cl, 5), 263 (100%), 217 (50), 182 (20), 140 (90). HRMS (ESI) calcd for C₁₅H₁₆ClN₂O₃ (MH+), 307.0849; found, 307.0838.
(4-Chloropyridin-3-yl)(cyclopropyl)(3-nitrophenyl) methanol 60

Under a N\textsubscript{2} atmosphere, in an oven dried 50 mL flask, a solution of diisopropyl amine (397.4 mg, 3.926 mmol) in dry TFH (20 mL) was prepared, and the flask was then sealed with a rubber cap, and the solution was degassed by applying vacuum and flushing with N\textsubscript{2} gas. The solution was cooled to -78 °C. n-BuLi (2.62 mL of 1.5 M solution, 3.926 mmol) was added dropwise by a syringe, and the mixture was allowed to stir at -78 °C for 40 min (Flask A). In another oven dried 50 mL flask, 4-chloropyridine HCl 55 (235 mg, 1.571 mmol) was added and the flask was sealed with a rubber cap and flushed with N\textsubscript{2}, and the flask was then cooled to -78 °C (Flask B). The LDA solution formed in Flask A was then transferred (under N\textsubscript{2}) through a double sided needle to Flask B, and the mixture was stirred at -78 °C for 45 min, where the solution became dark yellow in colour and the 4-chloropyridine HCl 55 dissolved completely. A pre-cooled solution (-78 °C) of cyclopropyl(3-nitrophenyl)methanone 53 (300 mg, 1.571 mmol) in dry THF (10 mL) was added slowly under N\textsubscript{2} to the content in flask B, using a double sided needle, and the reaction was stirred at -78 °C for another 45 min. The mixture was allowed to warm up to room temperature (over 12 h), and was then quenched with a mixture of water/THF. The mixture was then acidified with 2 M HCl. The aqueous acidic layer was separated and the organic layer was further extracted with 2 M HCl (2 x 25 mL). The combined acidic extracts were washed with ether (25 mL). The acidic extract was then cooled to 0 °C and conc. ammonia solution was added dropwise to give a slightly basic solution (pH paper). The mixture was then extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 x 30 mL), dried (MgSO\textsubscript{4}) and evaporated under reduced pressure. The residue was subjected to a flash column chromatography and elution with 40% ethyl acetate in petroleum spirit gave (4-chloropyridin-3-yl)(cyclopropyl)(3-nitrophenyl) methanol 60 (248 mg, 52%) as a yellow solid, mp: 138-139 °C; IR (cm-1): ι 3100 (w, OH), 1525 (s, NO\textsubscript{2}), 1348 (w, NO\textsubscript{2}). 1H NMR (CDCl\textsubscript{3}), δ: 9.28 (s, 1H, pyridine_2 H), 8.50 (d, J = 5.0 Hz, 1H, pyridine_6 H), 8.24 (s, 1H, phenyl_2 H), 8.07 (d, J = 8.0 Hz, 1H, phenyl_4 H), 7.57 (d, J = 8.0 Hz, 1H, phenyl_6 H), 7.48 (t, J = 8.0 Hz, 1H, phenyl_5 H), 7.28 (d, J = 5.4 Hz, 1H, pyridine_5 H), 2.98 (s, OH), 1.74 (m,
1H, cyclopropyl CH), 0.81-0.64 (m, 4H, cyclopropyl CH\(_2\)). \(^{13}\)C NMR, δ: 150.1 (phenyl C3), 149.8 (pyridine C6), 148.4 (pyridine C2), 148.1 (phenyl C1), 143.1 (pyridine C4), 133.9 (phenyl C6), 132.1 (pyridine C3), 129.4 (phenyl C5), 129.1 (phenyl C2), 122.6 (pyridine C5), 121.0 (phenyl C4), 89.4 (methanol C), 20.6 (cyclopropyl CH), 2.4 (CH\(_2\)), 2.1 (CH\(_2\)) ppm. ESI-MS \(m/z\) 304.8 (MH\(^+\)\(^{35}\)Cl). HRMS (ESI) calcd for C\(_{13}\)H\(_{14}\)\(^{35}\)ClN\(_2\)O\(_3\) (MH\(^+\)), 305.0693; found, 305.0679.

\((4\text{-Chloropyridin-3-yl})(\text{cyclobutyl})(3\text{-nitrophenyl})\text{methanol 61}\)

![Chemical structure](image)

Under a N\(_2\) atmosphere, diisopropyl amine (333.2 mg, 3.293 mmol) was added to dry THF (20 mL) in an oven dried 50 mL flask. The flask was then sealed with a rubber cap, and the flask was degassed by applying vacuum and flushing with N\(_2\) gas. The solution was cooled to -78 ºC. \(n\)-BuLi (2.35 mL of 1.4 M solution, 3.293 mmol) was added dropwise by a syringe, and the mixture was allowed to stir at -78 ºC for 40 min (Flask A). In another oven dried 50 mL flask, 4-chloropyridine.HCl 55 (197 mg, 1.317 mmol) was added and the flask was sealed with a rubber cap and flushed with N\(_2\), and the flask was then cooled to -78 ºC (Flask B). The LDA solution formed in flask A was then transferred (under N\(_2\)) through a double sided needle to flask B, and the mixture was stirred at -78 ºC for 45 min, where the solution became dark yellow in colour and the 4-chloropyridine.HCl 55 dissolved completely. A pre-cooled solution (-78 ºC) of cyclobutyl(3-nitrophenyl)methanone 57 (270 mg, 1.317 mmol) in dry THF (10 mL), was added slowly under N\(_2\) to Flask B, using a double sided needle, and the reaction was stirred at -78 ºC for another 45 min. The mixture was allowed to warm up to room temperature (over 12 h), and then was quenched with a mixture of water/THF. The mixture was then acidified with 2 M HCl. The aqueous acidic layer was separated and the organic layer was further extracted with 2 M HCl (2 x 25 mL). The combined acidic extract was washed with ether (25 mL). The acidic extract was then cooled to 0 ºC and conc. ammonia solution was added dropwise to give a slightly basic solution (pH
paper). The mixture was then extracted with CH$_2$Cl$_2$ (2 x 30 mL), and dried (MgSO$_4$). The solvent was then evaporated under reduced pressure. The residue was subjected to flash column chromatography (40% ethyl acetate in petroleum spirit) to give (4-chloropyridin-3-yl)(cyclobutyl)(3-nitrophenyl)methanol 61 (209 mg, 50%) as a brown semi solid, IR (cm$^{-1}$): ν 3094 (w, OH), 1525 (s, NO$_2$), 1341 (s, NO$_2$). 1H NMR (CDCl$_3$), δ: 8.93 (s, 1H, pyridine$_2$ H), 8.46 (d, $J = 5.1$ Hz, 1H, pyridine$_6$ H), 8.15 (s, 1H, phenyl$_2$ H), 8.09 (d, $J = 8.0$ Hz, 1H, phenyl$_6$ H), 7.51 (d, $J = 7.8$ Hz, phenyl$_4$ H), 7.51 (t, $J = 8.0$ Hz, 1H, phenyl$_5$ H), 7.25 (d, $J = 4.8$ Hz, 1H, pyridine$_5$ H), 3.44 (p, $J = 8.6$ Hz, 1H, cyclobutyl CH), 3.33 (s, OH), 2.27 - 2.18 (m, 2H, cyclobutyl CH$_2$), 2.05 - 1.88 (m, 2H, cyclobutyl CH$_2$), 1.85 - 1.71 (m, 2H, cyclobutyl CH$_2$). 13C NMR, δ: 150.3 (phenyl C$_3$), 149.4 (pyridine C$_6$), 148.1 (pyridine C$_2$), 146.7 (phenyl C$_1$), 143.1 (pyridine C$_3$), 136.9 (pyridine C$_4$), 132.2 (phenyl C$_6$), 129.1 (phenyl C$_5$), 126.4 (pyridine C$_5$), 122.2 (phenyl C$_2$), 121.1 (phenyl C$_4$), 42.9 (methanol C), 23.2 (cyclobutyl CH), 22.1 (CH$_2$-CH$_2$-CH$_2$), 21.1 (CH$_2$-CH$_2$-CH$_2$), 16.9 (CH$_2$-CH$_2$-CH$_2$) ppm. EI-MS m/z 318 (M+, 7), 301 (5), 263 (100%), 247 (20), 217 (16), 191 (5). HRMS (ESI) calcd for C$_{16}$H$_{16}$ClN$_2$O$_3$ (MH$^+$), 319.0849; found, 319.0842.

4-Chloro-3-(2-methyl-1-(3-nitrophenyl)prop-1-en-1-yl)pyridine 62

A solution of 1-(4-chloropyridin-3-yl)-2-methyl-1-(3-nitrophenyl)propan-1-ol 59 (100 mg, 0.327 mmol) in conc. H$_2$SO$_4$ (20 mL) was stirred under N$_2$ for 24 h at room temperature. The mixture was then poured onto crushed ice, and neutralized with a saturated solution of Na$_2$CO$_3$. The mixture was then extracted with CH$_2$Cl$_2$ (2 x 25 mL), the combined organic layers were washed with brine (20 mL), dried (MgSO$_4$), and the solvent was concentrated under reduced pressure. The residue was subjected to a flash column chromatography and elution with 40% ethyl acetate in petroleum spirit gave 4-chloro-3-(2-methyl-1-(3-nitrophenyl)prop-1-en-1-yl)pyridine 62 (80 mg, 85%) as a yellow oil, IR (cm$^{-1}$): ν 2980 (w, C-H aliphatic), 1653 (m, C=C), 1528 (s, NO$_2$), 1465 (w), 1347 (s, NO$_2$). 1H NMR (CDCl$_3$), δ: 8.49 (s, 1H, pyridine$_2$ H), 8.42 (d, $J = 5.4$
Hz, 1H, pyridine_6 H), 8.09-8.07 (m, 2H, phenyl_2,6 H), 7.51 (d, J = 7.6 Hz, 1H, phenyl_4 H), 7.47 (t, J = 7.6 Hz, 1H, phenyl_5 H), 7.35 (d, J = 5.4 Hz, 1H, pyridine_5 H), 1.92 (s, 3H, CH_3), 1.72 (s, 3H, CH_3). 1^3^C NMR, δ: 151.9 (phenyl C3), 149.3 (pyridine C6), 148.1 (pyridine C2), 143.6 (phenyl C1), 142.2 (phenyl C6), 138.5 (propene C1), 136.7 (pyridine C3), 135.7 (phenyl C4), 129.0 (phenyl C5), 124.8 (phenyl C5), 124.5 (phenyl C4), 121.7 (propene C2), 22.5 (CH_3), 21.8 (CH_3) ppm. EI-MS m/z 288 (M+^{35}Cl, 100%), 273 (5), 241 (10), 227 (16), 204 (8), 191 (10). HRMS (ESI) calcd for C_{15}H_{14}^{35}ClN_2O_2 (MH+), 289.0744; found, 289.0754.

4-Chloro-3-(cyclopropylidene(3-nitrophenyl)methyl)pyridine 63^#

\[\text{O}_2\text{N} \quad \text{c} \quad \text{Cl} \quad \text{p} \quad \text{C} \]

Method A: a solution of 4-chloropyridin-3-yl)(cyclopropyl)(3-nitrophenyl)methanol 60 (100 mg, 0.329 mmol) in conc. H_2SO_4 (10 mL) was stirred under N_2 for 24 h at room temperature. The mixture was then poured onto crushed ice, and neutralized with a saturated solution of Na_2CO_3. The mixture was then extracted with CH_2Cl_2 (2 x 25 mL), the combined organic layers were washed with brine (15 mL), dried (MgSO_4), and the solvent was removed under reduced pressure. The residue was subjected to a flash column chromatography and elution with 40% ethyl acetate in petroleum spirit gave the alkene 63 (58.3 mg, 62%) as a yellow oil, IR (cm\(^{-1}\)): ν 2990 (w, C-H aliphatic), 1676 (w, C=C), 1527 (s, NO_2), 1347 (s, NO_2). 1^H NMR (CDCl_3), δ: 8.57 (d, J = 5.1 Hz, 1H, pyridine_6 H), 8.50 (s, 1H, pyridine_2 H), 8.17-8.07 (m, 2H, phenyl_2,4 H), 7.49-7.45 (m, 2H, phenyl_6 H, pyridine_5 H), 6.54 (t, J = 7.2 Hz, 1H, phenyl_5 H), 3.63 (t, J = 6.6 Hz, 2H, CH_2-CH_2), 2.52 (q, J = 6.6 Hz, 2H, CH_2-CH_2). 1^3^C NMR, δ: 151.7 (phenyl C3), 150.5 (pyridine C6), 148.5 (pyridine C2), 143.8 (phenyl C1), 141.2 (C*), 136.3 (phenyl C6), 132.2 (pyridine C4), 131.4 (phenyl C5), 129.5 (pyridine C3), 124.9 (pyridine C5), 124.0 (phenyl C4), 122.5 (phenyl C2), 121.0 (C**), 43.2 (CH_2), 32.9 (CH_3) ppm. EI-MS m/z 286 (M+^{35}Cl, 25), 227 (100%), 204 (10), 191 (70), 164 (60). HRMS (ESI) calcd for C_{15}H_{14}^{35}ClN_2O_2 (MH+), 287.0587; found, 287.0576.

^# Asterisks on the structures are for peak assignments.
Method B: Under a N\textsubscript{2} atmosphere, (4-chloropyridin-3-yl)(cyclopropyl)(3-nitrophenyl)methanol \textit{60} (100 mg, 0.329 mmol) was added to SOCl\textsubscript{2} (15 mL) in a 25 mL round bottom flask. The flask was then heated at 80 °C under N\textsubscript{2} atmosphere for 24 h. The mixture was cooled to room temperature, and the solution was poured onto crushed ice (50 mL) with vigorous stirring. KOH solution (2 M) was added dropwise until neutral solution obtained (pH paper). The mixture was then extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 x 25 mL), washed with water (2 x 20 mL), brine (20 mL) and dried (MgSO\textsubscript{4}). The organic fraction was then concentrated under reduced pressure and the residue subjected to flash column chromatography (40% ethyl acetate in petroleum spirit) to afford 4-chloro-3-(cyclopropylidene(3-nitrophenyl)methyl)pyridine \textit{63} (70.6 mg, 75%) as a yellow oil. Spectral data for \textit{63} obtained by method B are exactly the same as in method A.

4-Chloro-3-(cyclobutylidene(3-nitrophenyl)methyl)pyridine \textit{64$^\text{#}$}

Under a N\textsubscript{2} atmosphere, a solution of (4-chloropyridin-3-yl)(cyclobutyl)(3-nitrophenyl)methanol \textit{61} (90 mg, 0.283 mmol) in SOCl\textsubscript{2} (15 mL) was then heated at 80 °C under N\textsubscript{2} atmosphere for 36 h. The mixture was cooled, and the solution was poured onto crushed ice (50 mL) with vigorous stirring. KOH solution (2 M) was added dropwise to neutral (pH paper). The mixture was then extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 x 25 mL), the combined organic extracts were washed sequentially with water (2 x 20 mL), brine (20 mL), and then dried (MgSO\textsubscript{4}). The solvent was removed under reduced pressure. The resulting residue was subjected to a flash column chromatography and elution with 40% ethyl acetate in petroleum spirit gave 4-chloro-3-(cyclobutylidene(3-nitrophenyl)methyl)pyridine \textit{64} (58.6 mg, 69%) as a brown oil, IR (cm-1): \textit{\nu} 2989 (w, C-H aliphatic), 1657 (m, C=C), 1527 (s, NO\textsubscript{2}), 1340 (s, NO\textsubscript{2}). 1H NMR (CDCl\textsubscript{3}), \textit{\delta}: 8.51 (d, \textit{\textit{J}} = 5.1 Hz, 1H, pyridine\textsubscript{6} H), 8.49 (s, 1H, pyridine\textsubscript{2} H), 8.04 (d, \textit{\textit{J}} = 8.1 Hz, 1H,

$^\text{#}$ Asterisks on the structures are for peak assignments.
phenyl_4 H), 8.01 (s, 1H, phenyl_2 H), 7.44 (t, J = 8.1 Hz, 1H, phenyl_5 H), 7.40 (d, J = 5.6 Hz, 1H, pyridine_5 H), 7.34 (d, J = 8.0 Hz, 1H, phenyl_6 H), 3.12 (t, J = 7.2 Hz, 2H, cyclobutyl CH$_2$), 2.68 (t, J = 7.2 Hz, 2H, cyclobutyl CH$_2$), 2.17 (p, J = 7.2 Hz, 2H, CH$_2$-CH$_2$-CH$_2$). 13C NMR, δ: 152.4 (phenyl C3), 149.9 (pyridine C6), 149.2 (pyridine C2), 148.6 (phenyl C1), 144.1 (C**), 140.3 (C*), 133.9 (phenyl C6), 133.0 (phenyl C5), 129.4 (pyridine C4), 125.7 (pyridine C3), 125.2 (pyridine C5), 121.9 (phenyl C4), 121.5 (phenyl C2), 32.9 (CH$_2$-CH$_2$-CH$_2$), 31.9 (CH$_2$-CH$_2$-CH$_2$), 17.4 (CH$_2$-CH$_2$-CH$_2$) ppm.

EI-MS m/z 300 (M$^+$ 35Cl, 100%), 285 (5), 253 (20), 218 (20), 164 (22). HRMS (ESI) calcd for C$_{16}$H$_{14}$35ClN$_2$O$_2$ (MH$^+$), 301.0744; found, 301.0733.

3-(Cyclobutylidene(4-phenoxy pyridin-3-yl)methyl)aniline 72

4-Chloro-3-(cyclobutylidene(3-nitrophenyl)methyl)pyridine 64 (100 mg, 0.333 mmol) was added to sealed tube containing phenol (2.0 g, 21.25 mmol) and N^i,N^i-diethylpentane-1,4-diamine 47 (105 mg, 0.666 mmol). The tube was sealed and heated at 100 ºC for 5 min, 120 ºC for 10 min, 140 ºC for 1 h, and then at 160 ºC for 14 h. The tube was then cooled to room temperature, the mixture was then adsorbed onto silica and subjected to a flash column chromatography and elution with 10% methanol in CH$_2$Cl$_2$ gave 3-(cyclobutylidene(4-phenoxy pyridin-3-yl)methyl)aniline 72 (46.9 mg, 43%) as a colourless oil, IR (cm$^{-1}$): v 3256 (w, NH$_2$), 1452 (s, C-N), 1237 (w, C-O). 1H NMR (CDCl$_3$), δ: 8.41-8.35 (m, 2H, pyridine_2,6 H), 7.33 (t, J = 7.8 Hz, 2H, phenoxy_3,5 H), 7.17 (t, J = 7.3 Hz, 1H, aniline_5 H), 7.06 (t, J = 7.8 Hz, 1H, phenoxy_4 H), 6.90 (d, J = 7.8 Hz, 2H, phenoxy_2,6 H), 6.65-6.59 (m, 2H, aniline_4,6 H), 6.50 (d, J = 7.8 Hz, 1H, pyridine_5 H), 6.84 (s, 1H, aniline_2 H), 3.55 (br, NH$_2$), 3.08 (t, J = 7.0 Hz, 2H, CH$_2$-CH$_2$-CH$_2$), 2.75 (t, J = 7.0 Hz, 2H, CH$_2$-CH$_2$-CH$_2$), 2.06 (p, J = 7.4 Hz, 2H, CH$_2$-CH$_2$-CH$_2$). 13C NMR, δ: 162.8 (phenoxy C1), 154.9 (pyridine C4), 153.3 (pyridine C2), 150.1 (pyridine C6), 146.4 (aniline C1), 144.6 (aniline C3), 140.9 (C*), 130.2 (phenoxy C3, C5), 129.3 (phenoxy C4), 126.1 (C**), 125.2 (aniline
4-(3-(Cyclopropylidene(3-nitrophenyl)methyl)pyridin-4-yl)morpholine 77*

In a 25 mL round bottom flask fitted with a reflux condenser, 4-chloro-3-(cyclopropylidene(3-nitrophenyl)methyl)pyridine 63 (100 mg, 0.349 mmol) was dissolved in morpholine 75 (15 mL), and the mixture was heated at reflux for 48 h. The excess morpholine was then removed by distillation under vacuum to leave a dark brown oily residue, which was subjected to alumina column chromatography using 40% CH$_2$Cl$_2$ and 60% ethyl acetate. 4-(3-(Cyclopropylidene(3-nitrophenyl)methyl)pyridin-4-yl)morpholine 77 was isolated as a red oil (76.4 mg, 65%). IR (cm$^{-1}$): ν 2957 (w, C-H aliphatic), 1525 (s, NO$_2$), 1457 (m), 1346 (s, NO$_2$). 1H NMR (CDCl$_3$), δ: 8.56 (d, $J = 5.3$ Hz, 1H, pyridine_6 H), 8.48 (s, 1H, pyridine_2 H), 8.10 (s, 1H, phenyl_2 H), 7.48-7.43 (m, 3H, phenyl_4,6 H, pyridine_5 H), 6.53 (t, $J = 7.4$ Hz, 1H, phenyl_5 H), 3.69 (t, $J = 4.3$ Hz, 4H, morpholine_2,6 H), 2.42 (t, $J = 7.3$ Hz, 2H, cyclopropyl_2H), 2.26 (br, apparent s, 4H, morpholine_3,5 H), 2.08 (ddd, $J = 14.3$, 7.3, 7.3 Hz, 2H, cyclopropyl_2H). 13C NMR, δ: 151.7 (pyridine C6), 150.1 (phenyl C3), 148.4 (pyridine C4), 143.7 (pyridine C2), 141.5 (C*), 134.5 (phenyl C6), 133.7 (phenyl C5), 133.3 (phenyl C1), 131.9 (phenyl C4), 129.3 (phenyl C2), 124.9 (pyridine C3), 122.1 (C**), 120.8 (pyridine C5), 66.8 (morpholine C2, C6), 57.7 (cyclopropyl CH$_2$), 53.4 (morpholine C3, C5), 27.3 (cyclopropyl CH$_2$) ppm. ESI-MS m/z 336.9 (M-). HRMS (ESI) calcd for C$_{19}$H$_{19}$N$_3$O$_3$ (MH$^+$), 338.1505; found, 338.1506.

* Asterisks on the structures are for peak assignments.
9.1.3. Experimental for chapter 3

2-(3-Nitrophenyl)-1H-benzo[d]imidazole-5-carbonitrile 84

![Chemical structure of 2-(3-Nitrophenyl)-1H-benzo[d]imidazole-5-carbonitrile 84](image)

In a 50 mL round bottom flask, 3,4-diaminobenzonitrile 82 (1.0 g, 7.519 mmol) was added to 3-nitrobenzaldehyde 83 (1.13 g, 7.519 mmol), and the mixture was triturated until homogenous mixture obtained. The flask was then fitted with a CaCl₂ tube, and heated in an oil bath at 90 °C with vigorous stirring. The mixture started to melt to a brown oily solution before the mixture solidified into dark brown gummy solid. The oil bath temperature was then increased to 145 °C where the brown gummy solid started to melt to give dark red oil. After stirring of this red oil for 3 min, the mixture then solidified to give a gummy dark red solid. The flask was then cooled to room temperature and excess ethanol was added and the mixture was heated at 80 °C for 10 min and filtered hot. The filtrate was concentrated under reduced pressure and the solid residue was recrystallised from a mixture of methanol/1,4-dioxane/water (3:1:1) to give 2-(3-nitrophenyl)-1H-benzo[d]imidazole-5-carbonitrile 84 as a yellow crystalline solid (1.38 g, 70%), mp: 239-240 °C, IR (cm⁻¹): ν 3294 (w, NH), 2224 (m, CN), 1623 (w, C=N), 1517 (s, NO₂), 1348 (s, NO₂). ¹H NMR (DMSO-d₆, δ): 13.8 (br, NH), 9.02 (s, 1H, phenyl_2 H), 8.62 (d, J = 7.8 Hz, 1H, phenyl_4 H), 8.37 (d, J = 7.8 Hz, 1H, phenyl_6 H), 8.21 (s, 1H, benzimidazole_4 H), 8.19 (t, J = 7.8 Hz, 1H, phenyl_5 H), 7.80 (d, J = 8.3 Hz, 1H, benzimidazole_6 H), 7.63 (d, J = 8.3 Hz, 1H, benzimidazole_7 H). ¹³C NMR, δ: 152.1 (benzimidazole C2), 148.3 (phenyl C3), 135.4 (benzimidazole C3a), 132.9 (benzimidazole C7a), 132.8 (phenyl C6), 130.8 (phenyl C1), 130.7 (phenyl C5), 126.1 (benzimidazole C6), 124.9 (phenyl C4), 123.9 (benzimidazole C4), 121.3 (phenyl C2), 119.8 (CN), 116.6 (benzimidazole C7), 104.5 (benzimidazole C5) ppm. ESI-MS m/z 264.1 (M⁺). HRMS (ESI) calcd for C₁₄H₉N₄O₂ (MH⁺), 265.0726; found, 265.0723.
Experimental

2-(3-Aminophenyl)-1H-benzo[d]imidazole-5-carbonitrile 85

![Structure](image)

To a solution of 2-(3-nitrophenyl)-1H-benzo[d]imidazole-5-carbonitrile 84 (200 mg, 0.758 mmol) in methanol (20 mL) in a 100 mL round bottom flask, was added under a N₂ atmosphere, Raney Nickel (0.1 mol%) with vigorous stirring. Under a N₂ atmosphere, a solution of hydrazine monohydrate (75.6 mg, 1.5 mmol) in methanol (5 mL) was added dropwise over 10 min at room temperature. The mixture was then heated at 80 °C for 2 h, and filtered hot through a short pad of celite. Methanol and excess hydrazine hydrate were concentrated under reduced pressure to give a brown residue. The residue was then subjected to a flash column chromatography and elution with 10% methanol in CH₂Cl₂ gave 2-(3-aminophenyl)-1H-benzo[d]imidazole-5-carbonitrile 85 (141 mg, 80%) as a dark yellow solid, mp: 69-70 °C, IR (cm⁻¹): ν 3174 (m, NH), 2219 (m, CN), 1616 (m, C=N). ¹H NMR (DMSO-d₆), δ: 8.08 (s, 1H, phenyl_2 H), 7.70 (d, J = 8.3 Hz, 1H, phenyl_4 H), 7.56 (d, J = 8.3 Hz, 1H, phenyl_6 H), 7.46 (s, 1H, benzimidazole_4 H), 7.32 (d, J = 7.2 Hz, 1H, benzimidazole_6 H), 7.19 (d, J = 8.0 Hz, 1H, phenyl_5 H), 6.72 (d, J = 7.0 Hz, 1H, benzimidazole_7 H), 5.37 (br, NH₂). ¹³C NMR, δ: 155.4 (benzimidazole C2), 149.2 (phenyl C3), 149.1 (benzimidazole C7a), 140.0 (benzimidazole C3a), 129.8 (phenyl C5), 129.5 (phenyl C1), 125.4 (benzimidazole C6), 120.2 (benzimidazole C4), 116.3 (phenyl C6), 115.9 (CN), 115.5 (phenyl C4), 114.3 (benzimidazole C7), 112.2 (phenyl C2), 103.6 (benzimidazole C5) ppm. ESI-MS m/z 233.0 (M⁻). HRMS (ESI) calcd for C₁₄H₁₁N₄ (MH+), 235.0984; found, 235.0993.
To a solution of 2-(3-aminophenyl)-1H-benzo[d]imidazole-5-carbonitrile 85 (100 mg, 0.427 mmol) in dry THF (20 mL) In an oven dried 25 mL flask, was added TEA (43 mg, 0.427 mmol) and the mixture was stirred under N₂ at 0 ºC for 30 min. A solution of oxalyl chloride (27.1 mg, 0.213 mmol) in dry THF (5 mL) was added dropwise over 15 min. The mixture was left to warm up to room temperature with stirring for 2 h. Chilled water (10 mL) was added to the reaction mixture with vigorous stirring. The separated solid was filtered, washed with water and methanol, and was recrystallised from DMF to give the bis product 86 (153.8 mg, 69%) as a brown solid, mp: >250 ºC; IR (cm⁻¹): υ 3259 (w, NH), 2224 (m, CN), 1684 (s, C=O). ¹H NMR (DMSO-d₆), δ: 11.08 (s, br, oxalamide NH), 8.85 (s, 2H, phenyl_2 H), 8.18 (s, 2H, benzimidazole_6 H), 7.99-7.96 (m, 4 H, phenyl_4 H, benzimidazole_7 H), 7.78 (d, J = 8.2 Hz, 2 H, benzimidazole_6 H), 7.64-7.60 (m, 4H, phenyl_5,6 H). ¹³C NMR, δ: 158.8 (CO), 153.9 (benzimidazole C2), 141.4 (benzimidazole C7a), 139.9 (phenyl C1), 138.3 (benzimidazole C3a), 129.6 (phenyl C3), 126.5 (benzimidazole C6), 125.9 (benzimidazole C4), 123.2 (phenyl C6), 123.1 (phenyl C5), 120.7 (phenyl C4), 119.9 (CN), 119.5 (phenyl C2), 115.7 (benzimidazole C7), 104.3 (benzimidazole C5) ppm. ESI-MS m/z 521.4 (M-H). HRMS (ESI) calcd for C₃₀H₁₇N₈O₂ (M-H), 521.1474; found, 521.1453.

9.1.4. Experimental for chapter 4

General procedure 1: synthesis of isobenzofuran-1(3H)-one derivatives 90-92:

Under a N₂ atmosphere, a sealed tube was charged with the appropriate benzoic acid (1 mmol), palladium acetate (22.4 mg, 0.1 mmol), dipotassium phosphate (K₂HPO₄, 522.5 mg, 3 mmol) and dibromomethane (4 mL). The content of the tube was degassed by flushing N₂ through a needle for 10 min. The tube was then sealed, and heated in an oil
bath at 140 °C for 36 h. The tube was then allowed to cool to room temperature, the content was diluted with CH₂Cl₂ (20 mL), and then filtered through celite. The filtrate was washed with 1 M HCl (20 mL) and brine (2 x 15 mL), and was dried (MgSO₄). The solvent was evaporated under reduced pressure and the residue was either subjected to flash column chromatography (10% methanol in chloroform) or recrystallised from chloroform/hexane mixture (1:3).

6-Bromo-7-methoxyisobenzofuran-1(3H)-one 90

Following the general procedure using 3-bromo-2-methoxybenzoic acid 87 (231 mg), the benzofuran 90 was isolated after column chromatography, as a white solid (92 mg, 38%), mp: 102-103 °C; IR (cm⁻¹): ν 1752 (s, C=O), 1288 (m, C-O), 1064 (w, C-O), 1111 (w, C-Br). ¹H NMR (CDCl₃), δ: 7.84 (d, J = 7.9 Hz, 1H, H₅), 7.06 (d, J = 7.9 Hz, 1H, H₄), 5.23 (s, 2H, CH₂), 4.16 (s, 3H, OCH₃). ¹³C NMR, δ: 167.5 (C=O), 156.3 (C₇), 148.3 (C₃a), 139.3 (C₅), 118.6 (C₄), 117.9 (C₇a), 117.2 (C₆), 68.7 (CH₂), 62.9 (CH₃) ppm. EI-MS m/z 242 (M⁺, 79Br, 81Br, 30), 213 (33), 198 (100%), 183 (15). HRMS (ESI) calcd for C₉H₈BrO₃ (MH⁺), 242.9649; found, 242.9657.

6-Bromo-7-methylisobenzofuran-1(3H)-one 91

Following the general procedure using 3-bromo-2-methylbenzoic acid 88 (215 mg), the benzofuran 91 was isolated after recrystallisation, as a pale yellow solid (124 mg, 55%), mp: 91-92 °C; IR (cm⁻¹): ν 1739 (s, C=O), 1358 (w, C-O), 1069 (w, C-Br). ¹H NMR (CDCl₃), δ: 7.79 (d, J = 8.0 Hz, 1H, H₅), 7.18 (d, J = 8.0 Hz, 1H, H₄), 5.20 (s, 2H, CH₂), 2.74 (s, 3H, CH₃). ¹³C NMR, δ: 170.1 (C=O), 146.1 (C₃a), 139.8 (C₅), 137.7 (C₄), 126.3 (C₇), 124.7 (C₇a), 120.6 (C₆), 68.2 (CH₂), 16.6 (CH₃) ppm. EI-MS m/z 226
(M+ 79Br, 81Br, 55), 197 (100%), 169 (30). HRMS (ESI) calcd for C$_9$H$_8$79BrO$_2$ (MH+), 226.9708; found, 226.9705.

5,7-Dimethoxyisobenzofuran-1(3H)-one264 92

![5,7-Dimethoxyisobenzofuran-1(3H)-one](image)

This compound is reported but prepared in this work by a different method, following the general procedure 1 using 2,4-dimethoxybenzoic acid 89 (182 mg). The benzofuran 92 was isolated after column chromatography as a white solid (112.5 mg, 58%). Spectral data of the isolated benzofuran 92 are in agreement with the reported literature.264

6-Bromo-5,7-dimethoxyisobenzofuran-1(3H)-one205* 94

![6-Bromo-5,7-dimethoxyisobenzofuran-1(3H)-one](image)

In a round bottom flask (50 mL), 5,7-dimethoxyisobenzofuran-1(3H)-one 92 (150 mg, 0.773 mmol) was dissolved in glacial acetic acid (20 mL) with vigorous stirring and the flask was cooled to -5 : 0 °C using an ice bath. A solution of bromine (136 mg, 0.851 mmol) in glacial acetic acid (10 mL) was added dropwise over 20 min. The reaction was allowed to warm up slowly to room temperature and was then allowed to stir for 4 h. The formed solid was filtered and washed with dilute acetic acid, and was then subjected to column chromatography (60% CH$_2$Cl$_2$ in hexane) to afford the benzofuran 94 (176.7 mg, 84%) as a white solid. It could also be recrystallised from 1,4-dioxane, mp: 189-190 °C; IR (cm$^{-1}$): ν 1700 (s, C=O), 1316 (w, C-O), 1071 (w, C-O), 1036 (w, C-Br). 1H NMR (CDCl$_3$), δ: 6.46 (s, 1H, H4), 5.07 (s, 2H, CH$_2$), 4.02 (s, 6H, OCH$_3$). 13C NMR, δ: 168.4 (C=O), 162.2 (C7), 159.5 (C5), 150.5 (C3a), 107.8 (C7a), 96.2 (C6), 95.1 (C4), 69.3 (CH$_2$), 57.1 (C$_7$-OCH$_3$), 56.6 (C$_5$-OCH$_3$) ppm. EI-MS m/z 272 (M+ 226)

* This reference reports only the elemental analysis and 1H NMR.
79Br, 81Br, 40), 254 (20), 243 (30), 228 (100%), 213 (20). HRMS (ESI) calcd for C$_{10}$H$_{10}$79BrO$_4$ (MH$^+$), 272.9762; found, 272.9754.

6-Nitroisobenzofuran-1(3H)-one208 98

This compound was prepared following the reported procedure.208 The nitro-phthalide 98 was isolated as a yellow crystalline solid (1.08 g, 81%).

6-Aminoisobenzofuran-1(3H)-one208 99

Reduction of the nitro group of the 6-nitroisobenzofuran-1(3H)-one 98 to the 6-aminoisobenzofuran-1(3H)-one 99 was achieved following the reported reduction procedure developed in our laboratory.209 by sonicating a suspension of the nitro derivative 98 (172 mg, 0.961 mmol) in a mixture of ethanol (2 mL), acetic acid (2 mL) and water (1 mL) and with iron powder (0.27 g, 5 mmol) for 1 h at 35 ºC. The reaction mixture was filtered to remove the iron residue. The filtrate was partitioned with 2 M KOH, and the basic layer was further extracted with ethyl acetate (3 x 25 mL). The combined organic extracts were washed with brine (2 x 25 mL) and water (3 x 50 mL), dried (MgSO$_4$), and concentrated under reduced pressure. The solid residue was then crystallized from toluene to give the amino derivative 99 in 88% yield (126 mg) as a white solid. The spectral data obtained for this compound 99 using this reduction method are in agreement with the previously reported.208

6-Bromoisobenzofuran-1(3H)-one210 100

This compound was prepared following the reported procedure.210 The 6-bromoisobenzofuran-1(3H)-one 100 was isolated as a pale yellow solid (106 mg, 74%).
Chapter 9

Experimental

4,6-Dimethoxyindoline-2,3-dione212 \textbf{102}

![Diagram of 4,6-Dimethoxyindoline-2,3-dione]

This compound was prepared following the reported procedure.212 The 4,6-dimethoxyindole-2,3-dione \textbf{102} was obtained as a yellow solid (5.2 g, 80%).

5-Bromo-4,6-dimethoxyindoline-2,3-dione \textbf{103}

![Diagram of 5-Bromo-4,6-dimethoxyindoline-2,3-dione]

In a 100 mL round bottom flask, a solution of 4,6-dimethoxyindole-2,3-dione \textbf{102} (143 mg, 0.5 mmol) in acetic acid (10 mL) was stirred at room temperature until all the isatin was dissolved completely before being cooled to 0 °C using an ice bath. N-Bromosuccinimide (97.9 mg, 0.55 mmol) was added portion wise over 15 min. After addition of the NBS, the reaction mixture started to solidify, and the flask was removed from the ice bath and was allowed to warm to room temperature and then stirred for 8 h. The yellow solid was filtered from the mother liquor to which cold water (10 mL) was added to precipitate the remaining soluble product. The combined solids were washed with saturated NaHCO\textsubscript{3} solution (2 x 15 mL) and with 1:1 water ethanol mixture (25 mL) and then vacuum dried. Recrystallisation from 1,4-dioxane yielded the 5-bromo-4,6-dimethoxyindoline-2,3-dione \textbf{103} as a yellow solid (118 mg, 60%), mp: >250 °C; IR (cm-1): \nu 3195 (m, NH), 1718 (s, C=O), 1264 (m, C-O). 1H NMR (DMSO-\textit{d}_6), \delta: 11.14 (s, NH), 6.36 (s, H7), 3.99 (s, 3H, C\textsubscript{6}-OCH\textsubscript{3}), 3.94 (s, 3H, C\textsubscript{4}-OCH\textsubscript{3}). 13C NMR, \delta: 178.4 (C3), 165.5 (C2), 161.7 (C4), 160.4 (C6), 151.4 (C7a), 102.7 (C3a), 91.8 (C7), 86.2 (C5), 58.1 (C4-OCH\textsubscript{3}), 57.2 (C6-OCH\textsubscript{3}) ppm. EI-MS \textit{m/z} 287 (M+ 79Br, 81Br, 40), 257 (100%), 213 (7). HRMS (ESI) calcd for C\textsubscript{10}H\textsubscript{9}N79BrNO\textsubscript{4} (MH+), 285.9715; found, 285.9719.
5-Bromo-7-methylindoline-2,3-dione215 106

\begin{center}
\includegraphics[width=0.2\textwidth]{5-bromo-7-methylindoline-2,3-dione.png}
\end{center}

This compound is reported by a different method than the method described here.215 In this work, 4-bromo-2-methylaniline 104 (6.88 g, 37 mmol) was added to a 500 mL flask and was reacted with chloral hydrate (7.35 g, 44.4 mmol), hydroxylamine hydrochloride (9.25 g, 133 mmol), sodium sulfate (42 g, 295 mmol) in water (250 mL) and 2 M HCl (12.5 mL), by heating the mixture at 55 °C with vigorous stirring for 14 h. After cooling to room temperature, the aqueous layer was decanted from the formed the gummy residue which was further washed with cold water and dried under vacuum. The flask was then cooled to -5 : 0 °C using ice/salt bath before adding cold sulphuric acid (22.5 mL). The flask was allowed to warm to room temperature before heating the reaction mixture gradually to 70 °C where the mixture started to get darker in colour. When the colour change became stable after almost 30 min, the reaction was heated to 80 °C for 10 min. After cooling to room temperature, the mixture was poured onto crushed ice (150 mL) and stirred for 1 h. The separated solid was then filtered and washed with water (3 x 100 mL) to give a red solid of 5-bromo-7-methylindoline-2,3-dione 106 (6.65 g, 75%) and was sufficiently pure for the next step. The spectral data were consistent with the reported literature.215

4-Methoxy-1-methyl-2-nitrobenzene216 108

\begin{center}
\includegraphics[width=0.2\textwidth]{4-methoxy-1-methyl-2-nitrobenzene.png}
\end{center}

This compound was synthesized following the reported procedure from 4-methyl-3-nitrophenol 107.216 The 4-methoxy-1-methyl-2-nitrobenzene 108 was isolated as a white crystalline solid (5.34 g, 80%).
5-Methoxy-2-methylaniline217 109

![Structure of 5-Methoxy-2-methylaniline](image)

The synthesis of this compound is reported by a different method.217 In this work, it was prepared by dissolving 4-methoxy-1-methyl-2-nitrobenzene 108 (5.1 g, 30.5 mmol) in methanol (35 mL) under a N$_2$ atmosphere. Raney Nickel (0.1 mol %) was added and the mixture was vigorously stirred at room temperature until the H$_2$ ceased to evolve. Hydrazine monohydrate (2.0 g, 41 mmol) in methanol (10 mL) was added through a syringe slowly over 10 min. The mixture was then heated at reflux for 4 h. The reaction mixture was filtered hot through celite, and the filtrate was concentrated under reduced pressure. The obtained residue was recrystallised from petroleum spirit to yield 5-methoxy-2-methylaniline 109 as white solid (3.8 g, 91%). Spectral data for this aniline derivative 109 are in agreement with the reported literature.217

4-Methoxy-7-methylindoline-2,3-dione* 111

![Structure of 4-Methoxy-7-methylindoline-2,3-dione](image)

In a 250 mL round bottom flask, 5-methoxy-2-methylaniline 109 (2.0 g, 15 mmol) was dissolved in anhydrous benzene (20 mL), and oxalyl chloride (4.12 g, 2.8 mL, 32.4 mmol) was added dropwise. When the HCl ceased to evolve, the reaction was heated at reflux for 3 h. The benzene and oxalyl chloride were then removed by distillation, and the residue was quickly suspended in dichloroethane (20 mL) and then cooled to 0 °C in an ice bath. Aluminium chloride (2.1 g, 15.5 mmol) as a suspension in dichloroethane (10 mL) was added portion wise with vigorous stirring and the reaction mixture was allowed to warm to room temperature over 3 h. The reaction mixture was then heated at reflux for 40 min. After cooling to room temperature, the mixture was poured onto

* This compound is commercially available but with no synthesis reference.
crushed ice, portioned between 0.1 M HCl and ethyl acetate. The aqueous layer was further extracted with ethyl acetate (2 x 100 mL). The combined organic layers were washed with brine (100 mL), dried (MgSO₄) and evaporated under reduced pressure. The resulting orange solid was subjected to a flash column chromatography and elution with 30% ethyl acetate in petroleum spirit yielded 4-methoxy-7-methylindoline-2,3-dione 111 as an orange solid (0.84 g, 30%), mp: 235-236 ºC; IR (cm⁻¹): ν 3195 (m, NH), 1635 (s, C=O), 1250 (m, C-O). ¹H NMR (DMSO-d₆), δ: 10.99 (s, NH), 7.36 (d, J = 8.7, 1H, H6), 6.61 (d, J = 8.7, 1H, H5), 3.83 (s, 3H, OCH₃), 2.09 (s, 3H, CH₃). ¹³C NMR, δ: 180.9 (C2), 160.1 (C3), 156.4 (C4), 149.1 (C7a), 141.8 (C6), 112.9 (C7), 106.5 (C5), 105.8 (C3a), 55.8 (OCH₃), 14.6 (CH₃) ppm. EI-MS m/z 191 (M+, 100%), 163 (50), 149 (10), 134 (7), 121 (7), 106 (93). HRMS (ESI) calcd for C₁₀H₁₀NNO₃ (MH+), 192.0661; found, 192.0653.

5-Bromo-4-methoxy-7-methylindoline-2,3-dione 112

In a 100 mL round bottom flask, 4-methoxy-7-methylindoline-2,3-dione 111 (440 mg, 2.3 mmol) was dissolved in glacial acetic acid (15 mL) and the mixture was stirred until the solid dissolved completely. The flask was then cooled to 0 ºC using an ice bath. A solution of bromine (405 mg, 2.5 mmol) in glacial acetic acid (5 mL) was then added dropwise over 10 min. The flask was allowed to warm to room temperature and was stirred for 2 h. The resulting solid was filtered and cold water (15 mL) added to the filtrate and the resulting solid was filtered. The combined solids were washed with saturated NaHCO₃ (2 x 25 mL) and water (2 x 25 mL), and recrystallised from acetic acid to yield 5-bromo-4-methoxy-7-methylindoline-2,3-dione 112 as an orange solid (520.5 mg, 84%), mp: >250 ºC; IR (cm⁻¹): ν 3162 (m, NH), 1696 (s, C=O), 1248 (w, C-O). ¹H NMR (DMSO-d₆), δ: 11.20 (s, NH), 7.67 (s, H6), 3.97 (s, 3H, OCH₃), 2.12 (s, 3H, CH₃). ¹³C NMR, δ: 180.7 (C2), 159.2 (C3), 152.6 (C4), 148.9 (C7a), 142.6 (C6), 117.7 (C7), 110.1 (C3a), 108.1 (C5), 61.8 (OCH₃), 14.6 (CH₃) ppm. EI-MS m/z 271
Experimental

(M+ 79Br, 81Br, 90), 241 (100%), 228 (20), 185 (80). HRMS (ESI) calcd for C$_{10}$H$_9$79BrNO$_3$ (MH+), 269.9766; found, 269.9773.

General procedure 2: Suzuki coupling of 6-bromobenzolactone derivatives 90, 91, 94 and 100 with 3-(3-boronophenyl)propanoic acid 113:

Under a N$_2$ atmosphere, a 25 mL flask was charged with the bromoisobenzofuran-1(3H)-one (1 equiv), 3-(3-boronophenyl)propanoic acid 113 (1.2 equiv), tetrakis(triphenylphosphine)palladium(0) (5 mol%) and 1,4-dioxane (5 mL). The flask was sealed with a rubber cap. The reaction mixture was degassed by flushing N$_2$ through a needle for 10 min. The flask was heated in an oil bath at 85 ºC. When the solid dissolved, a N$_2$ degassed solution of potassium phosphate (3 equiv) in water (3 mL) was added to the reaction mixture and heating at 85 ºC continued for 4-6 h. After cooling to room temperature, the solvent was concentrated under reduced pressure, and 2 M HCl (15 mL) was added to the residue. The suspended solid was either collected by filtration or extracted with ethyl acetate (2 x 25 mL). The combined ethyl acetate extracts were dried (MgSO$_4$) and evaporated under reduced pressure. The obtained residues were dissolved in ethanol and were subjected PLC (10% methanol in CH$_2$Cl$_2$, 0.5% acetic acid).

3-(3-(4-Methoxy-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenyl)propanoic acid 114

Following the general procedure 2 using 6-bromo-7-methoxyisobenzofuran-1(3H)-one 90 (110 mg, 0.453 mmol), 3-(3-boronophenyl)propanoic acid 113 (105.5 mg, 0.544 mmol), tetrakis(triphenylphosphine)palladium(0) (26.2 mg, 0.023 mmol) and potassium phosphate (288.5 mg, 1.359 mmol) and heating for 5 h, the acid 114 was isolated as a white solid (87.5 mg, 62%), mp: 116-117 ºC; IR (cm$^{-1}$): ν 2989 (m, OH), 1755 (s, C=O), 1718 (s, C=O), 1216 (m, C-O). 1H NMR (CDCl$_3$), δ: 10.54 (s, 1H, COOH), 7.73 (d, 1H, J = 7.5 Hz, isobenzofuran_6 H), 7.45 (s, 1H, phenyl_2 H), 7.41 (d, 1H, J = 7.7 Hz, 1H, phenyl_2 H).
Hz, phenyl_4 H), 7.40-7.37 (m, 2H, phenyl_5,6 H), 7.30 (d, 1H, J = 7.5 Hz, isobenzofuran_7 H), 5.37 (s, 2H, isobenzofuran CH2), 3.88 (s, 3H, OCH3), 2.99 (t, 2H, J = 6.7 Hz, COOH-CH2-CH2), 2.68 (t, 2H, J = 6.7 Hz, COOH-CH2-CH2). 13C NMR, δ: 175.6 (COOH), 168.9 (C=O), 156.9 (isobenzofuran C4), 148.4 (phenyl C1), 140.5 (isobenzofuran C7a), 137.8 (phenyl C5), 137.1 (isobenzofuran C6), 135.7 (phenyl C6), 129.5 (phenyl C3), 128.7 (phenyl C2), 127.9 (isobenzofuran C5), 127.5 (phenyl C4), 118.0 (isobenzofuran C3a), 117.1 (isobenzofuran C7), 68.9 (isobenzofuran C1), 62.7 (OCH3), 47.4 (COOH-CH2-CH2), 30.8 (COOH-CH2-CH2), ppm. EI-MS m/z 312 (M+,

3-(3-(4-Methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenyl)propanoic acid 115

Following the general procedure 2 using 6-bromo-7-methylisobenzofuran-1(3H)-one 91 (95 mg, 0.418 mmol), 3-(3-boronophenyl)propanoic acid 113 (97.3 mg, 0.502 mmol), tetrakis(triphenylphosphine)palladium(0) (24.2 mg, 0.021 mmol) and potassium phosphate (266.2 mg, 1.254 mmol) and heating for 4 h, the acid 115 was isolated as a white solid (66.8 mg, 54%), mp: 110-111 °C; IR (cm⁻¹): v 2989 (m, OH), 1731 (s, C=O), 1696 (s, C=O). 1H NMR (CDCl3), δ: 7.55 (d, 1H, J = 7.8 Hz, isobenzofuran_6 H), 7.50 (d, 1H, J = 7.3 Hz, phenyl_4 H), 7.37 (t, 1H, J = 7.3 Hz, phenyl_5 H), 7.26 (d, 1H, J = 7.3 Hz, phenyl_6 H), 7.20 (s, 1H, phenyl_2 H), 7.16 (d, 1H, J = 7.3 Hz, isobenzofuran_7 H), 5.28 (s, 2H, isobenzofuran CH2), 3.02 (t, 2H, J = 7.3 Hz, COOH-CH2-CH2), 2.74 (t, 2H, J = 7.3 Hz, COOH-CH2-CH2), 2.59 (s, 3H, CH3). 13C NMR, δ: 185.4 (COOH), 171.6 (C=O), 146.3 (phenyl C1), 143.5 (isobenzofuran C7a), 140.5 (phenyl C3), 140.3 (isobenzofuran C4), 137.6 (phenyl C2), 135.7 (isobenzofuran C5), 132.3 (phenyl C5), 129.5 (phenyl C6), 128.7 (isobenzofuran C6), 127.6 (phenyl C4), 123.8 (isobenzofuran C3a), 119.1 (isobenzofuran C7), 68.5 (isobenzofuran C1), 35.7 (COOH-CH2-CH2), 30.7 (COOH-CH2-CH2), 14.9 (CH3) ppm. EI-MS m/z 296 (M+,
100%), 278 (54), 260 (46), 250 (80), 136 (60), 223 (40). HRMS (ESI) calcd for C_{18}H_{17}O_{4} (MH+), 297.1127; found, 297.1129. HPLC purity: 97.9%, R_{t}=5.571 (1% solvent B in solvent A).

3-(3-(4,6-Dimethoxy-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenyl)propanoic acid 116

Following the general procedure 2 using 6-bromo-5,7-dimethoxyisobenzofuran-1(3H)-one 94 (80 mg, 0.293 mmol), 3-(3-borono phenyl)propanoic acid 113 (68.2 mg, 0.352 mmol), tetrakis(triphenylphosphine)palladium(0) (16.9 mg, 0.015 mmol) and potassium phosphate (186.6 mg, 0.879 mmol) and heating for 6 h, the acid 116 was isolated as a pale yellow oil in (56 mg, 56%), IR (cm⁻¹): ν 2989 (m, OH), 1750 (s, C=O), 1739 (s, C=O), 1208 (w, C-O). ¹H NMR (CDCl₃), δ: 7.33 (t, 1H, J = 7.9 Hz, phenyl_5 H), 7.18 (d, 1H, J = 7.9 Hz, phenyl_4 H), 7.12-7.10 (m, 2H, phenyl_2,6 H), 6.50 (s, 1H, isobenzofuran_7 H), 4.98 (s, 2H, isobenzofuran CH₂), 4.03 (s, 3H, isobenzofuran_4 OCH₃), 3.85 (s, 3H, isobenzofuran_6 OCH₃), 2.97 (t, 3H, J = 7.6 Hz, COOH-CH₂-CH₂), 2.66 (t, 3H, J = 7.6 Hz, COOH-CH₂-CH₂). ¹³C NMR, δ: 177.2 (COOH), 169.0 (C=O), 162.8 (isobenzofuran C6), 159.4 (isobenzofuran C4), 149.3 (phenyl C1), 140.7 (isobenzofuran C7a), 133.8 (phenyl C3), 129.3 (phenyl C2), 128.7 (phenyl C5), 127.7 (phenyl C4), 127.4 (phenyl C6), 117.5 (isobenzofuran C3a), 106.1 (isobenzofuran C5), 95.5 (isobenzofuran C7), 68.3 (isobenzofuran C1), 56.3 (isobenzofuran_6 OCH₃), 56.2 (isobenzofuran_4 OCH₃), 35.1 (COOH-CH₂-CH₂), 30.7 (COOH-CH₂-CH₂) ppm. EI-MS m/z 342 (M+, 100), 326 (25), 296 (26). HRMS (ESI) calcd for C_{19}H_{18}O_{6} (MH+), 343.1182; found, 343.1190. HPLC purity: 98.7%, R_{t}=13.234 (5% solvent B in solvent A).
3-(3-(3-Oxo-1,3-dihydroisobenzofuran-5-yl)phenyl)propanoic acid 117

Following the general procedure 2 using 6-bromoisobenzofuran-1(3H)-one 100 (90 mg, 0.422 mmol), 3-(3-boronophenyl)propanoic acid 113 (98.2 mg, 0.506 mmol), tetrakis(triphenylphosphine)palladium(0) (24.4 mg, 0.021 mmol) and potassium phosphate (268.7 mg, 1.266 mmol) and heating for 4 h, the acid 117 was isolated as a white solid (92.8 mg, 78%), mp: 118-119 °C; IR (cm\(^{-1}\)) \(\nu\) 2972 (m, OH), 1743 (s, C=O), 1699 (s, C=O). \(^1\)H NMR (CDCl\(_3\)), \(\delta\): 8.11 (s, 1H, isobenzofuran _4 H), 7.90 (s, 1H, isobenzofuran _4 H), 7.90 (d, 1H, \(J = 8.0\) Hz, phenyl _4 H), 7.55 (d, 1H, \(J = 7.9\) Hz, phenyl _6 H), 7.47 (s, 1H, phenyl _2 H), 7.46 (d, 1H, \(J = 6.2\) Hz, isobenzofuran _6 H), 7.41 (t, 1H, \(J = 8.0\) Hz, phenyl _5 H), 7.27 (d, 1H, \(J = 6.7\) Hz, isobenzofuran _7 H), 5.37 (s, 2H, isobenzofuran _CH\(_2\)), 3.05 (t, 2H, \(J = 7.6\) Hz, COOH-CH\(_2\)-CH\(_2\)), 2.75 (t, 2H, \(J = 7.6\) Hz, COOH-CH\(_2\)-CH\(_2\)). \(^{13}\)C NMR, \(\delta\): 178.3 (COOH), 171.4 (C=O), 145.5 (phenyl C1), 142.8 (isobenzofuran C7a), 141.4 (phenyl C2), 139.9 (isobenzofuran C5), 133.4 (phenyl C3), 129.6 (phenyl C5), 128.3 (phenyl C6), 127.6 (isobenzofuran C6), 126.7 (isobenzofuran C3a), 125.6 (phenyl C4), 124.3 (isobenzofuran C4), 122.7 (isobenzofuran C7), 69.9 (isobenzofuran C1), 35.6 (COOH-CH\(_2\)-CH\(_2\)), 30.8 (COOH-CH\(_2\)-CH\(_2\)) ppm. EI-MS \(m/z\) 282 (M+, 70), 253 (20), 237 (100%), 223 (16). HRMS (ESI) calcd for C\(_{17}\)H\(_{15}\)O\(_4\) (MH\(+\)), 283.0974; found, 283.0974. HPLC purity: 99.6%, \(R_t=6.285\) (2% solvent B in solvent A).

2-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile 119

Under a N\(_2\) atmosphere, an oven dried 100 mL flask was charged with 2-(3-iodophenoxy)acetonitrile 124 (1.16 g, 4.479 mmol), bis(pinacolato)diboron 125 (4.55 g, 17.916 mmol), potassium acetate (17.916 mmol, 1.76 g) and [1,1-
bis(diphenylphosphino)ferrocene|dichloropalladium(II) (PdCl₂(dppf)) (32.8 mg, 1 mol%). Dry THF (50 mL) was added to the mixture, and the flask was heated at reflux for 18 h under N₂ atmosphere. The solvent was then evaporated under reduced pressure, ethyl acetate (30 mL) was added and the mixture was sonicated for 10 min and filtered. The filtrate was triturated with MgSO₄ and charcoal (0.5 g), and filtered through a short pad of celite. The filtrate was then concentrated under reduced pressure and the resulting residue was recrystallised from a mixture of ethyl acetate/hexane (3:2) to give the boronic ester 119 as a pink solid (1.1 g, 95%), mp: 40–41 ºC; IR (cm⁻¹): v 2980 (m, C–H aliphatic), 2152 (m, CN), 1128 (w, C–O). ¹H NMR (CDCl₃), δ: 7.43 (d, 1H, J = 7.6 Hz, phenoxy_6 H), 7.39 (s, 1H, phenoxy_2 H), 7.08 (t, 1H, J = 7.9 Hz, phenoxy_5 H), 6.96 (d, 1H, J = 8.0 Hz, phenoxy_4 H), 4.76 (s, 2H, CH₂), 1.26 (s, 12H, 4CH₃). ¹³C NMR, δ: 157.1 (phenoxy C1), 132.6 (phenoxy C3), 131.4 (phenoxy C5), 124.7 (phenoxy C4), 114.8 (CN), 114.6 (phenoxy C2), 94.6 (phenoxy C6), 83.7 (dioxaborolan C4, C5), 53.9 (CH₂), 25.2 (4CH₃) ppm. ESI-MS m/z 259 (M+). HRMS (ESI) calcd for C₁₄H₁₉BNO₃ (MH+), 260.1458; found, 260.1462.

General procedure 3: Suzuki coupling of 6-bromobenzolactone derivatives 90 and 91 with (3-(cyanomethoxy)phenyl)boronic acid 118 or ester 119:

A round bottom 25 mL flask was charged with the appropriate dihydroisobenzofuran derivative (1 equiv), (3-(cyanomethoxy)phenyl)boronic acid 118 (1 equiv) or 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile 119 (1.2 equiv), tetrakis(triphenylphosphine)palladium(0) (5 mol%), 1,4-dioxane (10 mL) was added and the flask was sealed with a rubber cap. The reaction mixture was degassed by flushing N₂ through a needle for 10 min. The flask was heated in an oil bath at 85 ºC. When all the solid was dissolved, potassium phosphate (3 mmol, 636.8 mg) dissolved in water (5 mL) was added to the reaction via a needle. The flask was then heated at 85 ºC for 7-15 h. The solvent was concentrated under reduced pressure, and was added 1M HCl (10 mL), the reaction mixture turned to a white turbid solution which was then extracted with ethyl acetate (2 x 30 mL), washed with brine (2 x 10 mL) and dried (MgSO₄). The solvent was evaporated and the residue was subjected to flash column chromatography (40% ethyl acetate in petroleum spirit).
2-(3-(4-Methoxy-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenoxy)acetonitrile 120

![Chemical Structure 120](image)

Following the general procedure 3 using 6-bromo-7-methoxyisobenzofuran-1(3H)-one 90 (100 mg, 0.411 mmol), (3-(cyanomethoxy)phenyl)boronic acid 118 (72 mg, 0.411 mmol), tetrakis(triphenylphosphine)palladium(0) (23.7 mg, 0.021 mmol) and heating for 15 h, the acetonitrile intermediate 120 was isolated as a white solid (60.7 mg, 50%), mp: 103-104 ºC; IR (cm⁻¹): ν 2920 (w, C-H aliphatic), 2165 (m, CN), 1759 (s, C=O), 1212 (w, C-O). ¹H NMR (CDCl₃), δ: 7.74 (d, 1H, J = 7.7 Hz, isobenzofuran_6 H), 7.43 (t, 1H, J = 8.0 Hz, phenyl_5 H), 7.25-7.23 (m, 2H, phenyl_4 H, isobenzofuran_7 H), 7.19 (s, 1H, phenyl_2 H), 7.02 (d, 1H, J = 8.2 Hz, phenyl_6 H), 5.30 (s, 2H, isobenzofuran CH₂), 4.83 (s, 2H, CN-CH₂), 3.90 (s, 3H, OCH₃). ¹³C NMR, δ: 168.5 (C=O), 156.7 (phenyl C1), 156.4 (isobenzofuran C4), 148.7 (isobenzofuran C7a), 138.7 (isobenzofuran C6), 137.4 (phenyl C5), 134.7 (isobenzofuran C5), 129.8 (phenyl C4), 124.1 (phenyl C3), 117.9 (phenyl C6), 117.1 (phenyl C2), 116.1 (CN), 115.1 (isobenzofuran C3a), 114.5 (isobenzofuran C7), 68.7 (isobenzofuran C1), 62.7 (CN-CH₂), 53.7 (OCH₃) ppm. EI-MS m/z 295 (M+, 15), 255 (100%), 237 (13), 208 (10), 180 (16). HRMS (ESI) calcd for C₁₇H₁₄NO₄ (MH+), 296.0914; found, 296.0913. HPLC purity: 98.3%, Rᵣ=16.676 (1% solvent B in solvent A).

2-(3-(4-Methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenoxy)acetonitrile 121

![Chemical Structure 121](image)

Following the general procedure 3 using 6-bromo-7-methoxyisobenzofuran-1(3H)-one 91 (100 mg, 0.358 mmol), 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile 119 (111.4 mg, 0.430 mmol), tetrakis(triphenylphosphine)palladium(0) (20.7 mg, 0.018 mmol) and heating for 7 h, the acetonitrile intermediate 121 was isolated as white solid (93.4 mg, 76%), mp: 99-100 ºC; IR (cm⁻¹): ν 2972 (w, C-H
aliphatic), 2169 (m, CN), 1743 (s, C=O). 1H NMR (CDCl$_3$), δ: 7.74 (d, 1H, J = 7.7 Hz, isobenzofuran_6 H), 7.43 (t, 1H, J = 7.9 Hz, phenyl_5 H), 7.32 (d, 1H, J = 7.7 Hz, isobenzofuran_7 H), 7.02 (d, 2H, J = 8.0 Hz, phenyl_4,6 H), 6.93 (s, 1H, phenyl_2 H), 5.28 (s, 2H, isobenzofuran CH$_2$), 4.83 (s, 2H, CN-CH$_2$), 2.60 (s, 3H, CH$_3$). 13C NMR, δ: 171.4 (C=O), 156.7 (phenyl C1), 146.7 (isobenzofuran C7a), 142.8 (isobenzofuran C4), 142.1 (isobenzofuran C5), 137.6 (phenyl C3), 135.6 (phenyl C5), 130.1 (isobenzofuran C3a), 124.4 (phenyl C4), 124.1 (isobenzofuran C6), 119.4 (isobenzofuran C7), 116.4 (phenyl C2), 115.3 (CN), 114.1 (phenyl C6), 68.6 (isobenzofuran C1), 53.9 (CN-CH$_2$), 15.0 (CH$_3$) ppm. EI-MS m/z 279 (M+, 90), 239 (100%), 223 (15), 195 (12), 165 (24). HRMS (ESI) calcd for C$_{17}$H$_{14}$NO$_3$ (MH$^+$), 280.0974; found, 280.0966. HPLC purity: 98.1%, R$_t$=11.021 (1% solvent B in solvent A).

2-(3-Iodophenoxy)acetonitrile 12465+

\[
\begin{align*}
\text{N} & \equiv \text{O} \\
& \quad \text{I}
\end{align*}
\]

A solution of 3-iodophenol 122 (2.0 g, 9.09 mmol) and NaOH (0.91 g, 22.73 mmol) in dry DMF (25 mL) was stirred vigorously for 30 min until the solution became pale brown. 2-Chloroacetonitrile 123 (1.03 g, 0.86 mL, 13.64 mmol) was then added dropwise through a syringe and the mixture was further stirred for 18 h at room temperature. The resulting brown solution was then poured onto crushed ice (100 mL), stirred for 30 min, and the resulting oil was extracted with ethyl acetate (2 x 25 mL). The combined organic layers were washed with water (2 x 25 mL), brine (2 x 25 mL) and dried (MgSO$_4$). The organic fraction was then triturated with charcoal (0.5 g) and filtered through celite, and evaporated under reduced pressure to afford 2-(3-iodophenoxy)acetonitrile 124 as a yellow oil (1.88 g, 80%), IR (cm$^{-1}$): ν 2942 (m, C-H aliphatic), 2246 (s, CN), 1203 (w, C-O). 1H NMR (CDCl$_3$), δ: 7.37 (d, 1H, J = 7.7 Hz, phenoxy_6 H), 7.29 (s, 1H, phenoxy_2 H), 7.02 (t, 1H, J = 7.9 Hz, phenoxy_5 H), 6.90 (d, 1H, J = 8.0 Hz, phenoxy_4 H), 4.68 (s, 2H, CH$_2$). 13C NMR, δ: 157.1 (phenoxy C1), 132.5 (phenoxy C5), 131.6 (phenoxy C4), 124.7 (phenoxy C2), 115.3 (CN), 114.6

1This reference was published in 2013 after the synthesis of 124 in this work, and it only reports the 1H NMR, 13C NMR and LRMS.
Experimental

54.0 (CH$_2$) ppm. EI-MS m/z 259 (M+, 100%), 219 (27), 203 (5). HRMS (ESI) calcd for C$_8$H$_7$INO (MH$^+$), 259.9572; found, 259.9565.

General procedure 4: synthesis of the benzolactone-tetrazole conjugates 126 and 127 using sodium azide method:

Under a N$_2$ atmosphere, a round bottom flask (25 mL) was charged with the appropriate acetonitrile derivative 120-121 (0.186 mmol), sodium azide (48.4 mg, 0.744 mmol), ammonium chloride (39.4 mg, 0.744 mmol), DMF (10 mL) and a catalytic amount of glacial acetic acid (5-10 drops), and the reaction mixture was then heated at reflux for 24 h. DMF was concentrated under reduced pressure and the residue was dried by vacuum. Ethanol was added to the resulting dry residue and the mixture was sonicated for 10 min, filtered and the ethanol solution was concentrated and subjected to PLC (90% CH$_2$Cl$_2$, 10% ethanol and 0.1% TFA) to yield the tetrazole conjugate 126 and 127.

6-(3-((1H-Tetrazol-5-yl)methoxy)phenyl)-7-methoxyisobenzofuran-1(3H)-one 126

Following the general procedure 4 using 2-(3-(4-methoxy-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenoxy)acetonitrile 120 (55 mg), the tetrazole conjugate 126 was isolated as a pale yellow solid (21.4 mg, 34%), mp: 130-131 °C; IR (cm$^{-1}$): ν 3404 (w, NH), 2907 (w, C-H aliphatic), 1751 (s, C=O), 1660 (m, C=N), 1134 (w, C-O) Hz. 1H NMR (CD$_3$OD), δ: 7.27 (d, 1H, $J = 7.7$ Hz, isobenzofuran_5 H), 7.42 (t, 1H, $J = 7.9$ Hz, phenyl_5 H), 7.37 (d, 1H, $J = 7.7$ Hz, isobenzofuran_4 H), 7.22-7.17 (m, 2H, phenyl_2,4 H), 7.10 (d, 1H, $J = 8.2$ Hz, phenyl_6 H), 5.50 (s, 2H, isobenzofuran CH$_2$), 5.34 (s, 2H, O-CH$_2$), 3.78 (s, 3H, OCH$_3$). 13C NMR, δ: 169.7 (C=O), 157.9 (phenyl C3), 156.5 (isobenzofuran C7), 149.6 (tetrazole C), 138.7 (isobenzofuran C3a), 137.7 (isobenzofuran C5), 135.1 (phenyl C5), 129.4 (phenyl C6), 123.0 (phenyl C1), 117.6 (phenyl C4), 117.5 (phenyl C2), 115.9 (isobenzofuran C7a),
113.9 (isobenzofuran C4), 69.3 (isobenzofuran C3), 61.7 (tetrazole-\textsubscript{CH$_2$-O}), 59.9 (OCH$_3$) ppm. EI-MS m/z 338 (M+, 14), 255 (100%), 239 (10), 211 (12), 195 (11). HRMS (ESI) calcd for C$_{17}$H$_{15}$N$_4$O$_3$ (MH$^+$), 339.1093; found, 339.1107. HPLC purity: 96.3%, R_t=16.339 (5% solvent B in solvent A).

6-(3-((1H-Tetrazol-5-yl)methoxy)phenyl)-7-methylisobenzofuran-1(3H)-one 127

Following the general procedure 4 using 2-(3-(4-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)phenoxy)acetonitrile 121 (51.9 mg), the final tetrazole conjugate 127 was isolated as a pale yellow gummy solid (21 mg, 35%), IR (cm$^{-1}$): ν 3392 (m, NH), 2988 (w, C-H aliphatic), 1741 (s, C=O), 1668 (m, C=N), 1212 (w, C-O).

1H NMR (CD$_3$OD), δ: 7.58 (d, 1H, J = 7.7 Hz, isobenzofuran$_5$ H), 7.48 (d, 1H, J = 7.7 Hz, isobenzofuran$_4$ H), 7.44 (t, 1H, J = 7.9 Hz, phenyl$_5$ H), 7.12 (d, 1H, J = 7.9 Hz, phenyl$_6$ H), 7.03 (s, 1H, phenyl$_2$ H), 6.99 (d, 1H, J = 7.5 Hz, phenyl$_4$ H), 5.51 (s, 2H, isobenzofuran CH$_2$), 5.36 (s, 2H, O-CH$_2$), 2.55 (s, 3H, CH$_3$). 13C NMR, δ: 170.9 (C=O), 162.4 (phenyl C3), 157.3 (tetrazole C), 147.2 (isobenzofuran C3a), 142.1 (isobenzofuran C7), 141.1 (isobenzofuran C6), 135.7 (phenyl C5), 135.4 (isobenzofuran C5), 129.7 (phenyl C1), 122.9 (isobenzofuran C7a), 122.7 (phenyl C6), 120.8 (isobenzofuran C4), 115.8 (phenyl C2), 114.1 (phenyl C4), 68.5 (isobenzofuran C3), 59.3 (tetrazole-\textsubscript{CH$_2$-O}), 14.4 (CH$_3$) ppm. EI-MS m/z 322 (M+, 50), 239 (75), 223 (26), 195 (60), 165 (100%). HRMS (ESI) calcd for C$_{17}$H$_{15}$N$_4$O$_3$ (MH$^+$), 323.1144; found, 323.1138. HPLC purity: 98.7%, R_t=10.695 (5% solvent B in solvent A).
5-((3-Iodophenoxy)methyl)-1H-tetrazole 128

In a round bottom 50 mL flask, a solution of 2-(3-iodophenoxy)acetonitrile 124 (1.6 g, 6.18 mmol), sodium azide (1.6 g, 24.7 mmol) and ammonium chloride (1.3 g, 24.7 mmol) in dry DMF (25 mL), containing few drops of glacial acetic acid, was heated at reflux for 14 h under a N₂ atmosphere. The solvent was then concentrated under reduced pressure, and the resulting residue was dried under vacuum. Ethanol (25 mL) was added to the residue and the mixture was sonicated for 10 min, filtered and ethanol was evaporated under reduced pressure resulting in a white fluffy solid of the tetrazole intermediate 128 (1.5 g, 80%), mp: 99-100 °C ; IR (cm⁻¹): ν 2995 (w, NH), 1589 (m, C=N), 1240 (w, C=O). δ: 7.46 (s, 1H, phenoxy_2 H), 7.39 (t, 1H, J = 7.0 Hz, phenoxy_5 H), 7.09-7.08 (m, 2H, phenoxy_4,6 H), 5.47 (s, 2H, CH₂). ¹³C NMR, δ: 159.7 (phenoxy C1), 155.3 (tetrazole C), 132.4 (phenoxy C4), 132.2 (phenoxy C5), 125.4 (phenoxy C2), 115.3 (phenoxy C6), 94.9 (phenoxy C3), 61.1 (CH₂) ppm. EI-MS m/z 302 (M+, 100%), 220 (80), 203 (10). HRMS (ESI) calcd for C₈H₈IN₄O (MH+), 302.9743; found, 302.9734.

Potassium 5-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)methyl)tetrazol-1-ide 129

Under a N₂ atmosphere, an oven dried 100 mL flask was charged with 5-((3-iodophenoxy)methyl)-1H-tetrazole 128 (960 mg, 3.179 mmol), bis(pinacolato)diboron 125 (3.2 g, 12.716 mmol), potassium acetate (1.25 g, 12.716 mmol) and PdCl₂(dppf) (23.3 mg, 1 mol%). Dry THF (30 mL) was added to the mixture, and the flask was heated at reflux for 18 h under a N₂ atmosphere. The solvent was then concentrated under reduced pressure. Ethanol (30 mL) was added to the resulting residue and the
mixture was further heated at reflux for 10 min, filtered hot and concentrated under reduced pressure to afford a white solid of the boronic ester potassium salt 129 (1.1 g, 99%), mp: >250 °C; IR (cm⁻¹): υ 2983 (s, C-H aliphatic), 1680 (m, C=N), 1233 (w, C-O). ¹H NMR (CD₃OD), δ: 7.38 (s, 1H, phenoxy_2 H), 7.28 (d, 1H, J = 7.1 Hz, phenoxy_6 H), 7.04-6.99 (m, 2H, phenoxy_4,5 H), 5.25 (s, 2H, CH₂), 1.90 (s, 12H, 4CH₃). ¹³C NMR, δ: 178.5 (phenoxy C1), 159.5 (tetrazole C), 158.3 (phenoxy C3), 130.8 (phenoxy C5), 130.2 (phenoxy C4), 124.2 (phenoxy C6), 114.2 (phenoxy C2), 93.6 (dioxaborolan C4, C5), 61.2 (CH₂), 22.6 (4CH₃) ppm. ESI-MS m/z 301.1 (M-K⁻).

General procedure 5: synthesis of the benzolactone-tetrazole conjugates 130 and 131 using the coupling method:

Under a N₂ atmosphere, a mixture of the appropriate bromoisobenzofuran-1(3H)-one derivative (1 mmol) and potassium 5-((3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)methyl)tetrazol-1-ide 129 (374 mg, 1.1 mmol), tetrakis(triphenylphosphine)palladium(0) (80.9 mg, 7 mol%) and potassium phosphate (636.8 mg, 3 mmol) was added to a solvent mixture of 1,4-dioxane (25 mL) and water (10 mL) in a 50 mL round bottom flask. The reaction mixture was degassed by flushing N₂ through a needle for 10 min, the flask was then sealed with a rubber cap, heated at 85 °C for 20-24 h. The solvent was then concentrated under reduced pressure. Saturated NaHCO₃ (25 mL) was added to the resulting residues, and the mixture sonicated for 15 min, before the turbid solution was washed with CH₂Cl₂ (25 mL). The aqueous layer was filtered, cooled to 0 °C using an ice bath, and the filtrate was then neutralized with 2 M HCl. The resulting white solid was collected by vacuum filtration, washed with chilled methanol and dried under vacuum to afford the tetrazoles 130, 131.
6-(3-((1H-Tetrazol-5-yl)methoxy)phenyl)-5,7-dimethoxyisobenzofuran-1(3H)-one 130

Following the general procedure 5 using 6-bromo-5,7-dimethoxyisobenzofuran-1(3H)-one 90 (1 mmol, 273 mg) and heating for 24 h, the final tetrazole conjugate 130 was isolated as a white solid (195 mg, 53%), mp: charring; IR (cm⁻¹): ν 3204 (w, NH), 1740 (s, C=O), 1614 (m, C=N), 1218 (w, C-O). ¹H NMR (CD₃OD), δ: 7.37 (t, 1H, J = 7.9 Hz, phenyl_5 H), 7.05 (d, 1H, J = 8.0 Hz, phenyl_6 H), 7.02 (s, 1H, phenyl_2 H), 6.98 (d, 1H, J = 7.7 Hz, phenyl_4 H), 6.78 (s, 1H, isobenzofuran_4 H), 5.48 (s, 2H, isobenzofuran CH₂), 5.09 (s, 2H, O-CH₂), 4.04 (s, 3H, isobenzofuran_7 OCH₃), 3.89 (s, 3H, isobenzofuran_5 OCH₃). ¹³C NMR, δ: 167.9 (C=O), 162.6 (isobenzofuran C5), 158.9 (phenyl C3), 157.4 (isobenzofuran C7), 153.6 (tetrazole C), 149.2 (isobenzofuran C3a), 134.9 (phenyl C5), 129.5 (phenyl C6), 122.8 (phenyl C4), 115.9 (phenyl C10), 115.7 (phenyl C11), 114.1 (isobenzofuran C7a), 104.7 (isobenzofuran C4), 96.2 (isobenzofuran C6), 67.8 (isobenzofuran C3), 59.2 (tetrazole-C₂H₂-O), 56.6 (isobenzofuran_7 OCH₃), 56.1 (isobenzofuran_5 OCH₃) ppm. ESI-MS m/z 367.1 (M-H). HRMS (ESI) calcd for C₁₈H₁₄N₄O₅ (M-H⁺), 367.1042; found, 367.1038. HPLC purity: 95.2%, Rₜ=18.896 (10% solvent B in solvent A).

6-(3-((1H-Tetrazol-5-yl)methoxy)phenyl)isobenzofuran-1(3H)-one 131

Following the general procedure 5 using 6-bromoisobenzofuran-1(3H)-one 91 (213 mg, 1 mmol) and heating for 20 h, the final tetrazole conjugate 131 was isolated as a white solid (181 mg, 59%), mp: charring; IR (cm⁻¹): ν 3195 (w, NH), 1751 (s, C=O), 1653 (m, C=N). ¹H NMR (CD₃OD), δ: 8.07 (s, 1H, isobenzofuran_7 H), 7.99 (d, 1H, J = 8.0 Hz, isobenzofuran_5 H), 7.67 (d, 1H, J = 8.0 Hz, isobenzofuran_4 H), 7.38 (t, 1H, J = 7.9 Hz, phenyl_5 H), 7.33 (s, 1H, phenyl_2 H), 7.24 (d, 1H, J = 7.5 Hz, phenyl_6 H), 7.09
(d, 1H, J = 8.0 Hz, phenyl_4 H), 5.42 (s, 2H, isobenzofuran CH₂), 5.37 (s, 2H, O-CH₂).

13C NMR, δ: 171.9 (C=O), 159.3 (phenyl C3), 146.3 (tetrazole C), 142.4 (isobenzofuran C3a), 140.9 (isobenzofuran C6), 133.2 (phenyl C1), 129.7 isobenzofuran C5), 125.9 (phenyl C5), 122.9 (phenyl C6), 122.7 (isobenzofuran C7), 122.6 (isobenzofuran C7a), 119.7 (phenyl C2), 114.4 (isobenzofuran C4), 113.7 (phenyl C4), 69.9 (isobenzofuran C3), 61.1 (tetrazole-CH₂-O ppm. ESI-MS m/z 307.1 (M-H). HRMS (ESI) calcd for C₁₆H₁₁N₄O₃ (M-H’), 307.0831; found, 307.0826. HPLC purity: 98.8%, Rₜ=13.175 (5% solvent B in solvent A).

5-Bromo-3-methyl-7-pivaloyl-7-azabicyclo[4.2.0]octa-1,3,5-trien-8-one 133

In an oven dried 50 mL flask and under a N₂ atmosphere, 2-amino-3-bromo-5-methylbenzoic acid 132 (750 mg, 3.26 mmol) was dissolved in dry THF (20 mL), and the flask was then sealed with a rubber cap with fitted with a N₂ balloon, and cooled to -78 ºC. n-BuLi (4.08 mL of 2 M solution, 8.15 mmol) was added dropwise through a needle and the mixture was stirred for 20 min at -78 ºC before adding pivaloyl chloride (0.48 mL, 3.91 mmol) dropwise. The reaction was then allowed to warm to room temperature and stirred for 3 h. The reaction mixture was then diluted with ethyl acetate (10 mL) and water (10 mL), the organic layer was separated and washed with water (2 x 20 mL), brine (2 x 10 mL) and dried (MgSO₄). The combined organic layers were concentrated under reduced pressure to yield the β-lactam derivative 133 as a colourless oil (452 mg, 47%), IR (cm⁻¹): ν 1745 (s, C=O), 1634 (s, C=O), 1465 (w, C-N), 1059 (w, C-Br). ¹H NMR (CDCl₃), δ: 7.94 (s, 1H, H₄), 7.86 (s, 1H, H2), 2.45 (s, 3H, CH₃), 1.42 (s, 9H, pivaloyl 3CH₃). ¹³C NMR, δ: 168.1 (pivaloyl C=O), 159.7 (C6), 142.3 (C=O), 140.9 (C4), 139.3 (C1), 127.4 (C2), 121.8 (C3), 117.8 (C5), 38.3 (CH₃), 27.6 (pivaloyl 3CH₃), 20.9 (CH₃) ppm. EI-MS m/z 295 (M+, 35), 280 (100%), 253 (20), 238 (37). HRMS (ESI) calcd for C₁₅H₁₅BrNO₂ (MH+), 296.0286; found, 296.0294.
3-(3-(3-Methyl-8-oxo-7-pivaloyl-7-azabicyclo[4.2.0]octa-1,3,5-trien-5-yl)phenyl)propanoic acid 137

Under a N\textsubscript{2} atmosphere, a 25 mL round bottom flask was charged with the β-lactam derivative 133 (100 mg, 0.339 mmol), 3-(3-boronophenyl)propanoic acid 113 (72.3 mg, 0.372 mmol), tetrakis(triphenylphosphine)palladium(0) (19.6 mg, 0.016 mmol) and potassium phosphate (215.9 mg, 1.02 mmol). A mixture of 1,4-dioxane (10 mL) and water (3 mL) was added and the reaction mixture was degassed by flushing N\textsubscript{2} through a needle for 10 min. The flask was then sealed with a rubber cap, heated at 85 °C for 18 h. The solvent was then concentrated under reduced pressure and the flask was cooled to 0 °C. Chilled 1 N HCl (10 mL) was added dropwise with stirring, and the resulting solid was extracted with ethyl acetate (2 x 15 mL). The combined organic layers were washed with water (15 mL), brine (15 mL) and dried (MgSO\textsubscript{4}) and concentrated under reduced pressure. The resulting residue was subjected to a flash column chromatography (50% CH\textsubscript{2}Cl\textsubscript{2}, 50% ethyl acetate and 1% acetic acid) to afford 137 as a pale yellow oil (74.2 mg, 60%). IR (cm-1): \(\nu \) 2959 (m, OH), 1696 (s, C=O), 1662 (s, C=O), 1481 (m, C-N).

1H NMR (CDCl\textsubscript{3}), \(\delta \): 8.56 (s, 1H, COOH), 7.77 (s, 1H, H\textsubscript{4}), 7.32-7.29 (m, 2H, phenyl H\textsubscript{2}, H\textsubscript{3}), 7.20 (d, 1H, \(J = 7.5 \) Hz, phenyl H\textsubscript{5}), 7.19 (s, 1H, phenyl H\textsubscript{6}), 2.97 (t, 2H, \(J = 7.5 \) Hz, COOH-\(\text{CH}_2-\text{CH}_2 \)), 2.68 (t, 2H, \(J = 7.6 \) Hz, COOH-\(\text{CH}_2-\text{CH}_2 \)), 2.37 (s, 3H, CH\textsubscript{3}), 1.03 (s, 9H, pivaloyl 3CH\textsubscript{3}). 13C NMR, \(\delta \): 178.4 (pivaloyl C=O), 176.9 (COOH), 171.9 (azabicyclo C=O), 140.4 (phenyl C1), 140.1 (azabicyclo C6), 139.8 (phenyl C3), 136.4 (phenyl C5), 135.8 (azabicyclo C4), 133.1 (azabicyclo C2), 130.9 (azabicyclo C3), 128.8 (azabicyclo C1), 128.7 (phenyl C2), 127.3 (phenyl C6), 126.8 (azabicyclo C5), 124.8 (phenyl C4), 39.3 (\(\text{C}(\text{CH}_3)_3 \)), 35.8 (COOH-CH\textsubscript{2}-CH\textsubscript{2}), 30.9 (COOH-CH\textsubscript{2}-CH\textsubscript{2}), 27.2 (pivaloyl 3CH\textsubscript{3}), 21.0 (CH\textsubscript{3}) ppm. EI-MS \textit{m/z} 365 (M+, 60), 350 (70), 320 (50), 299 (25), 277 (100%), 235 (26), 220 (23), 193 (52). HRMS (ESI) calcd for C\textsubscript{22}H\textsubscript{24}NO\textsubscript{4} (MH+), 366.1705; found, 366.1717. HPLC purity: 98.9%, \(R_t=27.924 \) (3% solvent B in solvent A).
3′-(Cyanomethoxy)-5-methyl-2-pivalamido-[1,1′-biphenyl]-3-carboxylic acid 138

Under a N₂ atmosphere, a 25 mL round bottom flask was charged with the β-lactam derivative 133 (100 mg, 0.339 mmol), (3-(cyanomethoxy)phenyl)boronic acid 118 (66.0 mg, 0.373 mmol), tetrakis(triphenylphosphine)palladium(0) (19.6 mg, 0.016 mmol) and potassium phosphate (215.9 mg, 1.02 mmol). A mixture of 1,4-dioxane (10 mL) and water (3 mL) was added and the reaction mixture was degassed by flushing N₂ through a needle for 10 min. The flask was then sealed with a rubber cap, heated at 85 °C for 12 h. The solvent was then concentrated under reduced pressure and 1 N HCl (10 mL) was added dropwise to the resulting residue which was extracted with ethyl acetate (2 x 15 mL). The combined organic layers were washed with water (15 mL), brine (15 mL) and dried (MgSO₄). The mixture was then concentrated under reduced pressure, and the resulting residue was subjected to a flash column chromatography and elution with 90% CH₂Cl₂, 10% ethanol and 0.1% TFA yielded 138 as a pale yellow oil (59.4 mg, 48%), IR (cm⁻¹): ν 3328 (m, NH), 2967 (m, OH), 2200 (m, CN), 1646 (w, NH), 1411 (w, C-N). ¹H NMR (CDCl₃), δ: 8.61 (s, 1H, COOH), 7.53 (s, 1H, phenyl_6 H), 7.32 (t, 1H, J = 7.7 Hz, phenyl_5'H), 7.15 (s, 1H, phenyl_4 H), 7.01 (d, 1H, J = 7.5 Hz, phenyl_6' H), 6.92-6.90 (m, 2H, phenyl_2', 4'), 6.47 (s, 1H, NH), 4.73 (s, 2H, CH₂), 2.28 (s, 3H, CH₃), 0.97 (s, 9H, pivaloyl 3 CH₃). ¹³C NMR, δ: 177.7 (pivaloyl C=O), 176.7 (COOH), 173.8 (C3'), 156.4 (C2), 141.7 (C5), 137.8 (C1), 135.7 (C6'), 133.2 (C4), 130.5 (C6), 129.7 (C1'), 129.6 (C6'), 123.4 (C4'), 115.6 (CN), 115.1 (C3), 113.3 (C2'), 53.5 (CH₂), 38.9 (CH(CH₃)₃), 26.9 (pivalamido 3 CH₃), 20.8 (CH₃) ppm. ESI-MS m/z 365.0 (M-H). HRMS (ESI) calcd for C₂₁H₂₃N₂O₄ (MH+), 367.1658; found, 367.1656. HPLC purity: 99.4%, Rₜ=17.599 (2% solvent B in solvent A).
General procedure 6: Suzuki coupling of 5-bromoisatin derivatives 103, 106, 112 and 139 with 3-(3-boronophenyl)propanoic acid 113:

Under a N₂ atmosphere, a 25 mL flask was charged with the 5-bromoisatin derivative (1 equiv), 3-(3-boronophenyl)propanoic acid 113 (1.2 equiv), tetrakis(triphenylphosphine)palladium(0) (5 mol%) and DME (3 mL) or diglyme (3 mL), was sealed with a rubber cap. The reaction mixture was degassed by flushing N₂ through a needle for 10 min, and was then heated in an oil bath at 85 ºC. When the solid dissolved, a N₂ degassed solution of potassium phosphate (3 equiv) in water (3 mL) was added to the reaction mixture and heating continued at 85 ºC for 4-6 h. After cooling to room temperature, the solvent was concentrated under reduced pressure. A solution of HCl 2 M (15 mL) was added, and the resulting suspended solid was either collected by filtration or extracted with ethyl acetate (2 x 25 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The combined residues were then dissolved in ethanol and were subjected to PLC (10% methanol in CH₂Cl₂, 0.5% acetic acid) to yield the isatin-acid conjugates 140-143.

3-(3-(4,6-Dimethoxy-2,3-dioxoindolin-5-yl)phenyl)propanoic acid 140

Following the general procedure 6 using 5-bromo-4,6-dimethoxyindoline-2,3-dione 103 (100 mg, 0.349 mmol), 3-(3-boronophenyl)propanoic acid 113 (81.2 mg,0.419 mmol), tetrakis(triphenylphosphine)palladium(0) (20.2 mg, 0.017 mmol) and potassium phosphate (222.2 mg, 1.047 mmol) and heating for 6 h, the acid 140 was isolated as a yellow solid (49.5 mg, 40%), mp: 175-176 ºC; IR (cm⁻¹): υ 3185 (m, NH), 2978 (m, OH), 1718 (s, C=O), 1696 (s, C=O), 1290 (w, C-O). ¹H NMR (DMSO-d₆), δ: 12.09 (s, 1H, COOH), 10.36 (s, NH), 7.31 (t, J = 7.5 Hz, 1H, phenyl_5 H), 7.20 (d, J = 7.5 Hz, 1H, phenyl_4 H), 7.08-7.06 (m, 2H, phenyl_2,6 H), 6.35 (s, 1H, isatin_7 H), 3.97 (s, 3H, isatin_4 OCH₃), 3.84 (s, 3H, isatin_C6 OCH₃), 2.58 (t, J = 7.5 Hz, 2H, COOH-CH₂-CH₂), 2.58 (t, J = 7.5 Hz, 2H, COOH-CH₂-CH₂). ¹³C NMR, δ: 178.1 (COOH), 174.0
(isatin C2), 166.6 (isatin C3), 161.5 (isatin C6), 160.1 (isatin C4), 149.2 (phenyl C1), 141.0 (isatin C7a), 131.2 (phenyl C3), 130.3 (phenyl C5), 128.3 (phenyl C6), 127.4 (phenyl C2), 120.9 (phenyl C4), 108.2 (isatin C7), 100.6 (isatin C5), 90.1 (isatin C3a), 56.7 (isatin_4 OCH₃), 56.3 (isatin_6 OCH₃), 35.0 (COOH-C₃H₂), 30.3 (COOH-CH₂-C₃H₂) ppm. EI-MS m/z 355 (M+, 40), 299 (4), 254 (100%), 191 (45). HRMS (ESI) calcd for C₁₉H₁₈NO₆ (MH+), 356.1134; found, 356.1116. HPLC purity: 99.3%, Rₚ=35.814 (3% solvent B in solvent A).

3-(3-(7-Methyl-2,3-dioxoindolin-5-yl)phenyl)propanoic acid 141

Following the general procedure 6 using 5-bromo-7-methylindoline-2,3-dione 106 (100 mg, 0.416 mmol), 3-(3-borophenyl)propanoic acid 113 (96.8 mg, 0.499 mmol), tetrakis(triphenylphosphine)palladium(0) (24 mg, 0.021 mmol) and potassium phosphate (264.9 mg, 1.248 mmol) and heating for 4 h, the acid 141 was isolated as a red solid (70 mg, 55%), mp: 238-239 °C; IR (cm⁻¹): ν 3172 (m, NH), 2989 (m, OH), 1731 (s, C=O), 1696 (s, C=O). ¹H NMR (Acetone-d₆), δ: 9.94 (s, NH), 7.81 (s, 1H, isatin_4 H), 7.66 (s, 1H, phenyl_2 H), 7.60 (s, 1H, isatin_6 H), 7.50 (d, J = 7.6 Hz, 1H, phenyl_6 H), 7.40 (t, J = 7.6 Hz, 1H, phenyl_5 H), 7.29 (d, J = 7.6 Hz, 1H, phenyl_4 H), 3.03 (t, J = 7.3 Hz, 2H, COOH-CH₂-CH₂), 2.71 (t, J = 7.3 Hz, 2H, COOH-CH₂-CH₂), 2.41 (s, 3H, CH₃). ¹³C NMR (DMSO-d₆), δ: 184.8 (COOH), 173.9 (isatin C3), 160.1 (isatin C2), 148.5 (isatin C7a), 141.7 (phenyl C3), 138.7 (phenyl C1), 137.6 (isatin C6), 134.8 (isatin C5), 128.9 (phenyl C5), 127.4 (phenyl C6), 126.5 (phenyl C2), 123.8 (phenyl C4), 122.1 (isatin C4), 119.8 (isatin C3a), 118.1 (isatin C7), 35.3 (COOH-CH₂-CH₂), 30.4 (COOH-CH₂-CH₂), 15.5 (CH₃) ppm. EI-MS m/z 309 (M+, 100%), 277 (25), 253 (80), 207 (79), 193 (30). HRMS (ESI) calcd for C₁₈H₁₆NO₄ (MH+), 310.1079; found, 310.1071. HPLC purity: 98.1%, Rₚ=5.339 (1% solvent B in solvent A).
3-(3-(4-Methoxy-7-methyl-2,3-dioxoindolin-5-yl)phenyl) propanoic acid 142

Following the general procedure 6 using 5-bromo-4-methoxy-7-methylindoline-2,3-dione 112 (100 mg, 0.370 mmol), 3-(3-boronophenyl)propanoic acid 113 (86.1 mg, 0.444 mmol), tetrakis(triphenylphosphine)palladium(0) (21.4 mg, 0.019 mmol) and potassium phosphate (235.6 mg, 1.11 mmol) and heating for 5 h, the acid 142 was isolated as a red solid (60 mg, 48%), mp: 219-220 ºC; IR (cm\(^{-1}\)): υ 3182 (m, NH), 2982 (m, OH), 1749 (s, C=O), 1692 (s, C=O). \(^1\)H NMR (DMSO-\(d_6\)), δ: 11.16 (s, NH), 7.40 (s, 1H, isatin_6 H), 7.13 (t, \(J = 7.4\) Hz, 1H, phenyl_5 H), 7.26 (s, 1H, phenyl_2 H), 7.22 (d, \(J = 7.4\) Hz, 1H, phenyl_6 H), 7.19 (d, \(J = 7.4\) Hz, 1H, phenyl_4 H), 3.81 (s, 3H, OCH\(_3\)), 2.86 (t, \(J = 7.4\) Hz, 2H, COOH-CH\(_2\)-CH\(_2\)), 2.56 (t, \(J = 7.4\) Hz, 2H, COOH-CH\(_2\)-CH\(_2\)), 2.41 (s, 3H, CH\(_3\)). \(^13\)C NMR, δ: 182.8 (COOH), 174.5 (isatin C2), 160.5 (isatin C3), 154.6 (isatin C4), 149.3 (isatin C3a), 142.6 (phenyl C1), 141.5 (isatin C6), 137.4 (phenyl C3), 129.5 (phenyl C2), 129.1 (phenyl C5), 128.8 (isatin C7), 127.7 (phenyl C6), 127.3 (phenyl C4), 116.5 (isatin C5), 110.3 (isatin C3a), 62 (OCH\(_3\)), 35.9 (COOH-CH\(_2\)-CH\(_2\)), 31.0 (COOH-CH\(_2\)-CH\(_2\)), 15.6 (CH\(_3\)) ppm. EI-MS \(m/z\) 339 (M+, 100%), 311 (75), 293 (10), 277 (77). HRMS (ESI) calcd for C\(_{19}\)H\(_{18}\)NO\(_5\) (MH\(^+\)), 340.1185; found, 340.1187. HPLC purity: 99.4%, \(R_t=5.579\) (1% solvent B in solvent A).

3-(3-(2,3-Dioxoindolin-5-yl)phenyl)propanoic acid 143

Following the general procedure 6 using 5-bromoindoline-2,3-dione 139 (100mg, 0.442 mmol), 3-(3-boronophenyl)propanoic acid 113 (102.9 mg, 0.530 mmol), tetrakis(triphenylphosphine)palladium(0) (25.5 mg, 0.022 mmol) and potassium
phosphate (281.5 mg, 1.326 mmol) and heating for 4 h, the acid 143 was isolated as an orange solid (84.8 mg, 65%), mp: 182-183 °C; IR (cm⁻¹): v 3185 (m, NH), 2989 (m, OH), 1714 (s, C=O), 1684 (s, C=O). ¹H NMR (DMSO-d₆), δ: 11.14 (s, NH), 7.77 (d, J = 1.4 Hz, 1H, isatin_4 H), 7.53 (s, 1H, phenyl_2 H), 7.46 (d, J = 7.6 Hz, 1H, phenyl_4 H), 7.35 (t, J = 7.5 Hz, 1H, phenyl_5 H), 7.21 (d, J = 7.5 Hz, 1H, phenyl_6 H), 6.99 (d, J = 7.9 Hz, 1H, isatin_7 H), 2.88 (t, J = 7.6 Hz, 2H, COOH-CH₂-CH₂), 2.59 (t, J = 7.5 Hz, 2H, COOH-CH₂-CH₂). ¹³C NMR, δ: 184.9 (COOH), 174.4 (isatin C3), 160.0 (isatin C2), 150.4 (isatin C7a), 142.2 (phenyl C3), 139.1 (phenyl C1), 136.9 (isatin C6), 135.4 (isatin C5), 129.4 (phenyl C5), 127.9 (phenyl C6), 126.7 (phenyl C2), 124.4 (phenyl C4), 122.9 (isatin C4), 118.9 (isatin C3a), 113.1 (isatin C7), 35.7 (COOH-CH₂-CH₂), 30.9 (COOH-CH₂-CH₂) ppm. EI-MS m/z 295 (M+, 40), 267 (100%), 250 (95), 207 (20), 193 (25). HRMS (ESI) calcd for C₁₇H₁₄NO₄ (MH+), 296.0914; found, 296.0912. HPLC purity: 98.2%, Rₜ=7.237 (1% solvent B in solvent A).

General procedure 7: Suzuki coupling of the 5-bromoisatin derivatives 103, 106, 112 and 139 with (3-(cyanomethoxy)phenyl)boronic acid 118:

Under a N₂ atmosphere, a 25 mL flask was charged with the 5-bromoisatin derivative (1 equiv), (3-(cyanomethoxy)phenyl)boronic acid 118 (1 equiv), tetrakis(triphenylphosphine)palladium(0) (5 mol%), potassium phosphate (3 equiv) and a mixture of diglyme (3 mL) and water (3 mL), and the reaction mixture was degassed by flushing N₂ through a needle for 10 min. The flask was then sealed and heated at 85 °C for 5-9 h. After cooling to room temperature, the solvent was concentrated under reduced pressure, and 1 N HCl (15 mL) was added. The suspended solid was either collected by filtration or extracted with ethyl acetate (2 x 25 mL). The combined organic layers were dried (MgSO₄) and evaporated under reduced pressure. The combined residues were adsorbed onto silica and subjected to flash column chromatography (40% ethyl acetate in petroleum spirit) to yield the acetonitrile derivative 144-147.
2-(3-(4,6-Dimethoxy-2,3-dioxoindolin-5-yl)phenoxy)acetonitrile 144

Following the general procedure 7 using 5-bromo-4,6-dimethoxyindoline-2,3-dione 103 (40 mg, 0.139 mmol), (3-(cyanomethoxy)phenyl)boronic acid 118 (24.6 mg, 0.139 mmol), tetrakis(triphenylphosphine)palladium(0) (8 mg, 0.007 mmol), potassium phosphate (88.5 mg, 0.417 mmol) and heating for 9 h, the acetonitrile intermediate 144 could not be isolated. Analysis of the crude mixture: EI-MS m/z 338 (M+, 17), 309 (7), 382 (66), 257 (100%), 225 (25). HRMS (ESI) calcd for C_{18}H_{15}N_{2}O_{5} (MH+), 339.0981; found, 339.0980. This sample was collected from the reaction mixture before purification trial. Could not purify and was not stable enough to get NMR data.

2-(3-(7-Methyl-2,3-dioxoindolin-5-yl)phenoxy)acetonitrile 145

Following the general procedure 7 using 5-bromo-7-methylindoline-2,3-dione 106 (100 mg, 0.416 mmol), (3-(cyanomethoxy)phenyl)boronic acid 118 (73.6 mg, 0.416 mmol), tetrakis(triphenylphosphine)palladium(0) (24 mg, 0.021 mmol), potassium phosphate (264.9 mg, 1.248 mmol) and heating for 5 h, the acetonitrile intermediate 145 was isolated as a red solid (63.2 mg, 52%), mp: 208-209 °C; IR (cm⁻¹): ν 3185 (w, NH), 2365 (m, C≡N), 1750 (s, C=O), 1587 (s, C=O). ¹H NMR (Acetone-d₆), δ: 10.13 (s, NH), 7.83 (s, 1H, isatin_4 H), 7.68 (s, 1H, isatin_C6), 7.47 (t, J = 7.8 Hz, 1H, phenoxy_5 H), 7.40-7.38 (m, 2H, phenoxy_2,4 H), 7.09 (d, J = 8.0 Hz, 1H, phenoxy_6 H), 5.21 (s, 2H, CH₂), 2.39 (s, 3H, CH₃). ¹³C NMR, δ: 185.1 (isatin C3), 160.5 (phenoxy C1), 158.6 (isatin C2), 149.8 (isatin C7a), 142.4 (phenoxy C3), 138.9 (isatin C7), 136.4 (isatin C6), 131.3 (isatin C5), 123.3 (phenoxy C5), 121.8 (isatin C4), 121.2 (phenoxy C4), 119.5 (phenoxy C2), 116.7 (phenoxy C6), 115.3 (CN), 114.1 (isatin C3a), 54.7 (CH₂), 15.8
(CH₃) ppm. EI-MS m/z 292 (M+, 93), 264 (80), 236 (100%), 196 (17), 180 (11). HRMS (ESI) calcd for C₁₇H₁₃N₂O₃ (MH+), 293.0926; found, 293.0931. HPLC purity: 97.9%, Rᵣ=13.070 (2.5% solvent C in solvent A).

2-(3-(4-Methoxy-7-methyl-2,3-dioxoindolin-5-yl)phenoxy) acetonitrile 146

Following the general procedure 7 using 5-bromo-4-methoxy-7-methylindoline-2,3-dione 112 (100 mg, 0.370 mmol), (3-(cyanomethoxy)phenyl)boronic acid 118 (65.5 mg, 0.370 mmol), tetrakis(triphenylphosphine)palladium(0) (21.4 mg, 0.019 mmol), potassium phosphate (235.6 mg, 1.11 mmol) and heating for 8 h, the acetonitrile intermediate 146 was isolated as a red solid (41.7 mg, 35%), mp: 179-180 °C; IR (cm⁻¹): ν 3190 (m, NH), 2166 (w, CN), 1706 (s, C=O), 1611 (s, C=O), 1294 (w, C-O). ¹H NMR (CD₃OD), δ: 7.40 (s, 1H, isatin_6 H), 7.38 (t, J = 8.2 Hz, 1H, phenoxy_5 H), 7.12 (d, J = 8.2 Hz, 1H, phenoxy_4 H), 7.11 (s, 1H, phenoxy_2 H), 7.01 (d, J = 8.3 Hz, 1H, phenoxy_6 H), 5.00 (s, 2H, CH₂), 3.91 (s, 3H, OCH₃), 2.22 (s, 3H, CH₃). ¹³C NMR, δ: 160.2 (isatin C3), 156.7 (phenoxy C1), 154.9 (isatin C6), 148.6 (isatin C4), 142.1 (isatin C7a), 138.9 (isatin C6), 137.8 (phenoxy C3), 129.2 (phenoxy C5), 123.4 (isatin C5), 120.5 (isatin C7), 115.9 (phenoxy C4), 115.7 (phenoxy C6), 115.5 (phenoxy C2), 113.7 (CN), 109.5 (isatin C3a), 61.13 (CH₂), 53.3 (OCH₃), 13.7 (CH₃) ppm. EI-MS m/z 322 (M+, 74), 294 (68), 280 (4), 254 (7), 226 (100%), 211 (11). HRMS (ESI) calcd for C₁₉H₁₅N₂O₄ (MH+), 323.1032; found, 323.1018. HPLC purity: 99.5%, Rᵣ=11.766 (2.5% isopropanol in solvent A).
2-(3-(2,3-Dioxoindolin-5-yl)phenoxy)acetonitrile 147

Following the general procedure 7 using 5-bromoindoline-2,3-dione 139 (100 mg, 0.442 mmol), (3-cyanomethoxy)phenyl)boronic acid 118 (78.2 mg, 0.442 mmol), tetrakis(triphenylphosphine)palladium(0) (25.5 mg, 0.022 mmol), potassium phosphate (281.5 mg, 1.326 mmol) and heating for 5 h, the acetonitrile intermediate 147 was isolated as a red solid (73.7 mg, 60%), mp: 205-206 ºC; IR (cm⁻¹): υ 3168 (w, NH), 2166 (m, CN), 1732 (s, C=O), 1621 (s, C=O). ¹H NMR (Acetone-d₆), δ: 10.04 (s, NH), 7.95 (d, J = 8.2, 1H, phenoxy_4 H), 7.83 (s, 1H, phenoxy_2 H), 7.47 (t, J = 8.2 Hz, 1H, phenoxy_5 H), 7.39-7.38 (m, 2H, isatin_4,7 H), 7.14 (d, J = 8.2 Hz, phenoxy_6 H), 7.09 (d, J = 8.6 Hz, 1H, isatin_6 H), 5.21 (s, 2H, CH₂). ¹³C NMR, δ: 184.1 (isatin C3), 159.6 (phenoxy C1), 157.8 (isatin C2), 150.4 (isatin C7a), 141.5 (phenoxy C3), 137.0 (phenoxy C4), 135.7 (phenoxy C2), 130.6 (phenoxy C5), 123.1 (isatin C5), 121.0 (isatin C7), 118.9 (phenoxy C6), 116.0 (CN), 114.6 (isatin C3a), 113.1 (isatin C4), 112.9 (isatin C6), 53.8 (CH₂) ppm. EI-MS m/z 278 (M+, 46), 250 (100%), 207 (5), 182 (49). HRMS (ESI) calcd for C₁₆H₁₁N₂O₃ (MH⁺), 279.0770; found, 279.0759. HPLC purity: 99.7%, Rₜ=20.046 (2.5% solvent C in solvent A).

9.1.5. Experimental for chapter 7

General procedure 8: synthesis of compounds 162, 164-166

A solution of 7-nitro-1,2,3,4-tetrahydroquinoline 161 (1.0 g, 5.62 mmol) in dry pyridine (3 mL) was cooled to 0 ºC. The appropriate sulfonyl chloride (6.18 mmol) was then added dropwise over 10 min with stirring and the mixture was then allowed to warm to room temperature and stirred for 24 h. Cold water (20 mL) was added, the resulting solid or oil was extracted with ethyl acetate (2 x 25 mL). The combined organic layers were washed with 1 M HCl (2 x 20 mL), brine (10 mL) and dried (MgSO₄). The solvent was then removed under reduced pressure. The resulting residue was subjected to flash...
column chromatography and elution with 20% ethyl acetate in petroleum spirit yielded the corresponding intermediate.

1-(Ethylsulfonyl)-7-nitro-1,2,3,4-tetrahydroquinoline 162

![Chemical structure of 162](image)

Following general procedure 8 using ethanesulfonyl chloride (794 mg, 6.18 mmol) gave the intermediate 162 (1.1 g, 70%) as a yellow solid, mp: 64-65 °C; IR (cm⁻¹): ν 3139 (w, C-H aromatic), 2944 (w, C-H aliphatic), 1517 (s, NO₂), 1345 (m, SO₂), 1333 (m, NO₂), 1147 (w, C-N). ¹H NMR, δ: 8.49 (s, 1H, H8), 7.86 (d, J = 8.3 Hz, 1H, H6), 7.28 (d, J = 8.3 Hz, 1H, H5), 3.83 (t, J = 6.0 Hz, 2H, H2), 3.22 (q, J = 7.5 Hz, 2H, ethyl CH₂), 2.95 (t, J = 6.5 Hz, 2H, H4), 2.07 (p, J = 6.0 Hz, 2H, H3), 1.41 (t, J = 7.5 Hz, 3H, CH₃). ¹³C NMR, δ: 146.7 (C8a), 137.9 (C7), 135.7 (C5), 130.4 (C4a), 118.3 (C6), 116.8 (C8), 47.1 (ethyl CH₂), 46.4 (C2), 27.6 (C4), 22.1 (C3), 8.0 (CH₃) ppm. EI-MS m/z 270 (M+, 55), 177 (90), 131 (100%). HRMS (ESI) calcd for C₁₁H₁₅N₂O₄S (MH+), 271.0753; found, 271.0744.

7-Nitro-1-(propylsulfonyl)-1,2,3,4-tetrahydroquinoline 164

![Chemical structure of 164](image)

Following general procedure 8 using propane-1-sulfonyl chloride (880.5 mg, 6.18 mmol) gave the intermediate 164 (1.28 g, 80%) as a yellow solid, mp: 79-80 °C; IR (cm⁻¹): ν 3128 (w, C-H aromatic), 2972 (w, C-H aliphatic), 1517 (s, NO₂), 1346 (m, SO₂), 1332 (m, NO₂), 1143 (w, C-N). ¹H NMR, δ: 8.51 (s, 1H, H8), 7.86 (d, J = 8.3 Hz, 1H, H6), 7.28 (d, J = 8.4 Hz, 1H, H5), 3.83 (t, J = 5.8 Hz, 2H, H2), 3.13 (t, J = 7.7 Hz, 2H,
propyl_1 CH₂, 2.95 (t, \(J = 6.4 \) Hz, 2H, H4), 2.07 (p, \(J = 5.9 \) Hz, 2H, H3), 1.89 (sex, \(J = 7.6 \) Hz, 2H, propyl_2 CH₂), 1.06 (t, \(J = 7.4 \) Hz, 3H, CH₃). \(^{13}\)C NMR, \(\delta \): 146.7 (C8a), 137.9 (C7), 135.8 (C5), 130.4 (C4a), 118.3 (C6), 116.8 (C8), 54.3 (propyl C1), 46.3 (C2), 27.6 (C4), 22.1 (C3), 17.1 (propyl C2), 12.9 (CH₃) ppm. EI-MS \(m/z \) 284 (M+, 54), 178 (92), 131 (100%). HRMS (ESI) calcd for C₁₂H₁₇N₂O₄S (MH+), 285.0909; found, 285.0916.

7-Nitro-1-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline 165

Following general procedure 8 using thiophene-2-sulfonyl chloride (1.13 g, 6.18 mmol) gave the intermediate 165 (1.52 g, 84%) as an orange solid, mp: 130-131 °C; IR (cm⁻¹): \(\nu \) 3139 (w, C-H aromatic), 2966 (w, C-H aliphatic), 1515 (s, NO₂), 1341 (m, SO₂), 1292 (m, NO₂), 1160 (w, C-N). \(^1\)H NMR, \(\delta \): 8.72 (s, 1H, H8), 7.91 (d, \(J = 8.4 \) Hz, 1H, H6), 7.56 (d, \(J = 4.8 \) Hz, 1H, thiophene_5 H), 7.52 (d, \(J = 3.1 \) Hz, 1H, thiophene_3 H), 7.21 (d, \(J = 8.4 \) Hz, 1H, H5), 7.06 (t, \(J = 4.4 \) Hz, 1H, thiophene_4 H), 3.89 (t, \(J = 6.2 \) Hz, 2H, H2), 2.66 (t, \(J = 6.5 \) Hz, 2H, H4), 1.80 (p, \(J = 6.2 \) Hz, 2H, H3). \(^{13}\)C NMR, \(\delta \): 146.7 (C8a), 138.9 (thiophene C1), 137.5 (C7), 137.2 (C5), 133.0 (thiophene C3), 132.9 (C4a), 129.9 (thiophene C4), 127.6 (thiophene C5), 119.4 (C6), 119.3 (C8), 46.6 (C2), 27.3 (C4), 21.2 (C3) ppm. EI-MS \(m/z \) 324 (M+, 10), 243 (9), 214 (17), 177 (15), 131 (100%). HRMS (ESI) calcd for C₁₃H₁₃N₂O₄S₂ (MH+), 325.0317; found, 325.0325.
7-Nitro-1-tosyl-1,2,3,4-tetrahydroquinoline 166

Following general procedure 8 using 4-methylbenzenesulfonyl chloride (1.18 g, 6.18 mmol) gave the intermediate 166 (1.64 g, 88%) as a yellow crystalline solid, mp: 133-134 °C; IR (cm⁻¹): υ 3136 (m, C-H aromatic), 2949 (m, C-H aliphatic), 1510 (s, NO₂), 1340 (m, SO₂), 1334 (w, NO₂), 1163 (w, C-N). ¹H NMR, δ: 8.68 (s, 1H, H8), 7.87 (dd, J = 8.4, 2.1 Hz, 1H, H6), 7.57 (d, J = 8.3 Hz, 2H, tosyl_2,6 H), 7.25 (d, J = 8.1 Hz, 2 H, tosyl_3,5 H), 7.17 (d, J = 8.4 Hz, 1H, H5), 3.85 (t, J = 6.0 Hz, 2H, H2), 2.64 (t, J = 6.5 Hz, 2H, H4), 2.40 (s, 3H, CH₃), 1.75 (p, J = 6.5 Hz, 2H, H3). ¹³C NMR, δ: 146.6 (C8a), 144.4 (C7), 137.8 (tosyl C4), 137.0 (tosyl C1), 136.1 (C5), 129.93 (C4a), 129.90 (tosyl C3, C5), 127.2 (tosyl C2, C6), 118.9 (C6), 118.8 (C8), 46.3 (C2), 27.2 (C4), 21.6 (C3), 21.1 (CH₃) ppm. EI-MS m/z 332 (M+, 70), 268 (46), 251 (49), 177 (70), 130 (100%). HRMS (ESI) calcd for C₁₆H₁₇N₂O₄S (MH+), 333.0909; found, 333.0900.

General procedure 9: synthesis of compounds 163, 167-169

A solution of the appropriate sulfonamide 162, 164-166 (1 equiv) and Raney Ni (0.05 equiv) in methanol (20 mL) was stirred at room temperature under a N₂ atmosphere. A solution of hydrazine hydrate (1.2 equiv) in methanol (10 mL) was then added dropwise and stirring continued for 10 min, after which the H₂ gas ceased to evolve, and the reaction mixture was then heated at reflux for 4-6 h. The mixture was then filtered hot through a short pad of celite, and the filtrate was concentrated under reduced pressure. The resulting residues were recrystallised either from methanol or toluene (80-90%).
7-Amino-1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinoline 163

Following the general procedure 9 using 1-(ethylsulfonyl)-7-nitro-1,2,3,4-tetrahydroquinoline 162 (1.1 g, 4.07 mmol), hydrazine hydrate (244 mg, 4.884 mmol) and heating for 4 h, the amine intermediate 163 was obtained by recrystallisation from methanol as a white solid (763 mg, 78%), mp: 65-66 °C; IR (cm⁻¹): ν 3358 (w, C-H aromatic), 2943 (w, C-H aliphatic), 1323 (m, SO₂), 1143 (w, C-N). ¹H NMR, δ: 7.07 (s, 1H, H₈), 6.88 (d, J = 8.0 Hz, 1H, H₆), 6.40 (d, J = 8.0 Hz, 1H, H₅), 3.78 (t, J = 6.0 Hz, 2H, H₂), 3.62 (s, br, NH₂), 3.10 (q, J = 7.3 Hz, 2H, ethyl CH₂), 2.73 (t, J = 6.4 Hz, 2H, H₄), 1.95 (p, J = 6.0 Hz, 2H, H₃), 1.33 (t, J = 7.3 Hz, 3H, CH₃). ¹³C NMR, δ: 145.4 (C₇), 137.9 (C₈a), 130.6 (C₅), 118.7 (C₄a), 111.7 (C₆), 108.3 (C₈), 46.9 (ethyl C₁), 46.2 (C₂), 26.7 (C₄), 23.1 (C₃), 8.2 (CH₃) ppm. EI-MS m/z 240 (M+, 30), 147 (100%), 130 (49). HRMS (ESI) calcd for C₁₁H₁₇N₂O₂S (MH+) 241.1011; found, 241.1005.

7-Amino-1-(propylsulfonyl)-1,2,3,4-tetrahydroquinoline 167

Following the general procedure 9 using 7-nitro-1-(propylsulfonyl)-1,2,3,4-tetrahydroquinoline 164 (1.2 g, 4.22 mmol), hydrazine hydrate (253 mg, 5.064 mmol) and heating for 4 h, the amine intermediate 167 was obtained by recrystallisation from methanol as an orange solid (808 mg, 75%), mp: 86-87 °C; IR (cm⁻¹): ν 3358 (m, NH₂), 2941 (w, C-H aliphatic), 1327 (m, SO₂), 1139 (w, C-N). ¹H NMR, δ: 7.07 (s, 1H, H₈), 6.88 (d, J = 8.1 Hz, 1H, H₆), 6.40 (d, J = 7.8 Hz, 1H, H₅), 3.77 (t, J = 5.8 Hz, 2H, H₂), 3.65 (s, br, NH₂), 3.02 (t, J = 7.4 Hz, 2H, propyl₁ CH₂), 2.71 (t, J = 6.3 Hz, 2H, H₄), 1.93 (p, J = 6.0 Hz, 2H, H₃), 1.83 (sex, J = 7.5 Hz, 2H, propyl₂ CH₂), 1.00 (t, J = 7.4
Hz, 3H, CH₃). ¹³C NMR, δ: 145.2 (C8), 137.6 (C8a), 130.4 (C5), 118.4 (C4a), 111.5 (C6), 108.2 (C8), 53.3 (propyl C1), 46.6 (C1), 26.5 (C4), 22.8 (C3), 17.0 (propyl C2), 13.0 (CH₃) ppm. ESI-MS m/z 255.2 (M+H). HRMS (ESI) calcd for C₁₂H₁₉N₂O₂S (MH⁺), 255.1167; found, 255.1156.

7-Amino-1-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline 168

Following the general procedure 9 using 7-nitro-1-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinoline 165 (1.0 g, 3.09 mmol), hydrazine hydrate (185 mg, 3.708 mmol) and heating for 6 h, the amine intermediate 168 was obtained by recrystallisation from toluene as a yellow solid (762 mg, 84%), mp: 78-79 ºC; IR (cm⁻¹): ν 3363 (w, NH₂), 3092 (w, C-H aromatic), 2937 (w, C-H aliphatic), 1337 (m, SO₂), 1153 (w, C-N). ¹H NMR, δ: 7.49 (d, J = 4.4 Hz, 1H, thiophene_5 H), 7.38 (d, J = 3.8 Hz, 1H, thiophene_3 H), 7.19 (s, 1H, H8), 6.99 (t, J = 4.5 Hz, 1H, thiophene_4 H), 6.80 (d, J = 8.0 Hz, 1H, H5), 6.46 (dd, J = 8.0, 2.1 Hz, 1H, H6), 3.80 (t, J = 6.0 Hz, 2H, H2), 3.67 (s, br, NH₂) 2.38 (t, J = 6.5 Hz, 2H, H4), 1.63 (p, J = 6.3 Hz, 2H, H3). ¹³C NMR, δ: 144.9 (C7), 139.6 (C8a), 136.8 (thiophene C1), 131.9 (thiophene C3), 131.8 (C4a), 129.8 (C5), 127.2 (thiophene C4), 120.7 (thiophene C5), 112.8 (C6), 111.4 (C8), 47.1 (C2), 25.9 (C4), 21.5 (C3) ppm. EI-MS m/z 294 (M+, 47), 230 (100%), 145 (52), 130 (65). HRMS (ESI) calcd for C₁₃H₁₅N₂O₂S₂ (MH⁺), 295.0575; found, 295.0562.
7-Amino-1-tosyl-1,2,3,4-tetrahydroquinoline 169

Following the general procedure 9 using 7-nitro-1-tosyl-1,2,3,4-tetrahydroquinoline 166 (1.0 g, 3.01 mmol), hydrazine hydrate (180.6 mg, 3.612 mmol) and heating for 6 h, the amine intermediate 169 was obtained by recrystallisation from toluene as a yellow crystalline solid (773 mg, 85%), mp: 89-90 °C (Lit.266 m.p: 109-110 °C); IR (cm⁻¹): υ 3353 (w, NH₂), 2949 (w, C-H aliphatic), 1339 (m, SO₂), 1156 (w, C-N). ¹H NMR, δ: 7.50 (d, J = 8.1 Hz, 2H, tosyl_3,5 H), 7.20 (s, 1H, H₈), 7.18 (d, J = 8.1 Hz, 2H, tosyl_2,6 H), 6.76 (d, J = 8.1 Hz, 1H, H₅), 6.44 (dd, J = 8.0, 2.1 Hz, 1H, H₆), 3.76 (t, J = 5.9 Hz, 2H, H₂), 3.64 (s, br, NH₂), 2.37 (s, 3H, CH₃), 2.33 (t, J = 6.4 Hz, 2H, H₄), 1.55 (p, J = 6.1 Hz 2H, H₃). ¹³C NMR, δ: 144.9 (C₇), 143.4 (C₈a), 137.4 (tosyl C₄), 136.9 (tosyl C₁), 129.5 (C₅), 127.13 (C₄a), 127.07 (tosyl C₃, C₅), 120.4 (tosyl C₂, C₆), 112.5 (C₆), 111.2 (C₈), 46.7 (C₂), 25.8 (C₄), 21.59 (C₃), 21.51 (CH₃) ppm. EI-MS m/z 302 (M+, 55), 238 (46), 147 (100%), 130 (75). HRMS (ESI) calcd for C₁₆H₁₉N₂O₂S (MH+), 303.1167; found, 303.1156.

General procedure 10: synthesis of compounds 160, 170-194

A solution of the appropriate amine intermediate 163, 167-169 (1 mmol) in dry pyridine (2 mL) was cooled at 0 °C. The appropriate sulfonyl chloride (1.2 mmol) was added portion wise over a 10 min period with stirring. The reaction mixture was then allowed to warm to room temperature and stirred for 6 h. Cold water (5 mL) was then added and the resulting solid or oil was extracted with ethyl acetate (2 x 10 mL). The combined organic layers were washed with 1 M HCl (2 x 10 mL), brine (10 mL) and dried (MgSO₄). The solvent was then concentrated under reduced pressure and the resulting residues were subjected to flash column chromatography (30% ethylacetate in
petroleum spirit) to yield the corresponding bis-sulfonamides 160 and 170-194 (70-80%).

N-(1-(Ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2-fluorobenzensulfonamide 160

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 2-fluorobenzensulfonyl chloride (233.5 mg). 160 was isolated as a colourless solid (282.6 mg, 71%), mp: 108-109 °C; IR (cm\(^{-1}\)): \(\nu\) 3223 (m, NH), 2949 (w, C-H aliphatic), 1472 (w, C-F), 1329 (m, SO\(_2\)), 1135 (w, C-N). \(^1\)H NMR, \(\delta\): 7.86 (t, \(J = 6.9\) Hz, 1H, benzene_4 H), 7.53 (q, \(J = 6.8\) Hz, 1H, benzene_3 H), 7.42 (s, br, NH), 7.26-7.17 (m, 2H, benzene_5,6 H), 6.93 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_6 H), 6.92 (s, 1H, tetrahydroquinoline_8 H), 6.86 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 3.73 (t, \(J = 6.0\) Hz, 2H, tetrahydroquinoline_2 CH\(_2\)), 3.03 (q, \(J = 7.5\) Hz, 2H, ethyl CH\(_2\)), 2.73 (t, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_4 CH\(_2\)), 1.92 (p, \(J = 6.3\) Hz, 2H, benzene CH\(_2\)2), 1.27 (t, \(J = 7.4\) Hz, 3H, CH\(_3\)). \(^{13}\)C NMR, \(\delta\): 159.6 (d, \(J = 254.9\) Hz, benzene C2), 137.7 (tetrahydroquinoline C8a), 135.4 (d, \(J = 8.4\) Hz, benzene C3), 134.4 (tetrahydroquinoline C7), 131.1 (tetrahydroquinoline C5), 130.1 (benzene C5), 126.4 (d, \(J = 13.0\) Hz, benzene C1), 125.6 (benzene C6), 124.5 (d, \(J = 3.7\) Hz, benzene C4), 117.1 (tetrahydroquinoline C4a), 116.7 (tetrahydroquinoline C6), 114.2 (tetrahydroquinoline C8), 46.5 (tetrahydroquinoline C2), 46.4 (ethyl CH\(_2\)), 26.7 (tetrahydroquinoline C4), 22.4 (tetrahydroquinoline C3), 8.0 (CH\(_3\)) ppm. EI-MS \(m/z\) 398 (M+, 50), 305 (45), 159 (15), 145 (100%). HRMS (ESI) calcld for C\(_{17}\)H\(_{20}\)FN\(_2\)O\(_4\)S\(_2\) (MH\(^+\)), 399.0849; found, 399.0862. HPLC purity: 99.4%, \(R_t=12.672\) (20% solvent D in solvent A).
Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg 1.0 mmol), 4-fluorobenzenesulfonyl chloride (233.5 mg), 170 was isolated as a colourless solid (286.6 mg, 72%), mp: 90-91 °C; IR (cm⁻¹): v 3276 (m, NH), 2955 (w, C-H aliphatic), 1456 (w, C-F), 1327 (m, SO₂), 1166 (w, C-N). ¹H NMR, δ: 7.84 (dd, J = 8.2, 5.2 Hz, 2H, benzene_3,5 H), 7.35 (s, 1H, tetrahydroquinoline_8 H), 7.12 (s, br, NH), 7.09 (d, J = 8.2 Hz, 2H, benzene_2,6 H), 6.99 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_5 H), 6.86 (d, J = 8.1 Hz, 1H, tetrahydroquinoline_6 H), 3.75 (t, J = 6.0 Hz, 2H, tetrahydroquinoline_2 H), 3.05 (q, J = 7.4 Hz, 2H, ethyl CH₂), 2.76 (t, J = 6.4 Hz, 2H, tetrahydroquinoline_4 H), 1.96 (p, J = 6.0 Hz, 2H, tetrahydroquinoline_3 H), 1.27 (t, J = 7.4 Hz, 3H, CH₃). ¹³C NMR, δ: 165.5 (d, J = 138.1 Hz, benzene C4), 135.4 (d, J = 13.8 Hz, benzene C2, C6), 135.2 (tetrahydroquinoline C7), 130.9 (tetrahydroquinoline C4a), 130.6 (d, J = 10.1 Hz, benzene C1), 125.8 (tetrahydroquinoline C5), 117.0 (d, J = 90.3 Hz, benzene C3, C5), 116.5 (tetrahydroquinoline C8), 114.6 (tetrahydroquinoline C6), 46.9 (tetrahydroquinoline C2), 46.8 (ethyl CH₂), 27.0 (tetrahydroquinoline C4), 22.8 (tetrahydroquinoline C3), 8.3 (CH₃) ppm. EI-MS m/z 398 (M+, 17), 305 (10), 159 (20), 145 (65), 95 (100%). HRMS (ESI) calced for C₁₇H₂₀FN₂O₄S₂ (MH+), 399.0849; found, 399.0846. HPLC purity: 97.3%, Rₜ=4.416 (20% solvent D in solvent A).
Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 3-fluorobenzenesulfonyl chloride (233.5 mg), 171 was isolated as a pale yellow solid (274 mg, 69%), mp: 91-92 °C; IR (cm\(^{-1}\)): \(\nu\) 3272 (m, NH), 2955 (m, C-H aliphatic), 1451 (w, C-F), 1327 (m, SO\(_2\)), 1144 (w, C-N). \(^1\)H NMR, \(\delta\): 7.64 (d, \(J = 7.6\) Hz, 1H, benzene_2 H), 7.50 (d, \(J = 7.6\) Hz, 1H, benzene_6 H), 7.44-7.40 (m, 2H, benzene_4,5 H), 7.37 (s, 1H, tetrahydroquinoline_8 H), 7.21 (t, \(J = 8.1\) Hz, 1H, benzene_5 H), 6.99 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 6.89 (d, \(J = 8.1\) Hz, 1H, tetrahydroquinoline_6 H), 3.74 (t, \(J = 5.5\) Hz, 2H, tetrahydroquinoline_2 H), 3.06 (q, \(J = 7.2\) Hz, 2H, ethyl CH\(_2\)), 2.75 (t, \(J = 5.9\) Hz, 2H, tetrahydroquinoline_4 H), 1.95 (p, \(J = 5.5\) Hz, 2H, tetrahydroquinoline_3 H), 1.27 (t, \(J = 7.2\) Hz, 3H, CH\(_3\)). \(^13\)C NMR, \(\delta\): 162.5 (d, \(J = 251.2\) Hz, benzene C3), 141.3 (d, \(J = 6.5\) Hz, benzene C1), 137.8 (tetrahydroquinoline C8a), 135.1 (tetrahydroquinoline C7), 131.2 (d, \(J = 7.5\) Hz, benzene C5), 130.8 (tetrahydroquinoline C5), 125.8 (tetrahydroquinoline C4a), 123.5 (d, \(J = 3.7\) Hz, benzene C6), 120.4 (d, \(J = 21.4\) Hz, benzene C4), 117.5 (tetrahydroquinoline C6), 115.0 (d, \(J = 25.1\) Hz, benzene C2), 114.7 (tetrahydroquinoline C8), 46.8 (tetrahydroquinoline C2), 46.7 (ethyl CH\(_2\)), 26.9 (tetrahydroquinoline C4), 22.7 (tetrahydroquinoline C3), 8.2 (CH\(_3\)) ppm. EI-MS \(m/z\) 398 (M+, 33), 305 (33), 159 (10), 145 (80), 118 (60), 95 (100%). HRMS (ESI) calcd for C\(_{17}\)H\(_{20}\)FN\(_2\)O\(_4\)S\(_2\) (MH\(^+\)), 399.0849; found, 399.0837. HPLC purity: 99.3%, \(R_t=10.956\) (20% solvent D in solvent A).
Chapter 9

Experimental

\[N-(1-(Ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2,6-difluorobenzenesulfonamide \]

\[\text{172} \]

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 2,6-difluorobenzenesulfonyl chloride (255 mg), \textbf{172} was isolated as a white solid (295 mg, 71%), mp: 118-119 °C; IR (cm\(^{-1}\)): \(\nu \) 3245 (m, NH), 2942 (w, C-H aliphatic), 1467 (w, C-F), 1318 (m, SO\(_2\)), 1139 (w, C-N). \(^1\)H NMR (CD\(_3\)OD), \(\delta \): 7.62-7.54 (m, 1H, benzene_4 H), 7.47 (s, 1H, tetrahydroquinoline_8 H), 7.07 (t, \(J = 9.0 \) Hz, 2H, benzene_3,5 H), 7.02 (d, \(J = 8.2 \) Hz, 1H, tetrahydroquinoline_5 H), 6.87 (d, \(J = 8.2 \) Hz, 1H, tetrahydroquinoline_6 H), 3.71 (t, \(J = 5.8 \) Hz, 2H, tetrahydroquinoline_2 H), 3.09 (q, \(J = 7.4 \) Hz, 2H, ethyl CH\(_2\)), 2.75 (t, \(J = 6.5 \) Hz, 2H, tetrahydroquinoline_4 H), 1.93 (p, \(J = 6.4 \) Hz, 2H, tetrahydroquinoline_3 H), 1.23 (t, \(J = 7.3 \) Hz, 3H, CH\(_3\)). \(^1\)C NMR (CD\(_3\)OD), \(\delta \): 160.0 (dd, \(J = 256.5, 3.8 \) Hz, benzene C2, C6), 139.5 (tetrahydroquinoline C8a), 137.9 (tetrahydroquinoline C7), 135.2 (t, \(J = 10.9 \) Hz, benzene C1), 130.2 (benzene C4), 125.7 (tetrahydroquinoline C5), 117.1 (tetrahydroquinoline C4a), 116.5 (tetrahydroquinoline C6), 114.0 (tetrahydroquinoline C8), 113.0 (dd, \(J = 23.3, 3.4 \) Hz, benzene C3, C5), 46.4 (tetrahydroquinoline C2), 46.0 (ethyl CH\(_2\)), 26.4 (tetrahydroquinoline C4), 22.4 (tetrahydroquinoline C3), 7.0 (CH\(_3\)) ppm. EI-MS \(m/z \) 416 (M+, 30), 323 (27), 177 (20), 145 (100%), 118 (82). HRMS (ESI) calcd for C\(_{17}\)H\(_{19}\)F\(_2\)N\(_2\)O\(_4\)S\(_2\) (MH\(^+\)), 417.0754; found, 417.0742. HPLC purity: 99.3%, \(R_t = 18.012 \) (15% solvent D in solvent A).
N-(1-(Ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2,3,4,5,6-pentafluorobenzenesulfonamide 173

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 2,3,4,5,6-pentafluorobenzenesulfonyl chloride (319.8 mg), 173 was isolated as a white solid (348 mg, 74%), mp: 122-123 °C; IR (cm⁻¹): ν 3201 (m, NH), 2947 (w, C-H aliphatic), 1464 (m, C-F), 1324 (m, SO₂), 1143 (w, C-N).

¹H NMR, δ: 7.39 (s, br, NH), 7.32 (s, 1H, tetrahydroquinoline_8 H), 7.06 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_7 H), 6.92 (dd, J = 8.5, 1.9 Hz, 1H, tetrahydroquinoline_6 H), 3.74 (t, J = 5.7 Hz, 2H, tetrahydroquinoline_2), 3.12 (q, J = 7.4 Hz, 2H, ethyl CH₂), 2.79 (t, J = 6.6 Hz, 2H, tetrahydroquinoline_4 H), 1.97 (p, J = 6.1 Hz, 2H, tetrahydroquinoline_3 H), 1.34 (t, J = 7.4 Hz, 3H, CH₃). ¹³C NMR, δ: 145.1 (ddd, J = 259.2, 12.1, 4.7 Hz, benzene C4), 144.6 (dt, J = 263.3, 13.1 Hz, benzene C2, C6), 138.3 (dt, J = 258.6, 12.1 Hz, benzene C3, C5), 138.2 (tetrahydroquinoline C8a), 137.5 (d, J = 117.2 Hz, benzene C1), 133.4 (tetrahydroquinoline C7), 131.2 (tetrahydroquinoline C5), 127.2 (tetrahydroquinoline C4a), 117.8 (tetrahydroquinoline C6), 115.0 (tetrahydroquinoline C8), 47.2 (tetrahydroquinoline C2), 46.7 (ethyl CH₂), 27.0 (tetrahydroquinoline C4), 22.7 (tetrahydroquinoline C3), 8.2 (CH₃) ppm. ¹⁹F NMR, δ: -136.6 (2F), -145.0, -158.6 (2F). ESI-MS m/z 469.2 (M-H). HRMS (ESI) calcd for C₁₇H₁₆F₃N₂O₄S₂ (MH+), 471.0472; found, 471.0452. HPLC purity: 95.3%, R_t=6.211 (20% solvent D in solvent A).
4-Bromo-N-(1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2-fluoro benzenesulfonamide 174

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 4-bromo-2-fluorobenzenesulfonyl chloride (328.2 mg), 174 was isolated as a red solid (328 mg, 69%), mp: 138-139 °C; IR (cm⁻¹): ν 3244 (w, NH), 2967 (w, C-H aliphatic), 1471 (w, C-F), 1314 (m, SO₂), 1130 (w, C-N). ¹H NMR, δ: 7.73 (t, J = 7.9 Hz, 1H, benzene_3 H), 7.40-7.37 (m, 3H, benzene_5,6, tetrahydroquinoline_8 H), 6.99 (d, J = 8.1 Hz, 1H, tetrahydroquinoline_5 H), 6.87 (s, br, NH), 6.84 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_6 H), 3.03 (q, J = 7.4 Hz, 2H, ethyl CH₂), 2.75 (t, J = 6.4 Hz, 2H, tetrahydroquinoline_4 H), 1.94 (p, J = 6.1 Hz, 2H, tetrahydroquinoline_3 H), 1.29 (t, J = 7.3 Hz, 3H, CH₃). ¹³C NMR, δ: 157.5 (d, J = 259.6 Hz, benzene C2), 138.0 (tetrahydroquinoline C8a), 134.1 (tetrahydroquinoline C7), 132.3 (tetrahydroquinoline C5), 130.7 (tetrahydroquinoline C4a), 129.0 (d, J = 9.3 Hz, benzene C6), 128.2 (d, J = 3.7 Hz, benzene C5), 126.2 (d, J = 14.0 Hz, benzene C1), 126.1 (benzene C5), 120.8 (d, J = 24.2 Hz, benzene C3), 117.3 (tetrahydroquinoline C6), 114.5 (tetrahydroquinoline C8), 46.6 (tetrahydroquinoline C2, ethyl CH₂), 26.9 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 8.1 (CH₃) ppm. EI-MS m/z 476 (M⁺⁺Br, 9), 385 (8), 237 (11), 189 (6), 173 (12), 145 (100%). HRMS (ESI) calcd for C₁₇H₁₉⁷⁹BrFN₂O₄S₂ (MH⁺), 476.9959; found, 476.9958. HPLC purity: 97.4%, Rᵣ=6.907 (20% solvent D in solvent A).
Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), thiophene-2-sulfonyl chloride (219 mg), 175 was isolated as a red solid (247 mg, 64%), mp: 80-81 °C; IR (cm\(^{-1}\)): \(\nu\) 3276 (w, NH), 2942 (m, C-H aliphatic), 1332 (m, SO\(_2\)), 1123 (w, C-N). \(^1\)H NMR, \(\delta\): 7.58 (d, \(J = 3.5\) Hz, 1H, thiophene_5 H), 7.54 (d, \(J = 4.9\) Hz, 1H, thiophene_3 H), 7.38 (s, 1H, tetrahydroquinoline_8 H), 7.04-7.01 (m, 2H, thiophene_4 H, tetrahydroquinoline_5 H), 6.91 (d, \(J = 7.5\) Hz, 1H, tetrahydroquinoline_6 H), 6.65 (s, br, NH), 3.76 (t, \(J = 6.0\) Hz, 2H, tetrahydroquinoline_4 H), 2.78 (t, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_4 H), 1.94 (p, \(J = 6.0\) Hz, 2H, tetrahydroquinoline_3 H), 1.30 (t, \(J = 7.5\) Hz, 3H, CH\(_3\)). \(^{13}\)C NMR, \(\delta\): 139.4 (thiophene C2), 137.5 (tetrahydroquinoline C8a), 134.9 (tetrahydroquinoline C7), 133.1 (tetrahydroquinoline C5), 132.4 (thiophene C4), 130.5 (thiophene C3), 127.4 (thiophene C5), 125.6 (tetrahydroquinoline C4a), 117.2 (tetrahydroquinoline C6), 114.4 (tetrahydroquinoline C8), 46.5 (tetrahydroquinoline C2), 46.4 (ethyl CH\(_2\)), 26.7 (tetrahydroquinoline C4), 22.4 (tetrahydroquinoline C3), 7.9 (CH\(_3\)) ppm. EI-MS \(m/z\) 386 (M+, 20), 322 (20), 293 (11), 229 (29), 145 (96), 118 (100%), 99 (33). HRMS (ESI) calcd for C\(_{15}\)H\(_{10}\)N\(_2\)O\(_4\)S\(_3\) (MH\(^+\)), 387.0507; found, 387.0504. HPLC purity: 97.5%, \(R_t =\)5.716 (20% solvent D in solvent A).
5-Bromo-N-(1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)thiophene-2-sulfonamide 176

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 5-bromothiophene-2-sulfonyl chloride (313.8 mg), 176 was isolated as red solid (315 mg, 68%), mp: 82-83 °C; IR (cm⁻¹): v 3192 (w, NH), 2958 (m, C-H aliphatic), 1326 (m, SO₂), 1152 (w, C-N), 635 (w, C-Br). ¹H NMR, δ: 7.41 (d, J = 1.5 Hz, 1H, tetrahydroquinoline_8 H), 7.33 (d, J = 4.1 Hz, 1H, thiophene_4 H), 7.27 (s, br, NH), 7.04 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_5 H), 6.98 (d, J = 3.9 Hz, 1H, thiophene_3 H), 6.94 (dd, J = 8.4, 1.6 Hz, 1H, tetrahydroquinoline_6 H), 3.77 (t, J = 5.7 Hz, 2H, tetrahydroquinoline_2 H), 3.10 (q, J = 7.4 Hz, 2H, ethyl CH₂), 2.79 (t, J = 6.5 Hz, 2H, tetrahydroquinoline_4 H), 1.98 (p, J = 5.9 Hz, 2H, tetrahydroquinoline_3 H), 1.31 (t, J = 7.4 Hz, 3H, CH₃). ¹³C NMR, δ: 140.2 (thiophene C2), 137.7 (tetrahydroquinoline C8a), 134.5 (tetrahydroquinoline C7), 133.3 (thiophene C4), 130.7 (tetrahydroquinoline C5), 130.5 (thiophene C3), 125.9 (tetrahydroquinoline C4a), 120.3 (tetrahydroquinoline C6), 117.3 (thiophene C5), 114.4 (tetrahydroquinoline C8), 46.5 (tetrahydroquinoline C2, ethyl CH₂), 26.8 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 8.0 (CH₃) ppm. EI-MS m/z 466 (M+⁷⁹Br, ⁸¹Br, 10), 400 (12), 321 (12), 307 (11), 227 (35), 145 (97), 118 (100%), 91 (32). HRMS (ESI) calcd for C₁₅H₁₈⁷⁹BrN₂O₃S₃ (MH+), 464.9612; found, 464.9617. HPLC purity: 98.0%, Rₑ=3.968 (20% solvent D in solvent A).
5-Chloro-N-(1-ethylysulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl thiophene-2-sulfonamide 177

Following the general procedure 10 using 1-(ethylysulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 5-chlorothiophene-2-sulfonyl chloride (260.4 mg), 177 was isolated as a yellow oil (277 mg, 66%), IR (cm⁻¹): ν 3195 (w, NH), 2941 (w, C-H aliphatic), 1328 (s, SO₂), 1155 (w, C-N). ¹H NMR, δ: 7.48 (s, br, NH), 7.43 (s, 1H, tetrahydroquinoline_8 H), 7.38 (d, J = 3.8 Hz, 1H, thiophene_4 H), 7.04 (d, J = 8.3 Hz, 1H, tetrahydroquinoline_5 H), 6.94 (d, J = 7.9 Hz, 1H, tetrahydroquinoline_6 H), 6.83 (d, J = 3.8 Hz, 1H, thiophene_3 H), 3.77 (t, J = 5.7 Hz, 2H, tetrahydroquinoline_2 H), 3.12 (q, J = 7.4 Hz, 2H, ethyl CH₂), 2.79 (t, J = 6.3 Hz, 2H, tetrahydroquinoline_4 H), 1.97 (p, J = 5.8 Hz, 2H, tetrahydroquinoline_3 H), 1.30 (t, J = 7.3 Hz, 3H, CH₃). ¹³C NMR, δ: 137.7 (thiophene C2), 137.5 (tetrahydroquinoline C8a), 137.4 (tetrahydroquinoline C7), 134.6 (thiophene C3), 132.7 (thiophene C4), 130.7 (tetrahydroquinoline C5), 126.9 (tetrahydroquinoline C4a), 125.9 (thiophene C5), 117.3 (tetrahydroquinoline C6), 114.4 (tetrahydroquinoline C8), 46.6 (tetrahydroquinoline C2, ethyl CH₂), 26.8 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 8.0 (CH₃) ppm. EI-MS m/z 420 (M⁺ 35Cl, 10), 356 (12), 263 (30), 227 (27), 181 (24), 145 (97), 118 (100%). HRMS (ESI) calcld for C₁₅H₁₈³⁵ClN₂O₄S₃ (MH⁺), 421.0117; found, 421.0107. HPLC purity: 99.6%, Rₜ=7.798 (20% solvent D in solvent A).
Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 4-methylbenzenesulfonyl chloride (228.7 mg), 178 was isolated as a colourless solid (287 mg, 73%), mp: 74-75 °C; IR (cm⁻¹): ν 3274 (m, NH), 2939 (w, C-H aliphatic), 1320 (s, SO₂), 1124 (w, C-N). ¹H NMR, δ: 7.71 (d, J = 7.5 Hz, 2H, benzene_2,6 H), 7.33 (s, 1H, tetrahydroquinoline_8 H), 7.23 (d, J = 7.9 Hz, 2H, benzene_3,5 H), 6.98 (d, J = 5.5 Hz, 1H, tetrahydroquinoline_5 H), 6.87 (d, J = 5.5 Hz, 1H, tetrahydroquinoline_6), 6.85 (s, br, NH), 3.74 (t, J = 5.5 Hz, 2H, tetrahydroquinoline_2 H), 2.37 (s, 3H, p-CH₃), 1.94 (p, J = 6.1 Hz, 2H, tetrahydroquinoline_3 H), 1.27 (t, J = 7.1 Hz, 3H, CH₃). ¹³C NMR, δ: 144.1 (tetrahydroquinoline C8a), 137.9 (benzene C4), 136.6 (benene C1), 135.5 (tetrahydroquinoline C7), 130.8 (tetrahydroquinoline C5), 130.0 (benzene C3, C5), 127.8 (benzene C2, C6), 125.4 (tetrahydroquinoline C4a), 117.3 (tetrahydroquinoline C6), 114.3 (tetrahydroquinoline C8), 46.8 (tetrahydroquinoline C2), 46.7 (ethyl CH₂), 27.1 (tetrahydroquinoline C4), 22.8 (tetrahydroquinoline C3), 21.9 (benzene_4 CH₃), 8.3 (CH₃) ppm. EI-MS m/z 394 (M+, 15), 301 (9), 237 (5), 145 (90), 118 (55), 91 (100%). HRMS (ESI) calcd for C₁₈H₂₃N₂O₄S₂ (MH⁺), 395.1099; found, 395.1096. HPLC purity: 98.9%, Rᵣ=10.216 (20% solvent D in solvent A).

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), ethanesulfonyl chloride (154.2 mg), 179 was isolated.

N-(1-(Ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)ethanesulfonamide 179
as a colourless oil (199 mg, 60%), IR (cm\(^{-1}\)): \(\nu\) 3260 (m, NH), 2943 (w, C-H aliphatic), 1322 (s, SO₂), 1139 (w, C-N). \(^1\)H NMR, \(\delta\): 7.50 (d, \(J = 1.7\) Hz, 1H, tetrahydroquinoline_8 H), 7.32 (s, br, NH), 7.06 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 6.98 (dd, \(J = 8.2, 1.9\) Hz, 1H, tetrahydroquinoline_6 H), 3.78 (t, \(J = 5.7\) Hz, 2H, tetrahydroquinoline_2 H), 3.15 (q, \(J = 7.4\) Hz, 2H, ethanesulfonamide CH₂), 2.80 (t, \(J = 6.5\) Hz, 2H, tetrahydroquinoline_4 H), 2.00 (p, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_3 H), 1.35 (t, \(J = 7.4\) Hz, 3H, ethanesulfonamide CH₃). \(^1\)C NMR, \(\delta\): 137.8 (tetrahydroquinoline C8a), 135.6 (tetrahydroquinoline C7), 130.6 (tetrahydroquinoline C5), 124.9 (tetrahydroquinoline C4a), 116.0 (tetrahydroquinoline C6), 113.5 (tetrahydroquinoline C8), 46.9 (tetrahydroquinoline C2), 46.5 (ethanesulfonyl CH₂), 45.9 (ethanesulfonamide CH₂), 26.6 (tetrahydroquinoline C4), 22.6 (tetrahydroquinoline C3), 8.1 (ethylsulfonyl CH₃), 8.0 (ethanesulfonamide CH₃) ppm. ESI-MS m/z 331.1(M-H). HRMS (ESI) calcd for C₁₃H₂₀N₂O₄S₂ (M-H), 331.0786; found, 331.0795. HPLC purity: 99.6%, Rₜ=10.071 (25% solvent D in solvent A).

\(N\)-(1-(Ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)-2,2,2-trifluoroethanesulfonamide

Following the general procedure 10 using 1-(ethylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 163 (240 mg, 1.0 mmol), 2,2,2-trifluoroethane-1-sulfonyl chloride (219 mg), 180 was isolated as a pale yellow solid (247 mg, 64%), mp: 78-79 °C; IR (cm\(^{-1}\)): \(\nu\) 3236 (m, NH), 2951 (m, C-H aliphatic), 1244 (w, C-F), 1322 (s, SO₂), 1126 (w, C-N). \(^1\)H NMR, \(\delta\): 7.16 (s, 1H, tetrahydroquinoline_8 H), 7.24 (s, br, NH), 7.11 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 6.99 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_6 H), 3.85 (q, \(J = 8.8\) Hz, 2H, CF₃CH₂), 3.79 (t, \(J = 5.7\) Hz, 2H, tetrahydroquinoline_2 H), 3.19 (q, \(J = 7.4\) Hz, 2H, ethyl CH₂), 2.83 (t, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_4 H), 2.02 (p, \(J = 5.5\) Hz, 2H, tetrahydroquinoline_3 H), 1.36 (t, \(J = 7.4\) Hz, 3H, CH₃). \(^1\)C NMR, \(\delta\): 138.3 (tetrahydroquinoline C8a), 134.1 (tetrahydroquinoline C7), 131.3
(tetrahydroquinoline C5), 126.8 (tetrahydroquinoline C4a), 121.8 (q, \(J = 276.5\) Hz, CF₃), 117.3 (tetrahydroquinoline C6), 114.9 (tetrahydroquinoline C8), 52.6 (q, \(J = 31.7\) Hz, CF₃CH₂), 47.2 (tetrahydroquinoline C2), 46.8 (ethyl CH₂), 27.1 (tetrahydroquinoline C4), 22.8 (tetrahydroquinoline C3), 8.3 (CH₃) ppm. ESI-MS \(m/z\) 385.1 (M-H). HRMS (ESI) calcd for C₁₃H₁₈F₃N₂O₄S₂ (MH⁺), 387.0660; found, 387.0664. HPLC purity: 99.9%, \(R_t=8.931\) (20% solvent D in solvent A).

4-Methyl-N-(I-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 4-methylbenzenesulfonyl chloride (228.7 mg), 181 was isolated as a pale yellow solid (310 mg, 76%), mp: 112-113 °C; IR (cm⁻¹): υ 3276 (w, NH), 2976 (m, C-H aliphatic), 1320 (s, SO₂), 1125 (w, C-N). ¹H NMR, δ: 7.72 (d, \(J = 7.8\) Hz, 2H, benzene_2,6 H), 7.54 (s, br, NH), 7.42 (s, 1H, tetrahydroquinoline_8 H), 7.20 (d, \(J = 7.9\) Hz, 2H, benzene_3,5 H), 6.95 (d, \(J = 8.0\) Hz, 1H, tetrahydroquinoline_5 H), 6.86 (d, \(J = 8.0\) Hz, 1H, tetrahydroquinoline_6 H), 3.72 (t, \(J = 5.6\) Hz, 2H, tetrahydroquinoline_2 H), 2.99 (t, \(J = 7.4\) Hz, 2H, propyl_1 H), 2.72 (t, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_4 H), 2.34 (s, 3H, p-CH₃), 1.92 (p, \(J = 5.7\) Hz, 2H, tetrahydroquinoline_3 H), 3.74 (sex, \(J = 7.4\) Hz, 2H, propyl_2 H), 0.97 (t, \(J = 7.3\) Hz, 3H, propyl_3 H). ¹³C NMR, δ: 143.9 (tetrahydroquinoline C8a), 137.8 (benzene C4), 136.5 (benzene C1), 135.6 (tetrahydroquinoline C7), 130.6 (tetrahydroquinoline C5), 129.8 (benzene C3, C5), 127.6 (benzene C2, C6), 125.1 (tetrahydroquinoline C4a), 116.9 (tetrahydroquinoline C6), 114.0 (tetrahydroquinoline C8), 53.9 (tetrahydroquinoline C2), 46.6 (propyl C1), 26.9 (tetrahydroquinoline C4), 22.7 (tetrahydroquinoline C3), 21.7 (benzene_4 CH₃), 17.2 (propyl C2), 13.2 (propyl C3) ppm. EI-MS \(m/z\) 408 (M+, 48), 301 (46), 237 (10), 145 (100%), 118 (45), 91 (81).
HRMS (ESI) calcd for C₁₉H₂₅N₂O₄S₂ (MH+), 409.1256; found, 409.1258. HPLC purity: 99.9%, Rₜ=6.809 (20% solvent D in solvent A).

4-Isopropyl-N-(1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide 182

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 4-isopropylbenzenesulfonyl chloride (555.7 mg), 182 was isolated as pale yellow solid (344 mg, 79%), mp: 108-109 ºC; IR (cm⁻¹): ν 3273 (m, NH), 2967 (m, C-H aliphatic), 1324 (s, SO₂), 1126 (w, C-N). ¹H NMR, δ: 7.77 (d, J = 8.2 Hz, 2H, benzene_2,6 H), 7.42 (s, 1H, tetrahydroquinoline_8 H), 7.21 (s, br, NH), 6.96 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_5 H), 6.85 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_6 H), 3.74 (t, J = 5.7 Hz, 2H, tetrahydroquinoline_2 H), 3.02 (t, J = 7.6 Hz, 2H, propyl_1 H), 2.95-2.89 (m, 1H, CH(CH₃)₂), 2.74 (t, J = 6.4 Hz, 2H, tetrahydroquinoline_4 H), 1.94 (p, J = 6.1 Hz, 2H, tetrahydroquinoline_3 H), 1.77 (sex, J = 7.6 Hz, 2H, propyl_2 H), 1.22 (d, J = 6.8 Hz, 6H, CH(CH₃)₂), 0.98 (t, J = 7.5 Hz, 3H, propyl_3 H). ¹³C NMR, δ: 154.5 (benzene C4), 137.7 (tetrahydroquinoline C8a), 136.8 (benzene C1), 135.5 (tetrahydroquinoline C7), 130.5 (tetrahydroquinoline C5), 127.6 (benzene C3, C5), 127.2 (benzene C2, C6), 124.9 (tetrahydroquinoline C4a), 116.6 (tetrahydroquinoline C6), 113.8 (tetrahydroquinoline C8), 53.9 (tetrahydroquinoline C2), 46.5 (propyl C1), 34.2 (CH(CH₃)₂), 26.8 (tetrahydroquinoline C4), 23.7 (CH(CH₃)₂), 22.6 (tetrahydroquinoline C3), 17.1 (propyl C2), 13.1 (propyl C3) ppm. EI-MS m/z 436 (M+, 33), 329 (30), 265 (8), 145 (100%), 119 (60), 91 (47). HRMS (ESI) calcd for C₂₁H₂₉N₂O₄S₂ (MH+), 437.1569; found, 437.1550. HPLC purity: 99.4%, Rₜ=5.180 (15% solvent D in solvent A).
Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), [1,1'-biphenyl]-4-sulfonyl chloride (303.2 mg), 183 was isolated as a reddish white solid (362 mg, 77%), mp: 118-119 ºC; IR (cm⁻¹): ν 3265 (m, NH), 2971 (w, C-H aliphatic), 1325 (s, SO₂), 1125 (w, C-N). ¹H NMR, δ: 7.90 (d, J = 8.3 Hz, 2H, H2, H6), 7.57 (d, J = 8.3 Hz, 2H, H3, H5), 7.50 (d, J = 7.5 Hz, 2H, H8, H12), 7.46 (d, J = 1.3 Hz, 1H, tetrahydroquinoline_8 H), 7.42 (s, br, NH), 7.40 (d, J = 7.7 Hz, 2H, H9, H11), 7.36 (t, J = 7.0 Hz, 1H, H10), 6.97 (d, J = 8.3 Hz, 1H, tetrahydroquinoline_6 H), 3.71 (t, J = 5.8 Hz, 2H, tetrahydroquinoline_2 H), 3.00 (t, J = 7.6 Hz, 2H, propyl_1 H), 2.70 (t, J = 6.4 Hz, 2H, tetrahydroquinoline_4 H), 1.91 (p, J = 6.1 Hz, 2H, tetrahydroquinoline_3 H), 1.72 (sex, J = 7.6 Hz, 2H, propyl_2 H), 0.90 (t, J = 7.5 Hz, 3H, propyl_3 H). ¹³C NMR, δ: 145.9 (C7), 139.4 (C4), 138.2 (tetrahydroquinoline C8a), 138.0 (C1), 135.6 (tetrahydroquinoline C7), 130.7 (C3, C5), 129.2 (tetrahydroquinoline C5), 128.7 (C2, C6), 128.2 (C9, C11), 127.8 (tetrahydroquinoline C4a), 127.5 (C10), 125.5 (C8, C12), 117.1 (tetrahydroquinoline C6), 114.4 (tetrahydroquinoline C8), 54.1 (tetrahydroquinoline C2), 46.7 (propyl C1), 27.0 (tetrahydroquinoline C4), 22.8 (tetrahydroquinoline C3), 17.3 (propyl C2), 13.1 (propyl C3) ppm. EI-MS m/z 470 (M+, 45), 363 (33), 299 (29), 253 (10), 207 (11), 145 (100%), 118 (62), 91 (31). HRMS (ESI) calcd for C₂₄H₂₇N₂O₄S₂ (MH⁺), 471.1412; found, 471.1407. HPLC purity: 98.8%, Rᵣ=6.716 (20% solvent D in solvent A).

* Numbering of the 1,1'-biphenyl carbons doesn’t correspond to the compound name.
† Apparent doublet.
2-Fluoro-N-(1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 2-fluorobenzenesulfonfonyl chloride (233.5 mg), 184 was isolated as red solid (284 mg, 69%), mp: 102-103 °C; IR (cm\(^{-1}\)): \(\nu\) 3245 (w, NH), 2958 (m, C-H aliphatic), 1472 (w, C-F), 1331 (s, SO\(_2\)), 1126 (w, C-N). \(^1\)H NMR, \(\delta\): 7.55 (t, \(J = 7.6\) Hz, 1H, benzene_4 H), 7.53 (q, \(J = 7.4\) Hz, 1H, benzene_3 H), 7.42 (s, 1H, tetrahydroquinoline_8 H), 7.23-7.17 (m, 2H, benzene_5,6 H), 6.97 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 6.94 (s, br, NH), 6.86 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_6 H), 3.72 (t, \(J = 5.7\) Hz, 2H, tetrahydroquinoline_2 H), 2.95 (t, \(J = 7.7\) Hz, 2H, propyl_1 H), 2.73 (t, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_4 H), 1.92 (p, \(J = 6.2\) Hz, 2H, tetrahydroquinoline_3 H), 1.75 (sex, \(J = 7.7\) Hz, 2H, propyl_2 H), 0.99 (t, \(J = 7.6\) Hz, 3H, propyl_3 H). \(^{13}\)C NMR, \(\delta\): 159.0 (d, \(J = 254.96\) Hz, benzene C2), 137.9 (tetrahydroquinoline C8a), 135.6 (d, \(J = 8.38\) Hz, benzene C4), 134.6 (tetrahydroquinoline C7), 131.3 (tetrahydroquinoline C5), 130.7 (tetrahydroquinoline C4a), 127.1 (d, \(J = 13.07\) Hz, benzene C1), 125.9 (tetrahydroquinoline C6), 124.7 (d, \(J = 3.77\) Hz, benzene C6), 117.3 (benzene C5), 117.1 (d, \(J = 20.47\) Hz, benzene C3), 114.5 (tetrahydroquinoline C8), 53.9 (tetrahydroquinoline C2), 46.6 (propyl C1), 27.0 (tetrahydroquinoline C4), 22.6 (tetrahydroquinoline C3), 17.2 (propyl C2), 13.2 (propyl C3) ppm. EI-MS \(m/z\) 412 (M+, 42), 305 (44), 145 (100%), 118 (60). HRMS (ESI) calcd for C\(_{18}\)H\(_{22}\)FN\(_2\)O\(_4\)S\(_2\) (MH+), 413.1005; found, 413.1000. HPLC purity: 99.7%, \(R_t = 8.117\) (20% solvent D in solvent A).
N-((Propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)thiophene-2-sulfonamide 185

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), thiophene-2-sulfonyl chloride (219 mg), 185 was isolated as an orange solid (268 mg, 67%), mp: 96-97 °C; IR (cm\(^{-1}\)):
\(\nu\) 3288 (w, NH), 2976 (w, C-H aliphatic), 1335 (s, SO\(_2\)), 1125 (w, C-N). \(^1\)H NMR, \(\delta\):
7.58 (d, \(J = 3.7\) Hz, 1H, thiophene_5 H), 7.52 (d, \(J = 4.9\) Hz, 1H, thiophene_3 H), 7.43 (s, 1H, tetrahydroquinoline_8 H), 7.18 (s, br, NH), 7.03 (d, \(J = 7.9\) Hz, 1H, tetrahydroquinoline_5 H), 7.00 (t, \(J = 4.2\) Hz, 1H, thiophene_4), 6.92 (d, \(J = 8.1\) Hz, 1H, tetrahydroquinoline_6), 3.75 (t, \(J = 5.7\) Hz, 2H, tetrahydroquinoline_2 H), 3.02 (t, \(J = 7.8\) Hz, 2H, propyl_1 H), 2.77 (t, \(J = 6.4\) Hz, 2H, tetrahydroquinoline_4 H), 1.96 (p, \(J = 6.1\) Hz, 2H, tetrahydroquinoline_3 H), 1.78 (sex, \(J = 7.6\) Hz, 2H, propyl_2 H), 1.00 (t, \(J = 7.5\) Hz, 3H, propyl_3 H). \(^{13}\)C NMR, \(\delta\):
139.6 (thiophene C2), 137.6 (tetrahydroquinoline C8a), 134.8 (tetrahydroquinoline C7), 133.1 (thiophene C4), 132.4 (tetrahydroquinoline C5), 130.5 (thiophene C3), 127.4 (thiophene C5), 125.6 (tetrahydroquinoline C4a), 117.3 (tetrahydroquinoline C6), 114.5 (tetrahydroquinoline C8), 53.7 (tetrahydroquinoline C2), 46.4 (propyl C1), 26.8 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 17.0 (propyl C2), 12.9 (propyl C3) ppm. EI-MS \(m/z\) 400 (M+, 24), 335 (25), 293 (17), 229 (61), 145 (100%), 118 (76). HRMS (ESI) calcd for C\(_{16}\)H\(_{21}\)N\(_2\)O\(_4\)S\(_3\) (MH\(^+\)), 401.0663; found, 401.0646. HPLC purity: 99.9%, \(R_t=8.586\) (20% solvent D in solvent A).
2-Methyl-N-(1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 2-methylbenzenesulfonyl chloride (228.7 mg), 186 was isolated as an orange oil (302 mg, 74%), IR (cm⁻¹): ν 3244 (m, NH), 2936 (m, C-H aliphatic), 1326 (s, SO₂), 1130 (w, C-N). ¹H NMR, δ: 7.98 (d, J = 7.7 Hz, 1H, benzene_6 H), 7.41 (t, J = 7.7 Hz, 1H, benzene_5 H), 7.35 (d, J = 2.0 Hz, 1H, tetrahydroquinoline_8 H), 7.27-7.24 (m, 3H, NH, benzene_3,4 H), 6.93 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_5 H), 6.81 (dd, J = 8.2, 2.0 Hz, 1H, tetrahydroquinoline_6 H), 3.70 (t, J = 5.8 Hz, 2H, tetrahydroquinoline_2 H), 2.94 (t, J = 7.9 Hz, 2H, propyl_1 H), 2.70 (t, J = 6.4 Hz, 2H, tetrahydroquinoline_4 H), 2.65 (s, 3H, o-CH₃), 1.90 (p, J = 6.2 Hz, 2H, tetrahydroquinoline_3 H), 1.72 (sex, J = 7.6 Hz, 2H, propyl_2 H), 0.96 (t, J = 7.4 Hz, 3H, propyl_3 H). ¹³C NMR, δ: 137.8 (benzene C1), 137.7 (tetrahydroquinoline C8a), 137.5 (benzene C2), 135.4 (benzene C4), 133.2 (benzene C5), 132.8 (tetrahydroquinoline C7), 130.7 (benzene C3), 130.4 (tetrahydroquinoline C5), 126.4 (benzene C6), 124.9 (tetrahydroquinoline C4a), 116.2 (tetrahydroquinoline C6), 113.5 (tetrahydroquinoline C8), 53.8 (tetrahydroquinoline C2), 46.6 (propyl C1), 26.9 (tetrahydroquinoline 4), 22.7 (tetrahydroquinoline C3), 20.6 (benzene_2 CH₃), 17.2 (propyl C2), 13.2 (propyl C3) ppm. EI-MS m/z 408 (M+, 40), 301 (36), 237 (10), 145 (96), 118 (55), 91 (100%). HRMS (ESI) calcd for C₁₉H₂₅N₂O₄S₂ (MH⁺), 409.1256; found, 409.1252. HPLC purity: 99.7%, Rₜ=6.298 (20% solvent D in solvent A).
Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 3-methylbenzenesulfonyl chloride (228.7 mg), 187 was isolated as a yellow oil (306 mg, 75%), IR (cm$^{-1}$): ν 3256 (m, NH), 2934 (m, C-H aliphatic), 1324 (s, SO$_2$), 1123 (m, C-N). 1H NMR, δ: 7.69 (s, 1H, benzene$_2$ H), 7.61 (d, $J = 6.4$ Hz, 1H, benzene$_6$ H), 7.38 (s, br, NH), 6.96 (d, $J = 8.2$ Hz, 1H, tetrahydroquinoline$_8$ H) 7.31-7.28 (m, 2H, benzene$_4,5$ H), 7.22 (s, br, NH), 6.96 (d, $J = 8.2$ Hz, 1H, tetrahydroquinoline$_5$ H), 6.86 (dd, $J = 8.2$, 1.8 Hz, 1H, tetrahydroquinoline$_6$ H), 3.72 (t, $J = 5.9$ Hz, 2H, tetrahydroquinoline$_2$ H), 2.98 (t, $J = 7.6$ Hz, 2H, propyl$_1$ H), 2.73 (t, $J = 6.6$ Hz, 2H, tetrahydroquinoline$_4$ H), 2.34 (s, 3H, m-CH$_3$), 1.92 (p, $J = 6.2$ Hz, 2H, tetrahydroquinoline$_3$ H), 1.74 (sex, $J = 7.6$ Hz, 2H, propyl$_2$ H), 0.97 (t, $J = 7.6$ Hz, 3H, propyl$_3$ H). 13C NMR, δ: 139.3 (tetrahydroquinoline C8a), 139.0 (benzene C3), 137.5 (benzene C1), 135.3 (tetrahydroquinoline C7), 133.7 (benzene C4), 130.4 (tetrahydroquinoline C5), 128.8 (benzene C5), 127.7 (tetrahydroquinoline C4a), 124.9 (benzene C6), 124.5 (benzene C2), 116.8 (tetrahydroquinoline C6), 113.9 (tetrahydroquinoline C8), 53.7 (tetrahydroquinoline C2), 46.4 (propyl C1), 26.7 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 21.2 (benzene$_3$ CH$_3$), 17.0 (propyl C2), 12.9 (propyl C3) ppm. EI-MS m/z 408 (M+, 43), 301 (37), 237 (11), 145 (100%), 118 (60), 91 (95). HRMS (ESI) calcd for C$_{19}$H$_{25}$N$_2$O$_4$S$_2$ (MH$^+$), 409.1256; found, 409.1236. HPLC purity: 99.5%, R_t=6.382 (20% solvent D in solvent A).
2,4-Dimethyl-N-(1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide 188

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 2,4-dimethylbenzenesulfonyl chloride (245.5 mg), 188 was isolated as an orange oil (320 mg, 76%), IR (cm\(^{-1}\)): \(\nu\) 3277 (m, NH), 2973 (m, C-H aliphatic), 1322 (s, SO\(_2\)), 1139 (m, C-N). \(^1\)H NMR, \(\delta\): 7.88 (d, \(J = 8.0\) Hz, 1H, benzene_6 H), 7.35 (d, \(J = 2.0\) Hz 1H, tetrahydroquinoline_8 H), 7.33 (s, 1H, benzene_3 H), 7.06 (s, br, NH), 7.05 (d, \(J = 8.0\) Hz, 1H, benzene_5 H), 6.92 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 6.80 (dd, \(J = 8.5, 2.0\) Hz, 1H, tetrahydroquinoline_6 H), 3.72 (t, \(J = 5.8\) Hz, 2H, tetrahydroquinoline_2 H), 2.95 (t, \(J = 7.7\) Hz, 2H, propyl_1 H), 2.71 (t, \(J = 6.5\) Hz, 2H, tetrahydroquinoline_4 H), 2.61 (s, 3H, benzene_2 CH\(_3\)), 2.31 (s, 3H, benzene_4 CH\(_3\)), 1.91 (p, \(J = 6.0\) Hz, 2H, tetrahydroquinoline_3 H), 1.75 (sex, \(J = 7.7\) Hz, 2H, propyl_2 H), 0.97 (t, \(J = 7.5\) Hz, 3H, propyl_3 H). \(^{13}\)C NMR, \(\delta\): 143.9 (benzene C1), 137.8 (benzene C2), 137.3 (tetrahydroquinoline C8a), 135.6 (benzene C4), 134.8 (benzene C5), 133.5 (tetrahydroquinoline C7), 130.6 (benzene C6), 130.6 (tetrahydroquinoline C5), 127.0 (tetrahydroquinoline C4a), 124.7 (benzene C3), 116.0 (tetrahydroquinoline C6), 113.3 (tetrahydroquinoline C8), 53.8 (tetrahydroquinoline C2), 46.6 (propyl C1), 26.9 (tetrahydroquinoline C4), 22.7 (tetrahydroquinoline C3), 21.5 (benzene_2 CH\(_3\)), 20.5 (benzene_4 CH\(_3\)), 17.2 (propyl C2), 13.2 (propyl C3) ppm. EI-MS \(m/z\) 422 (M+, 32), 315 (26), 251 (29), 145 (100%), 118 (33), 105 (30), 91 (17). HRMS (ESI) calcd for C\(_{20}\)H\(_{27}\)N\(_2\)O\(_4\)S\(_2\) (MH\(+\)), 423.1412; found, 423.1399. HPLC purity: 99.9%, \(R_t=5.799\) (20% solvent D in solvent A).
3,5-Dimethyl-N-(1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide 189

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 3,5-dimethylbenzenesulfonfonyl chloride (245.5 mg), 189 was isolated as an orange oil (324 mg, 77%), IR (cm⁻¹): υ 3246 (m, NH), 2968 (m, C-H aliphatic), 1324 (s, SO₂), 1146 (w, C-N). ¹H NMR, δ: 7.48 (s, 2H, benzene_2,6 H), 7.42-7.40 (m, 2H, tetrahydroquinoline_8 H, benzene_4 H), 7.11 (s, br, NH), 6.95 (d, J = 8.3 Hz, 1H, tetrahydroquinoline_5 H), 6.85 (dd, J = 8.2, 1.70 Hz, 1H, tetrahydroquinoline_6 H), 3.72 (t, J = 5.8 Hz, 2H, tetrahydroquinoline_2 H), 2.99 (t, J = 7.7 Hz, 2H, propyl_1 H), 2.73 (t, J = 6.5 Hz, 2H, tetrahydroquinoline_4 H), 2.29 (s, 6H, benzene_3,5 CH₃), 1.92 (p, J = 6.0 Hz, 2H, tetrahydroquinoline_3 H), 1.75 (sex, J = 7.6 Hz, 2H, propyl_2 H), 0.97 (t, J = 7.5 Hz, 3H, propyl_1 H). ¹³C NMR, δ: 138.9 (tetrahydroquinoline C8a), 138.8 (benzene C3, C5), 137.5 (benzene C1), 135.3 (tetrahydroquinoline C7), 134.5 (benzene C4), 130.3 (tetrahydroquinoline C5), 124.9 (tetrahydroquinoline C4a), 124.7 (benzene C2, C6), 116.5 (tetrahydroquinoline C6), 113.6 (tetrahydroquinoline C8), 53.6 (tetrahydroquinoline C2), 46.3 (propyl C1), 26.6 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 21.1 (benzene_3,5 CH₃), 16.9 (propyl C2), 12.9 (propyl C3) ppm. EI-MS m/z 422 (M+, 40), 315 (38), 251 (20), 207 (17), 145 (100%), 118 (27), 105 (29). HRMS (ESI) calcd for C₂₀H₂₇N₂O₄S₂ (MH⁺), 423.1412; found, 423.1396. HPLC purity: 99.9%, Rₑ=5.503 (20% solvent D in solvent A).
2,3,4,5,6-Pentamethyl-N-(1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl) benzenesulfonamide 190

Following the general procedure 10 using 1-(propylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 167 (254 mg, 1.0 mmol), 2,3,4,5,6-pentamethylbenzenesulfonyl chloride (296 mg), 190 was isolated as a yellow solid (371 mg, 80%), mp: 128-129 ºC; IR (cm\(^{-1}\)): \(\nu\) 3266 (m, NH), 2937 (m, C-H aliphatic), 1315 (s, SO\(_2\)), 1130 (w, C-N). \(^1\)H NMR, \(\delta\): 7.21 (s, 1H, tetrahydroquinoline_8 H), 6.92 (s, br, NH), 6.70 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_6 H), 3.71 (t, \(J = 5.7\) Hz, 2H, tetrahydroquinoline_2 H), 2.84 (t, \(J = 7.8\) Hz, 2H, propyl_1 H), 2.71 (t, \(J = 6.5\) Hz, 2H, tetrahydroquinoline_4 H), 2.58 (s, 6H, benzene_2,6 CH\(_3\)), 2.24 (s, 3H, benzene_4 CH\(_3\)), 2.21 (s, 6H, benzene_3,5 CH\(_3\)), 1.91 (p, \(J = 6.1\) Hz, 2H, tetrahydroquinoline_3 H), 1.67 (sex, \(J = 7.6\) Hz, 2H, propyl_2 H), 0.93 (t, \(J = 7.4\) Hz, 3H, propyl_3 H). \(^13\)C NMR, \(\delta\): 139.8 (benzene C2, C6), 137.5 (tetrahydroquinoline C8a), 135.9 (benzene C3, C5), 135.4 (benzene C4), 134.9 (tetrahydroquinoline C7), 134.4 (tetrahydroquinoline C5), 130.4 (tetrahydroquinoline C4a), 124.6 (benzene C1), 116.4 (tetrahydroquinoline C6), 113.6 (tetrahydroquinoline C8), 53.4 (tetrahydroquinoline C2), 46.4 (propyl C1), 26.8 (tetrahydroquinoline C4), 22.5 (tetrahydroquinoline C3), 19.0 (benzene_2,6 CH\(_3\)), 17.8 (benzene_3,5 CH\(_3\)), 17.1 (benzene_4 CH\(_3\)), 16.9 (propyl C2), 12.9 (propyl C3) ppm. EI-MS \(m/z\) 464 (M+, 29), 293 (66), 254 (16), 147 (100%). HRMS calcd for C\(_{23}\)H\(_{33}\)N\(_2\)O\(_4\)S\(_2\) (MH+), 465.1882; found, 465.1881. HPLC purity: 99.9%, \(R_t=5.024\) (15% solvent D in solvent A).
Following the general procedure 10 using 1-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 168 (294 mg, 1.0 mmol), thiophene-2-sulfonoyl chloride (219 mg), 191 was isolated as a white solid (264 mg, 60%), mp: 108-109 °C; IR (cm⁻¹): ν 3259 (m, NH), 2965 (w, C-H aliphatic), 1339 (s, SO₂), 1122 (w, C-N). ¹H NMR, δ: 7.60 (d, J = 3.4 Hz, 1H, thiophen-2-yl_5 H), 7.55 (d, J = 4.9 Hz, 1H, thiophene_5 H), 7.50 (d, J = 4.9 Hz, 2H, thiophen-2-yl_3 H, thiophene_3 H), 7.35 (d, J = 3.3 Hz, 1H, thiophen-2-yl_4 H), 7.26 (s, br, NH), 7.06 - 6.96 (m, 3H, tetrahydroquinoline_5,6 H, thiophene_4 H), 6.76 (s, 1H, tetrahydroquinoline_8H), 3.79 (t, J = 5.8 Hz, 2H, tetrahydroquinoline_2 H), 2.46 (t, J = 6.5 Hz, 2H, tetrahydroquinoline_4 H), 1.66 (p, J = 6.0 Hz, 2H, tetrahydroquinoline_3 H). ¹³C NMR, δ: 139.5 (tetrahydroquinoline C8a), 139.2 (thiophene C1), 136.9 (thiophen-2-yl C1), 134.6 (tetrahydroquinoline C7), 133.3 (tetrahydroquinoline C5), 132.5 (thiophene C4), 132.4 (thiophen-2-yl C3), 132.3 (thiophene C3), 130.1 (thiophen-2-yl C4), 128.0 (thiophen-2-yl C5), 127.5 (thiophene C5), 127.4 (tetrahydroquinoline C4a), 118.9 (tetrahydroquinoline C6), 117.7 (tetrahydroquinoline C8), 46.8 (tetrahydroquinoline C2), 26.4 (tetrahydroquinoline C4), 21.3 (tetrahydroquinoline C5) ppm. EI-MS m/z 440 (M+, 29), 376 (26), 312 (38), 229 (80), 145 (100%), 118 (78), 91 (55). HRMS (ESI) calcd for C₁₇H₁₁N₂O₄S₄ (MH+), 441.0071; found, 441.0068. HPLC purity: 99.9%, Rₜ=9.126 (20% solvent D in solvent A).
4-Methyl-N-(1-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-yl) benzenesulfonamide 192

Following the general procedure 10 using 1-(thiophen-2-ylsulfonyl)-1,2,3,4-tetrahydroquinolin-7-amine 168 (294 mg, 1.0 mmol), 4-methylbenzenesulfonyl chloride (228.7 mg), 192 was isolated as a yellow solid (291 mg, 65%), mp: 119-120 °C; IR (cm⁻¹): ν 3236 (m, NH), 2948 (w, C-H aliphatic), 1318 (s, SO₂), 1129 (w, C-N). ¹H NMR, δ: 7.74 (d, J = 8.1 Hz, 2H, benzene_2,6 H), 7.50 (s, 1H, tetrahydroquinoline_8 H), 7.48 (d, J = 4.8 Hz, 1H, thiophene_5 H), 7.28 (d, J = 3.1 Hz, 1H, thiophene_3 H), 7.23 (d, J = 8.0 Hz, 2H, benzene_3,5 H), 6.97-6.91 (m, 3H, tetrahydroquinoline_5,6 H, thiophene_4 H), 6.89 (s, br, NH), 3.77 (t, J = 6.1 Hz, 2H, tetrahydroquinoline_2 H), 2.36 (s, 3H, p-CH₃), 1.65 (p, J = 6.1 Hz, 2H, tetrahydroquinoline_3 H). ¹³C NMR, δ: 143.8 (tetrahydroquinoline C8a), 139.2 (thiophene C2), 136.8 (benzene C4), 136.2 (benzene C1), 135.0 (tetrahydroquinoline C7), 132.3 (tetrahydroquinoline C5), 132.1 (thiophene C3), 129.9 (thiophene C4), 129.5 (thiophene C5), 127.3 (benzene C3, C5), 127.3 (tetrahydroquinoline C4a), 127.2 (benzene C2, C6), 118.3 (tetrahydroquinoline C6), 117.2 (tetrahydroquinoline C8), 46.8 (tetrahydroquinoline C2), 26.3 (tetrahydroquinoline C4), 21.6 (tetrahydroquinoline C3), 21.3 (benzene_4 CH₃) ppm. EI-MS m/z 448 (M+, 24), 384 (17), 319 (26), 229 (99), 146 (100%), 118 (53), 91 (80). HRMS (ESI) calcd for C₂₀H₂₁N₂O₄S₃ (MH⁺), 449.0663; found, 449.0645. HPLC purity: 99.8%, Rₜ=7.260 (20% solvent D in solvent A).
Following the general procedure 10 using 1-tosyl-1,2,3,4-tetrahydroquinolin-7-amine 169 (302 mg, 1.0 mmol), thiophene-2-sulfonyl chloride (219 mg), 193 was isolated as a pale yellow solid (287 mg, 64%), mp: 68-69 °C; IR (cm⁻¹): ν 3255 (m, NH), 2951 (w, C-H aliphatic), 1329 (s, SO₂), 1132 (w, C-N). ¹H NMR, δ: 7.60 (d, J = 3.8 Hz, 1H, thiophene_5 H), 7.55 (d, J = 4.9 Hz, 1H, thiophene_3 H), 7.51 (d, J = 1.7 Hz, 1H, tetrahydroquinoline_8 H), 7.41 (d, J = 8.0 Hz, 2H, tosyl_2,6 H), 7.18 (d, J = 8.1 Hz, 2H, tosyl_3,5 H), 7.02 (t, J = 4.0 Hz, 1H, thiophene_4 H), 7.00 (dd, J = 7.9, 1.7 Hz, 1H, tetrahydroquinoline_6 H), 6.92 (d, J = 8.2 Hz, 1H, tetrahydroquinoline_5 H), 6.83 (s, br, NH), 3.75 (t, J = 5.9 Hz, 2H, tetrahydroquinoline_2 H), 2.42 (t, J = 6.6 Hz, 2H, tetrahydroquinoline_4 H), 2.38 (s, 3H, p-CH₃), 1.59 (p, J = 6.2 Hz, 2H, tetrahydroquinoline_3 H). ¹³C NMR, δ: 143.8 (thiophene C2), 139.5 (tetrahydroquinoline C8a), 137.5 (tosyl C4), 136.5 (tetrahydroquinoline C7), 134.5 (tosyl C1), 133.3 (tetrahydroquinoline C5), 132.4 (thiophene C4), 129.9 (thiophene C3), 129.7 (tosyl C3, C5), 127.6 (thiophene C5), 127.4 (tosyl C2, C6), 127.1 (tetrahydroquinoline C4a), 118.5 (tetrahydroquinoline C6), 117.5 (tetrahydroquinoline C8), 46.5 (tetrahydroquinoline C2), 26.3 (tetrahydroquinoline C4), 21.6 (tetrahydroquinoline C3), 21.3 (CH₃) ppm. EI-MS m/z 448 (M+, 16), 320 (19), 229 (18), 207 (22), 145 (100%) 118 (60), 91 (85). HRMS (ESI) calcd for C₂₀H₂₁N₂O₄S₃ (MH+), 449.0663; found, 449.0655. HPLC purity: 98.9%, Rₜ=19.993 (15% solvent D in solvent A).
4-Methyl-N-(1-tosyl-1,2,3,4-tetrahydroquinolin-7-yl)benzenesulfonamide 194

Following the general procedure 10 using 1-tosyl-1,2,3,4-tetrahydroquinolin-7-amine 169 (302 mg, 1 mmol), 4-methylbenzenesulfonyl chloride (228.7 mg), 194 was isolated as a white solid (296 mg, 65%), mp: 148-149 ºC; IR (cm\(^{-1}\)) : \(\nu\) 3232 (m, NH), 2921 (w, C-H aliphatic), 1326 (s, SO\(_2\)), 1157 (w, C-N). \(^1\)H NMR, \(\delta\): 7.75 (d, \(J = 8.1\) Hz, 2H, benzene_2,6 H), 7.51 (d, \(J = 2.1\) Hz, 1H, tetrahydroquinoline_8 H), 7.37 (d, \(J = 8.1\) Hz, 2H, benzene_3,5 H), 7.23 (d, \(J = 8.1\) Hz, 2H, tosyl_2,6 H), 7.14 (d, \(J = 8.1\) Hz, 2H, tosyl_3,5 H), 7.01 (s, br, NH), 6.93 (dd, \(J = 8.0, 1.9\) Hz, 1H, tetrahydroquinoline_6 H), 6.86 (d, \(J = 8.2\) Hz, 1H, tetrahydroquinoline_5 H), 3.73 (t, \(J = 5.9\) Hz, 2H, tetrahydroquinoline_2 H), 2.39-2.36 (m, 5H, tetrahydroquinoline_4 H, benzene_4 CH\(_3\)), 2.35 (s, 3H, tosyl_CH\(_3\)), 1.57 (p, \(J = 5.9\) Hz, 2H, tetrahydroquinoline_3 H). \(^{13}\)C NMR, \(\delta\): 143.7, 143.6, 137.4, 136.5, 136.2, 134.9, 129.9 (tetrahydroquinoline C5), 129.7, 129.6, 127.5, 127.1, 126.9 (tetrahydroquinoline C6), 117.9 (tetrahydroquinoline C8), 116.9, 46.5 (tetrahydroquinoline C2), 26.2 (tetrahydroquinoline C4), 21.6 (tetrahydroquinoline C3), 21.5 (benzene_4 CH\(_3\)), 21.3 (tosyl_CH\(_3\)) ppm. EI-MS \(m/z\) 456 (M+, 30), 327 (27), 301 (33), 237 (24), 207 (19), 145 (100%), 118 (37), 91 (73). HRMS (ESI) calcd for C\(_{23}\)H\(_{25}\)N\(_2\)O\(_4\)S\(_2\) (MH+), 457.1256; found, 457.1242. HPLC purity: 99.4%, \(R_t=13.965\) (15% solvent D in solvent A).

9.2. In Silico experiments

9.2.1. CHIKV non-structural protein 2 (nsP2)

The CHIKV nsP2 crystal structure (PDB: 3TRK) was used for the virtual screening study. The virtual screening study was performed on both nsP2 sites (the domain C site_1 and the domain N site_2) using the Life chemicals cysteine protease inhibitors library (28,960 compounds). This cysteine protease inhibitors library was designed
using Ligand based approach – first, a set of 585 compounds active in assays related to cysteine proteases was assembled. And then, Life Chemicals collection was searched for compounds similar to the reference dataset using MDL public keys and the Tanimoto similarity cut-off of 85% to generate a library of 28,960 compounds. Omega2 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) was used to generate multiple conformers for each compound in the cysteine protease inhibitors library, using the default settings, generating 3,349,162 conformers. The binding sites were prepared for docking using Fred receptor setup software (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com). The binding sites were detected using the molecular detection method within Fred receptor setup software, where the method detection uses multiple molecular probes rather than a single carbon probe to determine areas of the protein where docking is likely to occur. These probes are docked using a shape based potential, and regions where multiple probes dock are considered favourable. This type of site based detection is slow, it can take several minutes, but detects few sites that are in general of higher quality than atomic probe detection method.

For the C domain site_1, the binding site detected within the C domain had a size of 8321 Å³, an inner contour of 119 Å³ and an outer contour of 2023 Å³. For the N domain site_2, the binding site had a box size of 9394 Å³, an inner contour of 69 Å³ and an outer contour of 2748 Å³. As a blind docking, no constraints were enabled within these sites, with any of the amino acid residues.

Fast exhaustive virtual screening was performed using FRED v2.2.5 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com). During the docking calculations, chemgauss3 scoring functions was enabled. After the docking calculations, the poses returned were scored and ranked with a Gaussian shape function independently by the five available scoring functions (PLP, Chemgauss3, Chemscore, OEChemscore, and Screenscore) and by a consensus of all. The top ranked poses from the exhaustive docking were then optimized using systematic solid body optimization by chemgauss3. VIDA v4.2.0 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) was used to visualise the docked poses within the receptor active site, and to inspect the critical interacting residues in each pocket with
the individual docked poses. Top 25 hits were then recorded for each of the two sites (Tables 5.1, 5.4).

The top 25 docked poses ranked in each of the two binding sites (site_1, site_2) were then extracted as PDB files, and were processed with AutoDock Tools 1.5.6rc3 (ADT) graphical interface. The Gasteiger charges were computed and the nonpolar hydrogen atoms were merged, torsion angles were defined, they were then saved as pdbqt files for Autodock calculations. The crystal structure 3TRK was used by ADT to setup the binding sites. For the C domain site_1, the grid box x, y and z coordinates were 11.779, 31.511 and 29.546, respectively. The grid spacing was set to 0.375 Å. The grid box size was set to 42 x 42 x 42 points in x, y, and a z direction. For the N domain site_2, the grid box x, y and z coordinates were 3.366, 28.678 and 21.482 respectively. The grid box size was set to 42 x 42 x 42 points in x, y, and a z direction, with grid spacing of 0.375 Å. AutoGrid 4.2 algorithm was used to evaluate the binding energies between the inhibitors and the enzyme and to generate the energy maps for the docking run. Fifty runs were generated by using Autodock 4.2 Lamarckian genetic algorithm for the searches. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 1.0, 2.0 and 3.0 Å, the docked poses were ranked according to the binding energies and ligand efficiencies, and finally the five lowest energy poses (Tables 5.2, 5.3, 5.5, 5.6) were selected as the resultant complexes with the enzymes. The complexes were then typed with the CHARMm forcefield with Discovery Studio 3.5 software (Accelrys Software Inc.: San Diego, CA, 2012) to relax the obtained poses within the enzyme pockets, and visualized.

9.2.2. CHIKV envelope proteins

9.2.2.1. Identification of novel binding sites

Both the crystal structure of the immature complex (PDB file: 3N4095) and the mature complex (PDB file: 3N4295) were used. Binding sites within the receptors were detected using the Discovery Studio 3.5 software (Accelrys Software Inc.: San Diego, CA, 2012). The algorithm is based on a grid search and "eraser" algorithm which derives binding sites from cavities in the structure of the receptor. The binding site found is displayed as a set of points. The volume of each cavity is defined as the product of...
number of site points and the cube of the grid spacing. Six main sites were detected in both the immature and the mature crystal structures and only one site were detected in the mature crystal structure that is not present in the immature form (Figure 6.2). Table 1 shows the identified sites with their characters. Suitable cavities were then checked further based on functionality, presence of hydrophobic residues, presence of charged residues and solvent accessibility.

9.2.2.2. Virtual screening with the CHIKV envelope proteins

Two chemical compounds libraries were used; The NCI set library of 265,242 compounds and the Life chemicals protein-protein interactions inhibitors library of 31,143 compounds. The databases were filtered with the drug-likeness-index; limit the range for Molecular Weight ≤ 500, calculated octanol–water partition coefficient (clogP ≤ 5), and hydrogen bond donors, and acceptors (OH’s and NH’s ≤ 5; N’s and O’s ≤ 10), using Filter v2.0.2 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com), producing 55,841 compounds from the NCI library and 4,124 compounds from the Life Chemicals library. Fast exhaustive virtual screening was performed using FRED v2.2.5 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com). FRED is a fast and effective docking application whose performance is significantly more reliable, i.e. lower variance, than most other programs. FRED performs a systematic, exhaustive, nonstochastic examination of all possible poses within the protein active site, filters for shape complementarily and pharmacophoric features before selecting and optimizing poses using the Chemgauss scoring function. Omega2 (Systematic high-throughput conformer generation, OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com), was used to generate multiple conformers for each compound in the database libraries using the default settings. Omega2 takes into account the flexibility of a molecule by generating all representative conformers. For the NCI library, 2,312,012 conformers were generated, and 334,064 conformers were generated from the Life Chemicals compounds. The work-flow diagram is shown in (Figure 6.3), the life chemical library was screened on site 2 (light green, Figure 6.2) in both of the immature and the mature glycoproteins. The NCI set compounds were screened on site 4 (blue, Figure 6.2) of the two envelope protein forms. The binding sites were prepared for docking using Fred receptor setup software (OpenEye Scientific Software, Santa Fe,
NM. http://www.eyesopen.com). The grid boxes were determined based on the x, y and z co-ordinates given in Table 1. For site 2 in the 3N40 receptor, the box size was set to 6153 Å³ and was assigned an inner contour of 99 Å³ and an outer contour of 1886 Å³. Site 4 in the 3N40 receptor has a box size of 6580 Å³ and was assigned an inner contour of 116 Å³ and an outer contour of 1071 Å³. Site 2 in 3N42 receptor has a box size of 7578 Å³ and was assigned an inner contour of 66 Å³ and an outer contour of 1816 Å³. Site 4 in 3N42 receptor was assigned a box size of 6482 Å³, an inner contour of 45 Å³ and an outer contour of 1547 Å³. No constraints were enabled in any of the prepared receptors. During the docking calculations, both chemgauss3 and shapeguass scoring functions were enabled. After the docking calculations, the poses returned were scored and ranked with a Gaussian shape function independently by the five available scoring functions (PLP, Chemgauss3, Chemscore, OEChemscore, and Screenscore) and by a consensus of all. The top ranked poses from the exhaustive docking were then optimized using systematic solid body optimization by chemgauss3. VIDA v4.2.0 (OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) was used to visualise the docked poses within the receptor active site, and to inspect the critical interacting residues in each pocket with the individual docked poses. Top 20 hits were then recorded for each of the four sites (Tables 6.2, 6.5, 6.8, 6.11).

The top 20 docked poses ranked in each of the four binding sites were then extracted as PDB files, and were processed with AutoDock Tools 1.5.6rc3 (ADT) graphical interface. The Gasteiger charges were computed and the nonpolar hydrogen atoms were merged, torsion angles were defined, they were then saved as pdbqt files for Autodock calculations. Crystal structures (3N40, 3N42) were used by AutoDock Tools 1.5.6rc3 to setup the receptor binding sites. The grid box co-ordinates in each site were determined based on the co-ordinates in Table 6.1. The grid box size was set to 46 x 46 x 46 points in x, y, and a z direction in each of the four sites and a grid spacing of 0.375 Å was used. AutoGrid 4.2 algorithm was used to evaluate the binding energies between the inhibitors and the enzyme and to generate the energy maps for the docking run. Fifty runs were generated by using Autodock 4.2 Lamarckian genetic algorithm for the searches. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 2.0 Å, the docked poses were ranked according to the binding energies and ligand efficiencies, and finally the five lowest energy poses (Tables 6.3, 6.4, 6.6, 6.7, 6.9, 6.10, 6.12, 6.13) were selected as the resultant complexes with the enzymes. The
complexes were then typed with the CHARMM forcefield with Discovery Studio 3.5 software (Accelrys Software Inc.: San Diego, CA, 2012) to relax the obtained poses within the enzyme pockets, and visualized.

9.2.3. CHIKV non-structural protein 3 (nsP3)

9.2.3.1. Virtual screening with Autodock Vina

The CHIKV nsP3 macro domain crystal structure was downloaded from the protein data bank (RCSB), PDB code: 3GPO. Autodock Tools 1.5.6rc3 (ADT) graphical interface was used to prepare the receptor, where waters were removed, non-polar hydrogens were merged and polar hydrogens were added. The Kollman charges were added and the Gasteiger charges were calculated for the receptor. The grid box coordinates were determined according to the co-crystallized ligand (ADP-ribose) where x, y and z values were 29.642, 29.232 and 21.592, respectively. The grid box size was set to 32 x 32 x 32 Å, with a grid spacing of 0.375 Å. The receptor was then saved as a pdbqt file, and was ready for the virtual screening run.

The NCI Diversity Set III 1990 compounds’ library was downloaded from the NCI website (http://cactus.nci.nih.gov/download/nci/). Compounds were energy minimized using the Uff forcefield embedded within the Open Babel of PyRx (Scripps research institute, http://pyrx.sourceforge.net/), with 100,000 steps where the minimization stopped when the energy difference was less than 0.001. The minimized structures were then converted to the pdbqt format using Autodock Tools 1.5.6rc3 (ADT).

Autodock Vina was used to dock each compound in the library within the nsP3 binding site, using an exhaustiveness (number of runs) value of 125. The docked poses were then ranked according to the Vina binding energies (Kcal/mol). Top poses ranked that achieved better binding energies than the co-crystallized ligand (ADP-ribose), were extracted, complexed with the receptor (nsP3). The complexes were then typed with the CHARMM forcefield with Discovery Studio 3.5 software (Accelrys Software Inc.: San Diego, CA, 2012) to relax the obtained poses within the enzyme pocket, and visualized.
9.2.3.2. Re-ranking using Autodock 4

The Autodock Vina hit list poses (Table 3.1) were extracted as pdbqt files by (ADT). The CHIKV nsP3 receptor that was prepared for Autodock Vina was re-used for Autodock 4. AutoGrid 4.2 algorithm was used to evaluate the binding energies between the inhibitors and the enzyme and to generate the energy maps for the docking run. Fifty runs were generated by using Autodock 4.2 Lamarckian genetic algorithm173 for the searches. Cluster analysis was performed on docked results, with a root-mean-square tolerance of 1.0, 2.0 and 3.0 Å, the docked poses were ranked according to the binding energies and ligand efficiencies, and finally, the survived lowest energy poses (Table 3.2) were selected as the resultant complexes with the enzyme. The complexes were then typed with the CHARMm forcefield with Discovery Studio 3.5 software (Accelrys Software Inc.: San Diego, CA, 2012) to relax the obtained poses within the enzyme pocket, and visualized.

9.3. Biological evaluation

9.3.1. Anti-Chikungunya evaluations

Currently, the synthetic compounds 114-117, 120, 121, 126, 127, 130, 131, 137, 138, 140-143 and 145-147, along with the CHIKV nsP2 data base searching hits (Tables 5.3 and 5.6) are being evaluated for their anti-CHIKV activity including virus-cell-based CPE reduction and cytotoxicity assays (with the standard deviations). Testing is being conducted at Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium, with Prof. Johan Neyts and Dr. Peiter Leyssen.

The NCI hits (Table 3.1) are being evaluated against the CHIKV by Professor Suresh Mahalingam, Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia, 4222.

9.3.2. Trypanocidal activity evaluation

9.3.2.1. Initial screen

The bis-sulfonamide compounds 160, 170-194 were resuspended in the appropriate volume of 100% DMSO to give a stock solution of 21 mM. Initially all compounds
were screened at doses of 10.43 \(\mu \)M and 1.4 \(\mu \)M against \textit{T. b. brucei}, to give an indication of the compounds trypanocidal activity. The compounds were screened once against two separate trypanosome populations, designated culture A and culture B. Compounds with >80% activity at 10.43 \(\mu \)M and >50% activity at 1.4 \(\mu \)M were classified as active. Using these selection criteria, active compounds were selected for IC\textsubscript{50} and selectivity index (SI) determination.

9.3.2.2. Assay controls
Positive in-plate controls in wells G2-O23 contained 0.417\% final DMSO concentration. The in-plate controls were used to calculate the activity of compounds whilst taking into account any plate-to-plate variability in the signal of the assay. Two types of external control plates were included for each trypanosome population. To calculate the assay Z’, a plate containing minimum and maximum assay signals was used. For calculation of the minimum signal, or 100% inhibition of cell growth, 36.45 \(\mu \)M final concentration puromycin was placed in half of the plate. To calculate the maximum signal, 0.42\% DMSO was placed in the second half of the plate. The Z’ prime was 0.57 and 0.72 for culture A and B respectively.

As a measure of the sensitivity of each assay, a plate containing dose response dilutions of the reference compounds pentamidine, diminazene aceturate and puromycin was used. Puromycin gave IC\textsubscript{50} values of 54.78 nM and 73.69 nM for culture A and B, respectively. Pentamidine exhibited an IC\textsubscript{50} value of 1.6 nM and 2.44 nM for culture A and B respectively. Diminazene aceturate had an IC\textsubscript{50} value of 103.8 nM and 155.2 nM.

9.3.2.3. IC\textsubscript{50} and selectivity index determination
The compounds were screened against \textit{T. b. brucei} and HEK 293 in 20 point dose CRC format. The highest dose of 83.33 \(\mu \)M was only used in the HEK293 assay. This allowed the selectivity index of the compounds to be estimated. The compounds were screened in duplicate against two separate cultures (designated A and B) of both \textit{T. brucei} and HEK 293. The IC\textsubscript{50} and SI was determined for compounds with greater than >80\% activity at 41.67 \(\mu \)M in the \textit{T. b. brucei} assay. The SI of the compound was determined where possible by directly comparing the IC\textsubscript{50} values between the two assays. If this was not possible, an estimated IC\textsubscript{50} value was calculated by comparing
the dose at which the compound was active >50% in the *T. brucei* assay and the lowest
dose at which there was no activity (<50%) in the HEK293 assay.

Assay controls: Positive in-plate controls in column 23 (rows B-O) contained 0.417%
final DMSO concentration. The in-plate controls were used to calculate the activity of
compounds whilst taking into account any plate-to-plate variability in the signal of the
assay. Two types of external control plates were included for each of the two cell
populations in the *T. b. brucei* and HEK 293 assay. To calculate the assay Z’, a plate
containing minimum and maximum assay signals was used. For calculation of the
minimum signal, or 100% inhibition of cell growth, 36.45 μM final puromycin was
placed in half of the plate. To calculate the maximum signal, 0.42% DMSO was placed
in the second half of the plate. The Z’ prime was 0.63 and 0.72 for culture A and B in
the *T. brucei* assay respectively. In the HEK 293 assay the Z’ prime was 0.69 for culture
A and 0.56 for culture B. As a measure of the sensitivity of each assay, a plate
containing dose response dilutions of the reference compounds pentamidine,
diminazene aceturate and puromycin was used. In the *T. brucei* assay Puromycin gave
IC$_{50}$ values of 43.6 nM and 47.62 nM for culture A and B, respectively. Pentamidine
exhibited an IC$_{50}$ value of 1.58 nM and 1.78 nM for culture A and B respectively.
Diminazene aceturate had an IC$_{50}$ value of 94.6 nM and 88.9 nM. In the HEK 293
assay, Puromycin gave IC$_{50}$ values of 165.3 nM and 225.7 nM for culture A and B,
respectively. Pentamidine and diminazene aceturate exhibited no activity in the HEK
293 assay.
CHAPTER 10: References

85. Rungrotmongkol, T.; Nunthaboot, N.; Malaisree, M.; Kaiyawet, N.; Yotmanee, P.; Meeprasert, A.; Hannongbua, S. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and venezuelan equine

168. Barta, T. E. B., Daniel P.; Bedell, Louis J.; Boehm, Terri L.; Carroll, Jeffrey N.; Decrescenzo, Gary A.; Fobian, Yvette M.; Freskos, John N.; Getman, Daniel P.; McDonald, Joseph J.; Hockerman, Susan L.; Howard, Susan C.; Kolodziej, Stephen A.; Li, Madeleine Hui; Mischke, Deborah A.; Rico, Joseph G.; Stehle, Nathan W.; Tollefson, Michael B.; Vernier, William F.; Villamil, Clara I. . Aromatic sulfone hydroxamic acid metalloprotease inhibitor. US 6750228 B1, **2004**.

