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A Sparsity-Based Training Algorithm
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Jie Yang, Jun Ma
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E-mails: {jiey, jma}@uow.edu.au

Abstract—We address the training problem of the sparse
Least Squares Support Vector Machines (SVM) using com-
pressed sensing. The proposed algorithm regards the support
vectors as a basis dictionary and selects the important
ones that minimize the residual output error iteratively. A
measurement matrix is also introduced to reduce the compu-
tational cost. The main advantage is that the proposed algo-
rithm performs model training and support vector selection
simultaneously. Experimentally, the proposed algorithm is
tested with several benchmark classification problem. Differ-
ent numbers of support vectors and sizes of the measurement
matrix are taken into account to test the performance of
the proposed algorithm. Simulation results show that the
proposed method performs competitively when compared to
existing methods.

I. Introduction

Least Squares Support Vector Machines (LS-SVMs) are
now considered as the most popular tools for regression
and classification learning tasks [? ? ? ? ]. One of the
advantages of LS-SVMs over the traditional SVMs is
that the sensitive loss function is replaced by a set of
equality constraints; thereby, the quadratic programming
problem of traditional SVMs is reduced to solving a
system of linear equations. The empirical studies have
shown that LS-SVMs are comparable to standard SVMs
in terms of generalization performance [? ? ? ].

The major drawback of LS-SVMs, however, is the
solution sparsity, in which a great number of support
vectors (SVs) are required in the model. The support
vectors, used to construct the decision function, are
typically a small portion of training samples. Increasing
the number of SVs will influence the training accuracy,
the generalization ability, and the computation cost [? ?
? ].

In this paper, we present a sparsity-based training
algorithm for the LS-SVM model using compressed sens-
ing, termed Sparse Least Squares Support Vector Machine
(SLS-SVM). The compressed sensing (CS) model is used
to recover signals that have a sparse representation
from a number of measurements lower than the number
of samples required by the Shannon/Nyquist Sampling
theory [? ? ? ? ? ]. Thus, when we are aiming for a
sparse LS-SVM model, the CS model can be employed.
In details, the LS-SVM model is first reformulated as

a sparse representation problem. The training process
is then accomplished by iteratively finding important
support vectors that minimize the residual error. To
further reduce the computational cost, a measurement
matrix is also introduced based on compressed sensing.
The main advantage of the SLS-SVM is that it performs
model training and SVs selection simultaneously. By this
way, it does not require a full training of the LS-SVM
model before finding important SVs; therefore, it reduces
the computation cost compared to most sparse training
methods.

The remainder of the paper is organized as follows.
Section II gives a brief introduction of the typical
LS-SVM training process and the compressed sensing
model. Section III presents the sparsity-based training
algorithm. Section IV compares the proposed algorithm
with conventional training methods using four typical
classification problems. Section V presents concluding
remarks.

II. LS-SVMs and compressed sensing

In this section, we first briefly review the traditional
training process for the LS-SVM algorithm. Then we
introduce the conceptual model for compressed sensing.

A. Traditional LS-SVM

As a supervised learning approach, an LS-SVM is
commonly used in classification learning task. Suppose
that we have a training set consisting of N samples
{xi, zi}Ni=1, where xi ∈ Rd is the i-th input sample and
zi ∈ {1,−1} is the class label. The LS-SVM is trained by
solving the following problem:

min J (w, b, e) =
1
2

wTw +
γ

2

N∑
i=1

e2
i ,

s.t. zi = wTφ (xi) + b + ei, i = 1, 2, ...,N,

where e is the error vector, γ is a regularization param-
eter, and φ (∗) can be any kernel function. This problem



could be solved using the Lagrange multiplier method:

min L (w, b, e,α) = J (w, b, e)

+

N∑
i=1

αi[zi −wTφ (xi) − b − ei], (1)

where αi (i = 1, 2, ...,N) are the Lagrange multipliers,
which may be positive or negative due to the equality
constraints. According to the Karush-Kuhn-Tucker con-
ditions, the minimization of Eq. (1) satisfies

∂L
∂w
= 0 −→ w =

N∑
i=1

αiφ(xi),

∂L
∂b
= 0 −→

N∑
i=1

αi = 0,

∂L
∂ei
= 0 −→ αi = γei, i = 1, 2, ...N,

∂L
∂αi
= 0 −→ wTφ(xi) + b = zi − ei, i = 1, 2, ...N.

(2)

Furthermore, the above conditions lead to a linear
system of equations after eliminating w and e: Q + γ−1IN 1N

1T
N 0

 [ αb
]
=

[
z
0

]
, (3)

where Q is the kernel matrix with Qi j = φ (xi)
T φ
(
x j

)
, the

vector 1N is the N-dimensional vector whose elements
are equal to 1, and IN is the N ×N identity matrix.

To train the LS-SVM, the conjugate gradient (CG)
algorithm was employed to solve the linear system
(3) [? ? ]. The disadvantage of the CG-based training
algorithm is that the computational complexity increases
exponentially with the size of the linear system. The
sequential minimization optimization (SMO) algorithm
was also proposed to speed up the calculation [? ]. Apart
from the computational cost on training, the LS-SVM
method also requires a large number of support vectors
(SVs), which may influence the training performance
and the generalization capacity. Too many SVs result
in poor generalization on the test data even if it can
obtain high accuracy on the training data. Therefore,
several optimization methods have been suggested to
improve the sparseness of the LS-SVM model. Suykens
et al. first proposed to remove training samples that
have the smallest absolute support values [? ]. However,
this method might eliminate training samples near the
decision boundary, which has a negative influence on
the training performance. An improved method was
proposed in [? ] where a reduced training set comprised
of samples near the decision boundary is used to retrain
the LS-SVM. In [? ], SVs were eliminated by minimizing
the output error after few samples have been deleted.
However, the method involves the inversion of a matrix
that is often singular or near singular. Another sparse

training approach is proposed based on a two-step
model selection of the kernel and penalty parameters
[? ]. In [? ], a pruning algorithm is presented using
the quadratic Renyi entropy. The training set is firstly
divided into several subsets before computing their en-
tropy for all of them. The subset with the larger entropy
will be trained as the priority, and the sparse LS-SVM is
eventually built on top of the subsets. A survey of sparse
training algorithms is presented in [? ].

B. Compressed sensing

Compressed sensing (CS) has received considerable at-
tention recently for its ability to perform data acquisition
and compression simultaneously [? ? ? ]. It can be used
to reconstruct a sparse approximation of a compressible
signal from far fewer measurements than required by the
sampling theorem. This has the advantage of reducing
the amount of the data acquisition and computational
time. Fewer measurements can be constructed by simply
choosing a random measurement matrix in most cases, and
the recovery of the sparse solution can still be achieved
with high probability [? ? ].

According to the number of measurement vectors,
the compressed sensing framework is categorized into
follows:

1) Single measurement vector (SMV) model is applied
when only one measurement vector is available [?
? ];

2) Multiple measurement vector (MMV) model consid-
ers more than one measurement vector simulta-
neously, where the solution is a two-dimensional
array [? ];

In this paper, we focus on the application of the SMV
to train the LS-SVMs. Consider a signal s ∈ RN and an
orthonormal basis Ψ =

[
ψ1, · · · ,ψN

]
, where ψn ∈ RN, for

n = 1, 2, · · · , N. Then the signal s can be expressed as
follows:

s =
N∑

n=1

xnψn or s = Ψx, (4)

where x ∈ RN is the weight vector. In SMV model,
the aim is to recover this vector x from few linear
measurements y ∈ RM, where M << N. Given a linear
measurement matrix Φ ∈ RM×N, the measurement vector
is given by

y = Φs = Dx, (5)

where D = ΦΨ is known as the dictionary. The SMV
model can then be expressed as

min S (x) subject to
∥∥∥y −Dx

∥∥∥
2
< ϵ, (6)

where S (x) denotes a sparsity measure, and ϵ bounds
the amount of additional noise. One simple strategy of
solving Eq. (6) is to minimize the l0-norm of x, i.e., S (x) =
∥x∥0. The l0 pseudo-norm is the cardinality or number of



nonzero elements in x. Thus Eq. (6) is rewritten as

min ∥x∥0 subject to
∥∥∥y −Dx

∥∥∥
2
< ϵ. (7)

III. Sparsity-based training algorithm for LS-SVM

In this section, we present a sparsity-base training al-
gorithm for LS-SVM, termed Sparse Least Squares Support
Vector Machines (SLS-SVM), to solve sparsity and the
computational complexity of LS-SVM. The main differ-
ence between SLS-SVM and existing techniques is that
the proposed algorithm minimizes the model structure
while training the LS-SVM simultaneously. By contrast,
most traditional methods need to train the model be-
fore finding the sparse support vectors. In Subsection
III-A, we present the sparsity-based training algorithm
for LS-SVM. In Subsection III-B, we further reduce the
computational cost by introducing the random measure-
ment matrix. We finally detail the solver for the sparse
representation in Subsection III-C.

A. Sparse representation for LS-SVM

The LS-SVM training algorithm aims to find the op-
timal parameters for the vector [αT, b]T that satisfies
Eq. (3). Note that setting a particular element of α to zero
is equivalent to removing the corresponding training
sample or support vector. Therefore, the goal of finding
a sparse LS-SVM model, within a given tolerance of
accuracy, can be equated to minimizing the number of
non-zero elements from the parameter vector [αT, b]T.
For further discussion, we simplify Eq. (3) as follows. Let
ẑ be a composite vector containing the desired output:

ẑ =
[

z
0

]
. (8)

The coefficient matrix is represented by Ψ:

Ψ =

 Q + γ−1IN 1N

1T
N 0

 . (9)

The parameter vector is represented by x as follows:

x = [αT, b]T. (10)

Note that each element from x is associated with one
support vector. Now the sparse LS-SVM training is
equivalent to finding a sparse representation for the
parameter vector x. Only the support vectors associated
with non-zero parameters in x will affect the LS-SVM
model. Consequently, the sparse training problem for LS-
SVM is cast as follows:

min ∥x∥0 subject to
∥∥∥̂z −Ψx

∥∥∥
2
< ϵ. (11)

B. Measurement matrix

The problem with the minimization of Eq. (11) is that
the entire training set with all N samples is considered,
which leads to costly computation, especially with large
training sets.

We now further formulate the sparse LS-SVM training
using fewer measurements. Given a linear measurement
matrix Φ ∈ RM×(N+1) (M << N), the measurement vector
is given by

y = Φ̂z, (12)

where ẑ is the augmented vector in Eq. (8). Given the
matrix Ψ in Eq. (9), the optimization problem in (11)
can be expressed as follows:

min ∥x∥0 subject to
∥∥∥y −Dx

∥∥∥
2
< ϵ, (13)

where D = ΦΨ is the dictionary. We should note that
the dictionary D is of size M × (N + 1), where M << N.
In particular, if the selection matrix with M = N + 1 is
employed, then all the original measurements will be
selected. In this case, solving Eq. (13) is converted to that
of Eq. (11). As observed, the computational complexity is
now reduced to solving a M× (N+1)-dim linear system.
This is much smaller than the original model, which has
size (N + 1) × (N + 1).

C. Sparse solver via orthogonal matching pursuit

A variety of algorithms can be applied to find the
sparse solution, such as Orthogonal Matching Pursuit
(OMP) [? ] and Non-convex local optimization [? ].
Herein, we use the OMP algorithm to solve the SMV
problem. The reason is two-fold: firstly, we are able to
control the number of selected SVs via OMP. According
to OMP, it starts from an empty set and adds a new
atom iteratively for the sparse representation. If the
solver halts at the K-th iteration, there will be K non-
zero element in the solution. As a result, when OMP is
applied to solve Eq. (13), we will have ∥x∥0 = K at the K-
th iteration. Accordingly, there will be K support vectors
being selected.

The second reason is the less computational cost. For
the proposed algorithm, at each iteration, the OMP algo-
rithm performs a Cholesky factorization, which requires
O(K2) operations, where K is the number of support
vectors to be selected. Furthermore, SLS-SVM selects
one support vector iteratively. The selection procedure
can be regarded as a forward selection of K support
vectors from the entire N training samples. Therefore,
K loops are required to select K support vectors. The
computational complexity for the SLS-SVM algorithm is
O(K3).

By contrast, the training algorithms in [? ] train an
LS-SVM using all N training examples. The LS-SVM
model is trained by optimizing the kernel and penalty
parameters. Therefore, the complexity is O(N3). In [?
] , the pruning operation is applied to delete training
examples until some criteria are reached. This process
is computationally expensive as each deletion requires
O(P2) operations, where P (N > P > K) is the number of
training examples being compared. In addition, K loops
are required to achieve the sparse model. Therefore, the



computational complexity is O(K × P2). The comparison
of the computational complexity between the proposed
algorithm and other sparse training methods [? ? ] is
summarised in Table I. Overall, compared to conven-
tional methods, faster convergence is expected from the
proposed algorithm.

TABLE I
Computational complexity of various training algorithms for

LS-SVM, where N is the number of training samples, K is the number
of selected support vectors, and P is the number of support vectors

to be removed.

SLS-SVM [? ] [? ]
Loops K N K

Complexity O(K3) O(N3) O(K × P2)

IV. Experimental results

This section presents the experimental results and
comparisons of the proposed algorithm with existing LS-
SVM training techniques. The employed classification
data sets and the evaluation of the training algorithm
are presented in Subsection IV-A. The performance of the
SLS-SVM is then evaluated in Subsection IV-B. The com-
parison results with conventional training algorithms are
presented in Subsection IV-C.

A. Experimental methods

Four classification problems are chosen from UCI
repository [? ] for experimental evaluation (see Table II).
Each data set is partitioned into two subsets: a training
set and a test set. The training set is used to train and
optimize the LS-SVM model. The test set is used for
the evaluation of the generalization performance of the
model. The sizes of the training and test sets are 67%
and 33%, respectively.

TABLE II
Employed data set. A partitioning into training and test set is also

given for each data set.

Data Set Input Training Test
Cancer 9 466 233
Heart 13 180 90

Thyroid 5 145 70
Wine 13 120 58

The performance of the training algorithms is eval-
uated using the classification accuracy. The resulting
model structure is measured by the number of remaining
support vectors, i.e.,

k = K/ (N + 1) × 100%, (14)

where K is the number of selected support vectors, and
N is the number of training samples. Thus, a larger
value for k means that more support vectors are selected

during training. For the proposed SLS-SVM algorithm,
the percentage of selected measurements is denoted

m =M/ (N + 1) × 100%, (15)

where M is the number of selected measurements.

B. Performance analysis of SLS-SVM
In this subsection, we first investigate the effect of

the remaining support vectors on the generalization
ability. Second, we test the performance of the SLS-SVM
method based on the measurement matrix with different
numbers of selected measurements.

1) Support vectors: The number of support vectors is
critical to the performance of the SLS-SVM algorithm.
For instance, a large model with more support vectors
may result in a fast convergence to a local minimum,
but exhibits poor generalization performance because
of overfitting. Meanwhile, a too small model may not
be able to find the proper fit to the data. Therefore, in
this subsection we analyse how the number of support
vectors impacts the performance of SLS-SVM. The re-
maining model structure is set to k = 20%, 30%, 50%,
and 100%, and the percentage of measurements is fixed
at m =100% with the measurement matrix. Again, using
the measurement matrix with m =100% is equivalent to
solving the sparse representation for Eq. (11).

Table III shows the performance of the proposed al-
gorithm with respect to the remaining model structure.
As can be observed, the proposed method achieves a
better classification accuracy on the training sets with
increasing number of support vectors. The performance
on the training sets is 93.43%, 95.50%, 97.13%, and
99.28% for k = 20%, 30%, 50% and 100%, respectively.
However, a larger k leads to a longer training time. In
other words, when more support vectors are selected,
higher computational cost is required to train the SLS-
SVM algorithm.

On the other hand, the generalization ability of the
trained model is not guaranteed to be improved with
more support vectors. For instance, the average classi-
fication rate on the test set is 94.06%, 95.02%, 95.25%,
94.84% for k = 20%, 30%, 50% and 100%, respectively.
One reason is that the model with more support vec-
tors overfits the training data, and thus its accuracy is
reduced on the test sets. Overall, the results show that
selecting fewer support vectors leads to comparably well
generalization performance and requires less computa-
tion cost.

2) Measurement matrix: A measurement matrix is em-
ployed in the proposed SLS-SVM algorithm, which is
used to reduce the computational complexity. In this
subsection, we analyse the robustness of the proposed
algorithm to the measurement matrix. Without loss of
generality, we adapt the random measurement matrix
herein. Meanwhile we set the percentage of selected
measurements to m = 20%, 40%, 70% and 100%. To



TABLE III
Summary of the classification accuracy (%) and training time (sec) from the proposed SLS-SVM method. Various numbers of selected

support vectors are considered.

Data sets k 20% 30% 50% 100%

Cancer
Training 98.71 99.62 100 100

Test 98.71 98.71 98.71 98.71
Time 1.04±0.23 2.08±0.75 7.03±3.11 54.68±7.58

Heart
Training 86.11 88.33 92.22 100

Test 87.78 86.67 86.67 86.67
Time 0.07±0.01 0.14±0.05 0.35±0.09 2.57±0.73

Thyroid
Training 93.56 96.07 97.98 98.36

Test 93.85 96.32 97.10 97.87
Time 0.18±0.02 0.35±0.07 0.71±0.22 4.32±1.19

Wine
Training 95.35 97.97 98.31 98.76

Test 95.90 98.36 98.51 96.12
Time 0.06±0.01 0.10±0.01 0.35±0.09 2.53±0.86

Average
Training 93.43 95.50 97.13 99.28

Test 94.06 95.02 95.25 94.84
Time 0.34±0.07 0.67±0.22 2.11±0.88 16.02±2.59

make the comparison fair, the remaining model is fixed
at k =30%. Tables IV shows the performances of the SLS-
SVM algorithms with the random measurements.

Several observations can be made from these results.
Firstly, the SLS-SVM method achieves better training
accuracy with larger m. Given the random measurement
matrix, the average classification rate on the training set
is 91.24%, 93.72%, 94.98%, and 95.35% for m = 20%, 40%,
70% and 100%, respectively. Obviously, higher training
accuracy requires more measurements. Selecting only a
very small number of measurements may not provide
sufficient information for training. On the other hand,
the proposed SLS-SVM algorithm achieves quite similar
generalization performance with different sizes of the
measurement matrix. For instance, for m = 20%, 40%,
70%, and 100%, the proposed algorithm generates on av-
erage 93.89%, 95.56%, 95.43%, and 95.17% classification
accuracy on the test sets. The average difference of 1.28%
classification rate on the test sets of the four problems
is not significant. Second, in terms of the training time,
more measurements require longer training time. When
m =100%, the proposed method requires nearly 50%
extra time to train the LS-SVM model compared to that
of m = 20%. Overall, using fewer measurements, the
proposed algorithm not only reduces the computation
requirement, but also achieves similar generalization
performance.

C. Comparison with sparse training algorithms
In this subsection, the proposed SLS-SVM algorithm is

compared with another two sparse training algorithms,
namely Selection [? ] and Pruning [? ]. To make a fair
comparison, we implemented the proposed SLS-SVM
using the least number of support vectors achieved
by its counterpart. The standard LS-SVM algorithm is
also considered for benchmarking. Furthermore, in SLS-
SVM, the percentage of selected measurements is set to
m =40% with the random measurement matrix. Table

V shows the remaining model structure, the training
accuracy, and the test accuracy obtained with different
methods.

Compared to conventional training algorithms, the
SLS-SVM achieves a significant improvement in terms
of classification accuracy using the same number of
support vectors. On average, the SLS-SVM achieves a
classification accuracy of 95.45% on the test sets, which
is better than the accuracy of Selection (93.21%) and
Pruning (94.25%) methods. Furthermore, the SLS-SVM
algorithm with average 37.50% support vectors performs
comparably well to the standard LS-SVM. The average
accuracy of the proposed method is improved by 3.62%
on the test sets compared to the standard LS-SVM
method.

V. Conclusion
In this paper, we proposed a LS-SVM training algo-

rithm based on sparse signal representation. The kernel
matrix in LS-SVM is regarded as a dictionary in the
sparse representation, hence the goal for training LS-
SVM is converted to simply finding the sparse parameter
for the classifier. A measurement matrix is also intro-
duced to further reduce the computational complexity.
The main difference between SLS-SVM and existing
techniques is that the proposed algorithm is capable of
selecting important support vectors and training the LS-
SVM model simultaneously. On the other hand, most
traditional methods need to train the model before find-
ing the support vectors. Experimentally, the proposed
training algorithm leads to a quick convergence and a
sparse model.
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TABLE IV
Average classification accuracy (%) and training time (sec) of the proposed SLS-SVM algorithm, as a function of the size of the random

measurement matrix.

Data sets m 20% 40% 70% 100%

Cancer
Training 96.57±3.25 97.00±2.25 99.14±0.65 99.00±0.32

Test 99.14±0.43 99.14±0.43 99.14±0.43 99.14±0.43
Time 1.22±0.57 1.67±0.75 2.06±0.68 2.10±0.87

Heart
Training 83.89±4.21 86.11±2.01 87.78±0.91 88.22±0.51

Test 85.56±1.01 87.78±0.08 87.32±0.06 86.67±0.03
Time 0.11±0.05 0.13±0.07 0.14±0.08 0.14±0.07

Thyroid
Training 93.38±5.57 94.45±4.73 95.55±3.89 96.07±3.66

Test 93.57±3.63 96.87±2.28 96.51±1.40 96.58±1.33
Time 0.16±0.02 0.23±0.05 0.28±0.05 0.35±0.07

Wine
Training 91.10±6.20 97.31±5.19 97.45±3.53 98.10±0.91

Test 97.30±2.51 98.46±1.20 98.77±1.36 98.28±1.08
Time 0.06±0.01 0.08±0.01 0.08±0.01 0.10±0.01

Average
Training 91.24±4.81 93.72±3.55 94.98±2.25 95.35±1.35

Test 93.89±1.90 95.56±0.99 95.43±0.81 95.17±0.72
Time 0.39±0.16 0.53±0.22 0.64±0.21 0.67±0.26

TABLE V
Summary of remaining support vectors and classification accuracy (%) for various sparse training algorithms of LS-SVM.

LS-SVM Selection [? ] Pruning [? ] SLS-SVM

Cancer
k 100 38.74 25.20 25.20

Training 96.35 - 98.00±0.80 96.80±2.31
Test 98.71 94.10±3.38 97.90±0.80 99.14±0.43

Heart
k 100 62.97 46.70 46.70

Training 88.67 - 91.70±2.10 86.91±1.72
Test 81.67 83.44±2.86 85.19±4.60 87.67±1.67

Thyroid
k 100 40.96 32.80 32.80

Training 93.40 - 97.30±1.40 95.51±2.51
Test 91.45 96.46±1.77 96.70±3.20 96.32±1.67

Wine
k 100 50.76 45.30 45.30

Training 98.60 - 99.60±0.50 97.41±1.51
Test 95.50 98.83±1.34 97.20±1.40 98.67±0.67

Average
k 100 48.36 37.50 37.50

Training 94.26 - 96.65±1.20 94.16±2.01
Test 91.83 93.21±2.34 94.25±2.50 95.45±1.11
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