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Abstract—Data-intensive services have become one of the
most challenging applications in cloud computing. The classi-
cal service composition problem will face new challenges as the
services and correspondent data grow. A typical environment
is the large scale scientific project AMS, which we are
processing huge amount of data streams. In this paper, we
will resolve service composition problem by considering the
multi-objective data-intensive features. We propose to apply
ant colony optimization algorithms and implemented them
with simulated workflows in different scenarios. To evaluate
the proposed algorithm, we compared it with a multi-objective
genetic algorithm with respect to five performance metrics.

Index Terms—data-intensive service composition, ant colony
system, genetic algorithm.

I. INTRODUCTION

Big Data has attracted much research attention. The
Gartner Group listed Big Data in the “10 Critical Tech
Trends for the Next Five Years” [1]. Data-intensive science
is emerging as the fourth scientific paradigm, and new tech-
niques and technologies for the new scientific paradigm are
needed [2]. As a result, applications based on data-intensive
services have become one of the most challenging applica-
tions in service oriented computing and cloud computing.
A survey of the challenges, techniques, and technologies of
data-intensive applications was presented in [3]. The scope,
number, and complexity of data-intensive services are all
set to soar in the future. On the one hand, Big Data provides
opportunities and potential values. On the other hand, many
challenges are arising with respect to the data capture, data
storage, data analysis, data searching, data sharing, and data
visualization [3]. The service provision, and in particular
service composition, will face new challenges such as
autonomy, scalability, adaptability, and robustness. Indeed,
new mechanisms are needed to overcome those issues. In
the following, we will briefly introduce the application of
the Big Data problem in scientific research fields.

One of the motivations of our work is the Alpha Mag-
netic Spectrometer (AMS) experiment, which uses cloud
computing to process a huge amount of data. The AMS,
also designated AMS-02, is a particle physics experiment
module that is mounted on the International Space Sta-
tion. The purpose of the AMS experiment is to advance
knowledge of the universe and lead to the understanding
of its origin by searching for antimatter and dark matter

while performing precision measurements of cosmic rays
composition and flux. The AMS-02 SOC (Science Opera-
tion Center) at Southeast University in China (labeled as
AMS-02 SOC@SEU) is supported by the IBM-sponsored
Cloud Computing Center with 3500 CPU core and 500TB
storage. The AMS-02 SOC@SEU typically receives 200GB
of data from AMS and generates 700GB of data after
processing them, on each day. Scientists and remote users
deploy different processes, such as data mining, image
processing, thematic map generation, or data query on a
large amount of data at AMS-02 SOC. A set of operations
is often necessary to provide an appropriate solution to
complex scientific applications. The use of Web services
technologies provides valuable solutions to speed up the
scientific data analysis [4], [5]. A composition of a set
of services as a composite service can be reused by other
researchers.

The authors of [3] explained that bio-inspired computing
was one of the underlying techniques to solve data-intensive
problems. The authors stated that biological computing
models were better appropriate for Big Data because they
had mechanisms with high-efficiency to organize, access,
and process data. The authors of [6] already proved that
it was useful for service management and discovery to
add biological mechanisms to services. One of our earlier
studies has presented a hierarchical taxonomy of Web
service composition approaches [7]. By analyzing each
type of approaches with respect to their optimality, their
computational efficiency, and their dynamic complexity,
we observed that bio-inspired algorithms, belonging to the
sub-optimal methods, could overcome the new challeng-
ing requirements of the data-intensive service provision
problem. Then we conducted a systematic review of Web
service composition and selection based on three bio-
inspired algorithms, namely, the ant colony optimization
algorithms, the genetic algorithms, and the particle swarm
optimization algorithms [7].

The ant colony optimization algorithms are inspired by
the foraging behavior of ant colonies, in which a set of
artificial ants cooperate to find a solution of a problem
by exchanging information via pheromone deposited on
a graph edges. The ant colony optimization algorithms
iteratively performs a loop constitutes the ants’ solution



construction and the pheromone update. ACS is an algo-
rithm inspired by the ant system but differs from it in three
main aspects [8]. First, the state transition rule provides
a way to balance between the exploration of new edges
and the exploitation of accumulated knowledge about the
problem. Second, a local updating rule is applied while ants
construct a path. Third, the global updating rule is applied
only to edges which belong to the best ant path. In this
paper, we will propose a multi-objective ant colony system
(MOACS) to solve the data-intensive service composition
problem.

The remainder of this paper is organized as follows.
Section II introduces background. Section III investigates
how a MOACS could be used to solve the problem.
Section IV presents experimental results and analysis. Sec-
tion V reviews related work. Finally, section VI concludes
this paper and proposes future work.

II. BACKGROUND

A. Pareto-optimal Solutions

The goal of the majority of existing multi-objective
optimization algorithms is to find Pareto-optimal solutions.
The concept of dominance is used to relate the solutions
found in these algorithms.

Definition 2.1 (Dominance): In a minimization problem
for all objectives, a solution x1 dominates another solution
x2 (denotes as x1 ≺ x2) if and only if the two following
conditions are true: 1) x1 is no worse than x2 in all
objectives, namely Fi(x1) ≤ Fi(x2) (∀i ∈ {1, 2, . . . , N},
N is the number of objective functions), and 2) x1 is
strictly better than x2 in at least one objective, namely
Fj(x1) < Fj(x2) (∃j ∈ {1, 2, . . . , N}).

Definition 2.2 (Cover): In a minimization problem for
all objectives, a solution x1 is said to cover another solution
x2 (denotes as x1 � x2) if one of the two following con-
ditions is true: 1) x1 dominates x2, namely x1 ≺ x2, or 2)
x1 is equal to x2 in all objectives, namely Fi(x1) = Fi(x2)
(∀i ∈ {1, 2, . . . , N}).

Definition 2.3 (Non-dominated set): Among a set of so-
lutions, the non-dominated set of solutions are those that
are not dominated by any member of the set.

A solution is said to be Pareto-optimal if it is not dom-
inated by any other possible solutions. Thus, the Pareto-
optimal solutions to a multi-objective optimization problem
form the Pareto front or Pareto-optimal set [9]. Pareto-
optimal sets are the solutions that cannot be improved in
one objective function without deteriorating their perfor-
mance in at least one of the remaining objective functions.

B. Performance Metrics

There are two goals in a multi-objective optimization: the
convergence to the Pareto-optimal set and the maintenance
of diversity in solutions of the Pareto-optimal set [10].
These two goals cannot be measured adequately with one
single performance metric. Meanwhile, the outcome of
a multi-objective optimization run will generally consist

of a varying number of non-dominated solutions. Various
performance metrics to measure these two goals have
been suggested [11]–[14]. Here, we chose the following
five performance metrics: 1) the computation time, 2) the
overall non-dominated vector generation (ONVG), 3) the
comparison metric (C metric), 4) the size of the dominated
space, and 5) the summary attainment surface. The first
four metrics measure the convergence of the Pareto-optimal
solutions, while the fifth metric measures the distribution
of the Pareto-optimal set.

1) The Computation Time: The computation time, also
called running time, is the length of time required to
perform the algorithm.

2) The ONVG Metric: The ONVG metric measures
the number of distinct non-dominated solutions in the
calculated Pareto-optimal set GP . The larger the value of
the ONVG, the more we know about the details of the
Pareto-optimal set.

3) The C Metric: The C metric is based on comparing
a pair of non-dominated sets by computing the fraction of
each set that is covered by the other. C maps the ordered
pair (A,B) into the interval [0, 1]:

C(A,B) =
|{b ∈ B, ∃a ∈ A : a � b}|

|B|
(1)

where |B| means the number of solutions in the non-
dominated set B, and a � b means a covers b. It is
important to note that both C(A,B) and C(B,A) have
to be considered, since C(A,B) is not necessarily equal
to 1− C(B,A). C(A,B) > C(B,A) means that the non-
dominated set A has better solutions than B.

4) The Size of the Dominated Space: The size of the
dominated space S(A) indicates how well the Pareto-
optimal set is approximated by the non-dominated set A
of the algorithm [14]. For each non-dominated solution in
A, we can compute the values of all objective functions.
These values comprise a point in the solution space. Fig. 1
illustrates an example of a dominated space. The greater
the size of the space dominated by the non-dominated

0 maxI 

maxII

F1

F2

Dominated Space
          S(A)

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

Fig. 1: A space dominated by a non-dominated set



set is, the closer the solutions are to the Pareto-optimal
set. Here we use PS(A) to indicate this metric, where
PS(A) = S(A)

maxI∗maxII ∗ 100%.

5) The Summary Attainment Surface: The summary
attainment surface is a visual approach to summarizing a
number of runs of a multi-objective optimizer. The authors
of [13] proposed an algorithm to plot approximate summary
attainment surfaces with any number of objectives, and
he suggested that it was more useful to plot the median
summary attainment surface to compare the performance
of the optimizers. For a two-objective problem, the more
the points of the median attainment surface of an algorithm
close to the origin of the rectangular coordinate system, the
better the solutions of the algorithm are.

III. MULTI-OBJECTIVE DATA-INTENSIVE SERVICE
COMPOSITION BASED ON MOACS

The data-intensive service composition problem is mod-
eled as a graph with a start vertex and an end vertex.
The start vertex is set as the ants’ nest and the end
vertex is set as the food source. The feasible solutions
to the composition problem correspond to paths through
the graph. In the graph, all ants are initially positioned at
the start vertex and the task of each ant is to find a path
from the start vertex to the end vertex. Fig. 2 presents an
example of a graph in which data sets, as the inputs and
outputs of services, are incorporated.

The proposed MOACS uses a unique ant colony to
simultaneously minimize all functions. All objectives share
the same pheromone trails. In every iteration, an ant k
(∀k ∈ {1, 2, . . . , Nants}, Nants is the number of ants)
constructs one feasible solution, beginning with the start
vertex and successively choosing the next vertex from the
set of feasible vertices Nk

i (where subindex i represents
that ant k is at vertex si, si is the concrete service which
is chosen to implement abstract service ASi). Nk

i is the
neighborhood of vertex si when ant k is at it, which
includes all direct successors of si. For each ant k, a
solution is found until it arrives at the end vertex. The key
to MOACS is how to determine the state transition rule,
the local updating rule, and the global updating rule.

AS1

AS2

AS3

AS5

AS6

AS7

start end

AS4

AS9

p1

p2

AS8

data sets

data sets

data sets data sets

data sets
data sets

data sets

data sets

data sets

Fig. 2: A graph for data-intensive service composition

A. State Transition Rule

When ant k arrives at vertex si, it will choose successor
sj to move to by applying the rule given by (2).

j =

argmax
j∈Nki

{
[
τij
][
[ηCij ]

λ[ηTij ]
(1−λ)]β}, if q ≤ q0;

randomly selected from Nk
i , otherwise.

(2)
The variable q is a random variable uniformly distributed
in [0, 1], q0 (0 ≤ q0 ≤ 1) is a parameter, λ is the weight
of each objective (λ = k/Nants), β weights the relative
importance of each objective, and τij is the pheromone
density on edge (si, sj). The variable ηCij is the heuristic
information for the objective function considering service
cost, and ηTij is the heuristic information for the objective
function considering service execution time. If q > q0, then
j is randomly selected from Nk

i according to the probability
distribution given by (3).

pkij =


[
τij

][
[ηCij ]

λ[ηTij ]
(1−λ)

]β
∑

j∈Nk
i

[
τij

][
[ηCij ]

λ[ηTij ]
(1−λ)

]β , if j ∈ Nk
i ;

0, otherwise.

(3)

The heuristic information considering service cost is
calculated according to ηCij = 1/Cost(sj). The heuristic
information considering service execution time is calculated
according to ηTij = 1/Tet(sj). The variables Cost(sj) and
Tet(sj) were described in our earlier study [15].

B. Local Updating Rule

When building a solution of the service composition
problem, namely an executed path through the graph, the
ants use a local pheromone updating rule that they apply
immediately after having crossed an edge (si, sj), which is
shown by (4).

τij = (1− ξ)τij + ξτ0 (4)

The variable ξ (0 < ξ < 1) is a parameter and τ0 is initially
calculated by τ0 = 1/

(
NN ∗ C(S0) ∗ T (S0)

)
, with NN

is the number of nodes in the graph, S0 is the solution
generated by the nearest neighbor heuristic [8]. This is
due to the fact that it is a good practice to set the initial
pheromone concentration to a value that is slightly higher
than the expected amount of pheromone deposited by the
ants. The variable C(S0) represents the overall cost of the
solution S0, and T (S0) represents the overall execution
time of S0.

C. Global Updating Rule

The global non-dominated set, which the ants found from
the beginning of the trial, is stored in the Pareto-optimal
set GP . In each iteration, the solution found by each ant
is recorded to a set P . After all ants arrive at the end
vertex, the local non-dominated set LP is found from P .
Each solution in LP is compared with the solutions in GP
in order to check if it is non-dominated. If it is a new



Algorithm 1 Multi-objective data-intensive service compo-
sition based on MOACS

1: step = 0; //iteration counter
2: Initialization; //MaxIt is the maximum number of

iteration
3: while 1 do
4: step = step+ 1;
5: P = ∅; // The solutions found by ants for each

iteration
6: set all ants at the start vertex;
7: for each ant k do
8: while ant k is not at the end vertex do
9: construct a solution using (2) and (3);

10: record the solution to P ;
11: apply the local updating rule (4);
12: end while
13: end for
14: when all ants arrive at the end vertex, find the non-

dominated set LP from P ;
15: update the global non-dominated set GP ;
16: apply the global updating rule (5) to GP ;
17: if step > MaxIt then
18: break;
19: end if
20: end while
21: output all solutions in GP .

Pareto-optimal solution, it is added to GP and all solutions
dominated by the added one are erased from GP . Since all
non-dominated solutions are considered as best solutions
for a multi-objective optimization problem, we suppose
that all non-dominated solutions have the same quality.
Therefore, for each solution ψGP ∈ GP , the pheromone
information is globally updated according to (5).

τij = (1−ρ)τij+ρ/
(
C(ψGP )∗T (ψGP )

)
, ∀(i, j) ∈ ψGP

(5)
The variable ρ (0 < ρ < 1) is the pheromone evaporation
rate, C(ψGP ) is the cost of a given solution ψGP while
T (ψGP ) is the execution time of ψGP . The implementation
of our MOACS is given in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

In order to verify our proposed MOACS, we compared
with a multi-objective genetic algorithm (MOGA). The
MOGA is based on the improved version of the non-
dominated sorting genetic algorithm (NSGA-II) [10], but
we need to customize and modify the NSGA-II in order
to handle our problem. In our experiments, a trial testing
method is adopted to determine most suitable values for all
parameters of MOACS and MOGA. Finally, the parameters
of MOACS are: β = 2, q0 = 0.9, ρ = 0.1, ξ = 0.1,
and Nants = 100. The parameters of MOGA are: the
population is 100, the crossover probability is 0.9, and the

mutation probability is 1/n (n is the number of abstract
services in a composite service).

A. Test Case Generation

For the purpose of our evaluation, we considered dif-
ferent scenarios where a composite application comprises
services from n abstract services, n varies in our experi-
ments between 10 and 50, in increments of 10. There are m
concrete services in each service candidate set, m varies in
our experiments between 10 and 100, in increments of 10.
Each abstract service requires a set of k data sets, k is fixed
at 10 in our experiments. A scenario generation system
is designed to generate the scenario for experiments. The
system first determines a basic scenario, which includes se-
quence, conditional and parallel structures. With this basic
scenario, other scenarios are generated by either placing
an abstract service into it or adding another composition
structure as substructure. This procedure continues until the
scenario has the predefined number of abstract services.

For each scenario, the price of a data set, the network
bandwidth (Mbps) between each data server and service
endpoint, the storage media speed (Mbps), the size (MB)
of a data set and the number of data requests in the waiting
queue were randomly generated from the following inter-
vals: [1,100], [1,100], [1,100], [1000,10000] and [1,10].
Then every scenario was performed with 21 runs (with 11
being the median line of all 21 attainment surfaces), and
every run was stopped after 300 generations. All runs of the
same scenario use the same data, and the average results
over 21 independent runs are reported.

B. Result Analysis

Table I shows the means of the computation time of each
scenario. The upper half of the table indicates that when
the number of concrete services increases, the MOACS
needs more computation time while the computation time
of MOGA remains almost steady. This is because, by using
the integer array coding scheme, the change in the number
of concrete services will not influence the length of the
genome. The lower half of the table indicates that the
computation time of both MOACS and MOGA increases
when the number of abstract services increases. When
the number of abstract services and concrete services is
small, MOACS is better than MOGA since the means of
the computation time of MOACS are lower than those of
MOGA except in the scenario where n = 10 and m = 100.
When there is a large number of concrete services and
abstract services, MOGA is more scalable than MOACS.

Table II gives the means of ONVG. The upper half of
the table shows that MOGA can get more non-dominated
solutions than MOACS except in the scenario where n = 10
and m = 10. On the other hand, the lower half of the
table indicates that MOACS can find more non-dominated
solutions than MOGA when the number of abstract services
increases except in the scenario where n = 10 and m = 50.



Table III gives the means of the C metric, where the
value in the second column is equal to the value in the
third column. The results indicate that the convergence of
the Pareto-optimal solutions of MOACS and MOGA is no
different, so we cannot say one is better than the other.

Table IV shows the means of PS(A). From this table,
we conclude that MOACS is slightly better than MOGA
since MOACS always leads to a higher value of PS(A).

Fig. 3 gives an example of the median summary attain-
ment surface of MOACS and MOGA with respect to the
varying number of concrete services, and Figs. 4-8 show
the median summary attainment surface of both algorithms
with respect to the varying number of abstract services.
The regions where no difference between the points of the
median attainment surfaces of the two algorithms could
be found were indicated in gray dots, whereas those re-
gions where the points of the two surfaces were found
to differ from each other are plotted in stars and squares,
respectively. In the regions where the points of the two
surfaces were found to differ from each other, there are
three situations: 1) if the points of the median attainment
surfaces of MOACS dominate those of MOGA, then the
label MOACS is put near the points, 2) if the points of the
median attainment surfaces of MOGA dominate those of
MOACS, then the label MOGA is put near the points, 3)
if the points of the median attainment surfaces of MOACS
are not dominated by those of MOGA and the points of the
median attainment surfaces of MOGA are not dominated
by those of MOACS, then no label is put.

When the number of concrete services increases,
MOACS is better than MOGA except for a small number
of points, since the points of the median attainment surface
of MOACS are closer to the origin of the rectangular
coordinate system. When the number of abstract services
increases, both MOACS and MOGA have some points
where there is no difference between them in the scenario
where n = 10 and m = 50. In the scenario where n = 20

TABLE I: Means of Computation Time

Scenarios MOACS MOGA

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

22.3333 29.6667

23.6190 30.0952

24.4762 29.8571

25.0952 31.3333

26.5238 29.9524

27.1905 31.2857

27.6667 31.1429

29.5238 30.9048

30.6667 30.7143

30.4286 30.2381

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

26.5238 29.9524

61.2381 30.7143

98.9048 30.2381

141.9524 31.1905

285.5714 31.7143

TABLE II: Means of ONVG

Scenarios MOACS MOGA

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

14.9048 14.8571

32 36.0476

27.4762 34.4286

22.0952 27.5714

35.8571 49.8045

25.3333 28.0952

20.1905 27.4286

38.5238 46.0476

34.8095 38.3333

15.3333 16.5714

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

35.8571 49.8045

75.4762 69.6196

90.7619 83.1905

114.9524 82.3810

131.5714 84.1429

TABLE III: Means of C Metric

Scenarios C(MOACS,MOGA) C(MOGA,MOACS)

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

0.9524 0.9524

0.6298 0.6298

0.6037 0.6037

0.8429 0.8429

0.8311 0.8311

0.5982 0.5982

0.6219 0.6219

0.5127 0.5127

0.4523 0.4523

0.5189 0.5189

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

0.8311 0.8311

0.4530 0.4530

0.4452 0.4452

0.2338 0.2338

0.2094 0.2094

TABLE IV: Means of PS(A)

Scenarios MOACS MOGA

n is fixed at 10, m varies
between 10 and 100, in
increments of 10

82.65% 82.64%

84.86% 84.77%

85.29% 85.25%

84.65% 84.61%

85.88% 85.87%

86.30% 86.12%

86.17% 86.02%

86.12% 85.92%

86.72% 86.38%

86.33% 86.28%

m is fixed at 50, n varies
between 10 and 50, in in-
crements of 10

85.88% 85.87%

68.96% 68.31%

51.77% 49.81%

38.01% 35.96%

24.74% 21.90%
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and m = 50, there are some points where MOGA is
better than MOACS. In the remaining scenarios, there is no
domination relationship between the points of the median
attainment surfaces of the two algorithms, but it is clear that
MOGA gives more useful solutions than MOACS which
is indicated by the middle parts of the median attainment
surfaces of both algorithms.

V. RELATED WORK

We have been applying bio-inspired algorithms to tackle
the service composition problems [15]–[24]. We inves-
tigated how the ant colony optimization was used for
peer selection in service composition [16]–[18]. We also
presented a survey on bio-inspired algorithms for Web
service composition [19]. In [20], we presented an ant
colony system (ACS) to solve the single-objective data-
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intensive service composition problem. In [15], [21], we
proposed genetic algorithms to solve the single-objective
data-intensive service composition problem. Comparisons
with the mixed integer programming (MIP) method and the
random selection approaches showed that our approach had
better scalability and effectiveness. In [22], we designed a
data replica selection algorithm based on ACS.

In [23], we designed four strategies to modify the
pheromone information in order to adapt ACS to handle the
dynamic scenarios where new services were provided, some
services were discontinued, or the QoS attributes of some
services were changed. To evaluate the dynamic ACS, we
compared the optimization behavior of each strategy with
respect to different strategy-specific parameters. We also
recorded the loss in the quality of the best solution and
compared it with the solution found by the MIP approach.
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Fig. 7: Median summary attainment surface with (n,m) =
(40, 50)
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Fig. 8: Median summary attainment surface with (n,m) =
(50, 50)

The experimental results showed that the performance of
each pheromone modification strategy depended not only
on its strategy-specific parameter, but also on the number
of changes and the frequency of occurrence of changes.
Then we proposed an ant-inspired negotiation approach
based on the above dynamic ACS [24]. A multi-phase,
multi-party negotiation protocol was also designed. The
performance of our negotiation approach was compared
with the MIP approach. The experimental results showed
that our negotiation-based approach, compared with the
traditional non-dynamic method, could facilitate the data-
intensive service provision with a better outcome.

Many studies have applied multi-objective ant colony
algorithms to solve service composition problems. Some
studies only considered sequential composition struc-
ture [25]–[28], and some studies did not consider the global

quality of service (QoS) constraints [25], [27]–[30]. Only
single solutions were given by other studies [29], [31],
[32]. In [28], the ant system was applied to solve the
multi-objective optimization problem, but we applied the
ant colony system. We adopted five performance metrics
to measure the Pareto-optimal solutions, which is different
from all the other studies. This paper also presents a
comprehensive comparison of MOACS with a MOGA,
which is lacking in other studies [25]–[32]. To the best of
our knowledge, our study is the first application of the ACS
meta-heuristic to the data-intensive service composition
problem with global QoS constraints, where both overall
cost and execution time need to be minimized.

VI. CONCLUSION

Data-intensive service provision faces new challenges
with the rapid proliferation of services and the develop-
ment of cloud computing. The outcomes of our earlier
studies confirmed the applicability and efficiency of bio-
inspired algorithms to solve data-intensive service provision
problems. This paper proposed a new multi-objective ant
colony system. The goal was to efficiently obtain a set
of non-dominated solutions that simultaneously minimized
the total cost and the total execution time. In order to
verify the performance of our algorithm, we compared it
with a multi-objective genetic algorithm. Both algorithms
were simulated on many different scenarios with respect
to five performance metrics. The lessons learned from our
experimental results are that when we have a large number
of concrete services available for each abstract service, a
multi-objective genetic algorithm can achieve better solu-
tions in a reasonable time. On the other hand, whenever
the number of concrete services available is small, such
as in some simple and repetitive scientific computation,
a multi-objective ant colony system is to be preferred to
a multi-objective genetic algorithm. In our evaluations,
we experimented with synthetic datasets without loss of
generality.
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