2019

Electrostatically assembled construction of ternary TiO2-Cu@C hybrid with enhanced solar-to-hydrogen evolution employing amorphous carbon dots as electronic mediator

Jiaxin Zhu
Wuhan Institute of Technology

Mengmeng Zhang
Wuhan Institute of Technology

Jinyan Xiong
Wuhan Textile University, jx513@uowmail.edu.au

Yinan Yan
National Engineering Research Center for Nanotechnology

Weijie Li
University of Wollongong, weijie@uow.edu.au

See next page for additional authors

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Electrostatically assembled construction of ternary TiO2-Cu@C hybrid with enhanced solar-to-hydrogen evolution employing amorphous carbon dots as electronic mediator

Abstract
The huge demand for renewable hydrogen produced by water splitting has prompted people to conduct in-depth research on the hydrogen evolution reaction for the development of earth-abundant, non-precious, and multi-functional metal catalysts. Herein, a noble-metal-free ternary composite of TiO2-Cu@C was prepared by electrostatic self-assembly loaded copper nanoparticles and amorphous carbon dots (CDs) on porous TiO2 microrods. The good conductivity of the CDs was beneficial to promoting the charge transfer and separation, generating an enhanced solar-to-hydrogen performance on TiO2-Cu@C. The optimized TiO2-Cu@C reveals a stable and notable hydrogen evolution rate of 3911 μmol g−1 h−1, which is 1.6 times that of TiO2-Cu and many times higher than that of TiO2. Instead of providing active sites for hydrogen production, the CDs act as an electronic mediator and provide another electron pathway to further enhance the activity of TiO2-Cu, where the photogenerated electrons on TiO2 could pass through the CDs to the copper cocatalyst and reduce water to hydrogen.

Keywords
electrostatically, assembled, construction, ternary, tio2-cu@c, hybrid, electronic, enhanced, mediator, solar-to-hydrogen, evolution, employing, amorphous, carbon, dots

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Jiaxin Zhu, Mengmeng Zhang, Jinyan Xiong, Yinan Yan, Weijie Li, and Gang Cheng

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/3682
Electrostatically assembled construction of ternary TiO$_2$-Cu@C hybrid with enhanced solar-to-hydrogen evolution employing amorphous carbon dots as electronic mediator

Jiaxin Zhu a, Mengmeng Zhang a, Jinyan Xiong b*, Yinan Yan c, Weijie Li d, Gang Cheng a*

a School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Xiongchu Avenue, Wuhan 430073, PR China.

E-mail: gchenglab@163.com (G. Cheng)

b College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, Hubei, China.

E-mail: jx513@uowmail.edu.au (J. Xiong)

c National Engineering Research Center for Nanotechnology, Shanghai, P. R. China

d Institute for Superconducting and Electronic Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia

$^#$ The details of experiments are provided in the Supporting Information.

* Authors to whom correspondence should be addressed.
Abstract

The huge demand for renewable hydrogen produced by water splitting has prompted people to conduct in-depth research on the hydrogen evolution reaction for the development of earth-abundant, non-precious, and multi-functional metal catalysts. Herein, a noble-metal-free ternary composite of TiO$_2$-Cu@C was prepared by electrostatic self-assembly loaded copper nanoparticles and amorphous carbon dots (CDs) on porous TiO$_2$ microrods. The good conductivity of the CDs was beneficial to promoting the charge transfer and separation, generating an enhanced solar-to-hydrogen performance on TiO$_2$-Cu@C. The optimized TiO$_2$-Cu@C reveals a stable and notable hydrogen evolution rate of 3911 μmol h$^{-1}$ g$^{-1}$, which is 1.6 times that of TiO$_2$-Cu and many times higher than that of TiO$_2$. Instead of providing active sites for hydrogen production, the CDs act as an electronic mediator and provide another electron pathway to further enhance the activity of TiO$_2$-Cu, where the photogenerated electrons on TiO$_2$ could pass through the CDs to the copper cocatalyst and reduce water to hydrogen.

Keywords

TiO$_2$-Cu@C hybrids; photocatalytic water splitting; electrostatical assemble; carbon dots

Introduction

Hydrogen (H$_2$) is a clean energy source, which does not produce other exhaust gases in combustion except for water. It can play an important role in replacing fossil fuels, further solving environmental problems and the energy crisis. At present, using semiconductor-based photocatalysis technology to covert solar energy into hydrogen is being considered as a potential approach to dealing with these issues. In the most recent progress on photocatalytic systems, the construction of heterojunctions has become a research hotspot because of its feasibility and effectiveness for space separation of
photogenerated electron-hole pairs. The research on TiO₂ used alone has made some progress, but its activity towards water-splitting is still limited. [1-4] Because of its own characteristics, photogenerated electron-hole pairs recombine rapidly, and it has a wide band gap and fewer active sites just like ZnO [5, 6]. Yet the TiO₂-based photocatalytic system for water splitting is also progressing. [7-12] For example, conventional type II heterojunctions of TiO₂, TiO₂ p-n heterojunctions, TiO₂/metal heterojunctions, and TiO₂-based Z-scheme heterojunctions have been constructed to greatly enhance its photocatalytic activity towards hydrogen production, although there are few studies on further improvement of the activity of binary complexes through rational surface/interface engineering.

Cost-effective metallic Cu has recently been recognized as a good substitute for precious metals in hydrogen production. [13-18] It was found that metallic Cu has moderate catalytic activity towards hydrogen evolution compared with noble metals according to theoretical studies. [19] When metallic Cu acts as a cocatalyst can optimize the free energy of hydrogen adsorption and improve the catalytic activity of hydrogen production, just like some non-precious electrocatalysts [20, 21]. Moreover, metallic Cu with a specific size and morphology exhibits surface plasmon resonance (SPR) effects similar to those of noble metals. [22-24] Metallic Cu as a cocatalyst, however, has only a single electron transfer path with the semiconductor, and it is likely to be oxidized in the course of a long-term catalytic process because of its direct contact with the semiconductor surface. This limits the photocatalytic activity of binary Cu-based photocatalysts, which needs further improvement.

Carbon dots, as a novel class of nanocarbons, have been widely used in the field of photocatalysis due to their excellent photoelectric properties. [25-29] Zhang et al. applied the electron reservoir characteristic of CDs to capture the electrons generated by metallic Cu nanoparticles, thus hindering electron-hole recombination to improve photocatalytic activity. [26] According to Zhang et al., CDs play
a dual role in improving photocatalytic activity, as photosensitizer and as electron reservoir. [27] In Bian’s group, coupling CDs with TiO$_2$, in which CDs acted as electron collectors and active sites, makes the activity towards reducing Cr(VI) to Cr(III) about 5.4 times higher than that of pure TiO$_2$. [28] Owing to the high conductivity of CDs, they could capture photogenerated electrons from the conduction band of semiconductors, so decorating CDs on the binary materials would provide other multi-step electron transfer pathways and possibly inhibit the photocorrosion of the photocatalyst.

In this work, we present a reasonably designed method that operates through a hierarchical electrostatic assembly method to fabricate ternary TiO$_2$-Cu@C composites. The amorphous carbon dots were dispersed on the TiO$_2$-Cu to synthesize TiO$_2$-Cu@C nanocomposites without noble metals, resulting in efficient photocatalytic water splitting. The H$_2$ evolution rate on TiO$_2$-Cu@C was further enhanced by about 1.6 times over that of the TiO$_2$-Cu binary compound. The improved charge separation was possibly due to the formation of carbon-Cu and carbon-TiO$_2$ interfaces, which creates another type of electron transfer pathway: electrons pass through the CDs on TiO$_2$ to metallic Cu to reduce water, beyond the direct electrons transfer from TiO$_2$ to metallic Cu. This may be the origin of the enhancement of photocatalytic activity of TiO$_2$-Cu@C.

Results and discussion

To better understand the electrostatic assemble method for the synthesis of ternary TiO$_2$-Cu@C composites, the surface charges of the related materials estimated by zeta-potential measure were depicted in Figure 1. It can be observed that the materials of TiO$_2$, Cu, Carbon dots, and TiO$_2$-Cu had different zeta potential.
The synthesis strategy and formation process of TiO$_2$-Cu@C are shown in Figure 2, in which surface charges play an important role in such a preparation approach. Firstly, negatively charged porous TiO$_2$ ($\zeta = 28.5$ mV) adsorbed positively charged Cu$^{2+}$-precursor to form the TiO$_2$-Cu$^{2+}$-precursor ($\zeta = -31.4$ mV). Afterwards, the TiO$_2$-Cu$^{2+}$-precursor was reduced to a TiO$_2$-Cu ($\zeta = 5.15$ mV) hybrid that was positively charged on its surface. When the carbon dots solution was added to the TiO$_2$-Cu, the negatively charged carbon dots ($\zeta = -42.8$ mV) would be electrostatically attracted and loaded on TiO$_2$-Cu to form the TiO$_2$-Cu@C ternary composite. Due to the effect of electrostatic attraction, the strong connection existing among the TiO$_2$, metallic Cu, and carbon dots could make the modified nanoparticles disperse uniformly.
Figure 2. Schematic illustration of the multi-step positive-negative-negative electrostatic assembly synthesis of TiO$_2$-Cu@C. (a) mesoporous TiO$_2$ microrods (m-TiO$_2$) with positively charged surface in aqueous solution; (b) formation of an electron-bi-layer after absorption of [CuL$_2$(OH)]$^+$ precursor onto m-TiO$_2$; (c) formation of TiO$_2$-Cu composite with negatively charged surface in aqueous solution; (d) prepared ternary TiO$_2$-Cu@C hybrid through mixing TiO$_2$-Cu composite with carbon dot solution under stirring at room temperature.

The crystal structure and morphology of the TiO$_2$-Cu@C hybrid were characterized by X-ray diffraction (XRD) (Figure 3a-b), X-ray photoelectron spectroscopy (XPS) (Figure S1), scanning electron microscopy (SEM) (Figure 3d, Figure S2), transmission electron microscopy (TEM) (Figure 3e), and high resolution TEM (HRTEM) (Figure 3f). As shown in Figure 3a, most of the X-ray diffraction peaks of the products correspond to anatase TiO$_2$ (JCPDS card No. 73-1764). The characteristic diffraction peak at 2θ = 43.3° that is indexed to the (111) planes of metallic copper (JCPDS card No. 70-3039) was clearly observed.
In addition, Fourier transform infrared spectroscopy (FT-IR) characterization was performed to further confirm that CDs were attached on the TiO$_2$-Cu composite (Figure 3c). The characteristic absorption peaks of the CDs could be detected at 2980, 1568, and 1402 cm$^{-1}$, which are attributed to the skeleton vibrations of sp^2 C-H, C=O, and C-OH, [27] implying the existence of CDs in the TiO$_2$-Cu@C composite.

The chemical states of TiO$_2$, metallic Cu, and CDs were determined by XPS analysis. As shown in Figure 51, the XPS spectra of C 1s, Ti 2p, O 1s, and Cu 2p were compared between pure TiO$_2$ and TiO$_2$-Cu@C. After curve fitting, the C 1s spectrum exhibited three typical peaks at 284.6, 286.3, and 288.3 eV, which are attributed to C-C, C-O and O=O=C-O bonds, respectively. [27, 31, 32] It can be seen that the relative intensity of the characteristic peaks of C 1s increases with the decoration of CDs. Obviously, the relative intensities of the characteristic peaks of Ti 2p (binding energy = 458.6, 464.4 eV) and O 1s (binding energy = 529.8 eV) are lower than that of pure TiO$_2$, which suggests successful modification by the carbon dots. Moreover, the XPS spectrum of Cu 2p (Figure S1d) displays two peaks at 932.2 and 951.8 eV, which are associated with Cu 2p$^{3/2}$ and Cu 2P$^{3/2}$ of copper metal, [33-35] which can only be observed on ternary TiO$_2$-Cu@C hybrid. The results are consistent with the XRD images, demonstrating the presence of metallic Cu that is loaded on TiO$_2$.
Figure 3. (a) XRD patterns of TiO$_2$, TiO$_2$-Cu, and TiO$_2$-Cu@C hybrid; (b) magnified images that corresponds to the XRD; (c) FTIR spectra of TiO$_2$, carbon dots, and TiO$_2$-Cu@C; (d) SEM, (e) TEM, and (f) HRTEM images of TiO$_2$-Cu@C hybrid (insets: inverse fast Fourier transform (IFFT) images).

As shown in Figure S2, porous TiO$_2$ has rod-like structure, where the microrods are about 3-5 μm in length and 0.8-1.1 μm in diameter. It can be seen from the TEM image (Figure S2) that the porous rod structure is composed of nanocrystalline TiO$_2$. Moreover, the high-resolution TEM (HRTEM) images give an understanding of the atomic arrangement on the surfaces of prepared nanoparticles. The lattice fringes with distances of 0.354 nm are well assigned to TiO$_2$ in the HRTEM image (Figure S2). The XRD pattern of amorphous carbon dots is consistent with those reported in the literature [36], as shown in Figure S3a. The images (Figure 3d-e) of TiO$_2$-Cu@C displayed a similar rod-like porous structure, and it was composed of aggregated nanoparticles. The CDs could not be distinguished because of their small nanosize (Figure S3b) and closeness to the nanoparticles of TiO$_2$. In the HRTEM image of TiO$_2$-Cu@C in Figure 3f, the lattice fringes with spacing of 0.352 nm are in accordance with the anatase TiO$_2$ (101) interplanar spacing, while the 0.203 nm fringes agree with the (111) planes of metallic Cu. The results indicate that ternary TiO$_2$-Cu@C hybrid can be formed via the electrostatic assembly method.
Element mapping was performed to further confirm the composition of the TiO\textsubscript{2}-Cu@C0.5 hybrid. Figure S4 displays the area where the elemental mapping performed and the distribution of elements in the TiO\textsubscript{2}-Cu@C0.5 hybrid with energy-dispersive X-ray (EDX) elemental mapping. The four different colors represent the distribution of O, Cu, C and Ti. The existence of the four elements in the sample is in agreement with the proposed TiO\textsubscript{2}-Cu@C0.5 hybrid. As shown in Figure S4, it was clearly observed that Ti, O, Cu and C elements were evenly distributed on TiO\textsubscript{2}, which indicated the TiO\textsubscript{2}-Cu@C hybrid was successfully synthesized by this method. Moreover, the weight percentage of the elements in the TiO\textsubscript{2}-Cu@C0.5 was roughly estimated through selecting two different microrods in the SEM image depicted in Figure S5. The corresponding data were listed in Table S1 and Table S2, and it was found that the weight percentage of carbon dot in the TiO\textsubscript{2}-Cu@C0.5 is about 17%. A comparison of ultraviolet-visible diffuse reflectance spectra of TiO\textsubscript{2}, TiO\textsubscript{2}-Cu, TiO\textsubscript{2}-C, and TiO\textsubscript{2}-Cu@C is presented in Figure S6. Compared with pure TiO\textsubscript{2}, the absorption edge of TiO\textsubscript{2}-Cu has a red shift, which means that the loading with metallic Cu will enhance light absorption. After further modification by the CDs, a certain enhancement in the absorption is observed in the range of 550-750 nm on TiO\textsubscript{2}-Cu@C. This could explain the successful preparation of TiO\textsubscript{2}-Cu@C composite through modification by the metallic Cu particles and CDs decorated on the TiO\textsubscript{2} mesoporous microrods.

Water splitting technology driven by solar energy is a promising clean hydrogen production technology. Consequently, the photocatalytic properties of TiO\textsubscript{2}-Cu@C nanocomposites were studied under UV-vis light irradiation with methanol (20 vol%) aqueous solution as the hole sacrificial agent. Figure 4a shows the photocatalytic activity of TiO\textsubscript{2}-Cu@C hybrids and the control samples for hydrogen production. There is no obvious H\textsubscript{2} generation on TiO\textsubscript{2} and binary TiO\textsubscript{2}-C. This is probably due to the fact that the carbon dots only serve as electronic mediators rather than active sites. When
photocatalytic reaction was carried out on binary TiO$_2$-Cu, the evolution rate of H$_2$ was enhanced sharply to 2462 μmol g$^{-1}$ h$^{-1}$, which means that metallic Cu acts as a cocatalyst with benefits for the photocatalytic activity. Furthermore, the activity of TiO$_2$-Cu increased by 1.6 times to 3911 μmol g$^{-1}$ h$^{-1}$ when the optimum amount of CDs was used to form TiO$_2$-Cu@C0.5 ternary composite. Compared with other reported catalysts, TiO$_2$-Cu@C0.5 hybrid has better hydrogen evolution activity as shown in Table 1. The high photoactivity is attributed to the synergistic effects of the metallic Cu and carbon dots in TiO$_2$-Cu@C, which greatly improves the separation of photogenerated electrons and holes. At the same time, it was found that the hydrogen evolution activity of ternary TiO$_2$-Cu@C was lower than that of binary TiO$_2$-Cu composite when the CDs content was lower or higher than the optimum loading amount. We speculate that when the loading of CDs is lower than the optimum amount, because the good conductivity of CDs and metallic Cu, CDs near metallic Cu but not in contact will divert part of the photogenerated electrons from TiO$_2$, which makes the catalytic activity of TiO$_2$-Cu slightly higher than that of TiO$_2$-Cu@C; When the loading of CDs is higher than the optimum amount, excessive CDs will cover the active sites of metallic Cu cocatalyst, thus reducing the catalytic activity. The apparent quantum efficiency (AQE) of ternary TiO$_2$-Cu@C0.5 was measured using a 365 nm (± 2 nm) band-pass filter (12.8 mW/cm2), and the AQE value was calculated to be 4.64% according to the previously reported work [37-39]. More importantly, TiO$_2$-Cu@C exhibits high photocatalytic stability. As depicted in Figure 4b, the photocatalytic hydrogen evolution rate did not decrease detectably after four cycles, which indicates that TiO$_2$-Cu@C photocatalyst has good stability and reusability.
Figure 4. (a) Hydrogen production activity of different photocatalysts; (b) photostability for the H₂ production of TiO₂-Cu@C0.5 under UV-vis light.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Amount of catalyst (g)</th>
<th>H₂ evolution rate (μmol g⁻¹ h⁻¹)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂-CQDs</td>
<td>0.05</td>
<td>196</td>
<td>[40]</td>
</tr>
<tr>
<td>g-C₃N₄-CQDs-Pt</td>
<td>0.05</td>
<td>3538</td>
<td>[41]</td>
</tr>
<tr>
<td>TiO₂-CQDs</td>
<td>0.02</td>
<td>395</td>
<td>[42]</td>
</tr>
<tr>
<td>g-C₃N₄-CQDs-MoS₂</td>
<td>0.05</td>
<td>212.4</td>
<td>[43]</td>
</tr>
<tr>
<td>TiO₂-Cu@C</td>
<td>0.025</td>
<td>3911</td>
<td>This work</td>
</tr>
</tbody>
</table>

To better understand the photocatalytic activity of TiO₂-Cu@C, the specific surface and pore size distribution were studied (Figure S7). Table S3 shows there are no obvious differences among the samples in their BET surface areas and pore-sizes, which means that the specific surface area has no effect towards the improvement of photocatalytic activity. Photoelectrochemical tests were carried out to study the performance of the composite catalyst, as shown in Figure 5a. As expected, TiO₂-Cu@C
exhibits the highest photocurrent intensity compared with TiO$_2$, TiO$_2$@C, and TiO$_2$-Cu due to the dual-electron transfer path in the ternary system. Interestingly, sole metallic Cu or carbon dots can greatly improve the charge separation efficiency, which is ascribed to their excellent conductivity. Moreover, electrochemical impedance spectroscopy (EIS) was used to investigate the separation and transfer of photogenerated electron and holes of samples. [44] EIS Nyquist plots of Figure 5b depicted that ternary TiO$_2$-Cu@C0.5 hydrid shows the fastest interfacial charge transfer characteristics compared with pure TiO$_2$, TiO$_2$-Cu, TiO$_2$-C. Furthermore, binary TiO$_2$-Cu and TiO$_2$-C composites exhibited smaller arc compared with pure TiO$_2$, which indicates that metallic Cu and carbon dots are helpful to inhibit photogenerated electron-hole recombination, which is also consistent with the corresponding photocurrent results.

Figure 5 (a) Photocurrent response and (b) Electrochemical impedance spectra (EIS) of TiO$_2$, TiO$_2$-Cu, TiO$_2$-C, and TiO$_2$-Cu@C0.5.

In addition, the electron transfer of TiO$_2$ in both the binary and ternary composites was investigated by using photoluminescence (PL), as shown in Figure S8. The PL intensity of TiO$_2$ in both binary and ternary systems is decreased. The marked decline of the PL signals indicates a significant separation of photogenerated carriers, resulting from the efficient electron transfer from the TiO$_2$ to carbon dots and metallic Cu. In order to further understand the charge carrier dynamics, time-resolved
photoluminescence decay transient spectroscopy was applied to evaluate the charge transfer paths of TiO$_2$-Cu@C, and the normalized decay plots are shown in Figure 6a. The peak attenuation of photoluminescence was fitted to calculate the amplitude and lifetime, as depicted in Figure 6b and Figure S9 (for detailed calculations see Section S1). The estimated average lifetime of the TiO$_2$-C ($\tau_{\text{Ave}} = 2.95$ ns) is shorter than that of pure TiO$_2$ ($\tau_{\text{Ave}} = 4.03$ ns), implying the emergence of a non-radiative pathway from the electronic interactions between TiO$_2$ and the carbon dots. [45, 46] In addition, the emission lifetime of TiO$_2$-Cu ($\tau_{\text{Ave}} = 5.24$ ns) is obviously increased when compared with pure TiO$_2$. The results show that metallic Cu deposition on TiO$_2$ can effectively inhibit charge recombination and prolong carrier lifetime. [47] The results for the ternary TiO$_2$-Cu@C hybrid indicate a longer fluorescence lifetime ($\tau_{\text{Ave}} = 5.27$ ns). It was speculated that there may be two electron transfer pathways that contribute to the hydrogen production in the photocatalytic process for ternary TiO$_2$-Cu@C.

![Figure 6](image.png)

Figure 6. (a) time-resolved photoluminescence decay transients and (b) the lifetimes calculated by the exponential decay function of TiO$_2$, TiO$_2$-Cu, TiO$_2$-C, and TiO$_2$-Cu@C0.5.

Based on the above results and analysis, the details of the photocatalytic process of ternary TiO$_2$-Cu@C heterostructure could be determined. As shown in Figure 7, when the photocatalytic reaction occurs, the photogenerated electrons from the valence band (VB) of TiO$_2$ move to its conduction band...
(CB), leaving the holes in the VB. Subsequently, photogenerated electrons are transferred at the TiO$_2$-Cu, TiO$_2$-C, and carbon-Cu interfaces due to the matching of work functions and intimate contact through two electron transfer paths: (1) direct transfer of the photogenerated electrons from TiO$_2$ to the metallic Cu or carbon dots; and (2) injection of the photogenerated electrons from TiO$_2$ to the carbon dots to the metallic Cu. Based on the comprehensive photocatalytic and photoelectric tests, it is proposed that carbon dots can only be used as a medium for electrons, but not as an active site to reduce water to hydrogen. Thus, it was concluded that the further increase in the activity of ternary TiO$_2$-Cu@C should be attributed to the transfer of electrons excited on TiO$_2$ to carbon dots first and then to metallic Cu.

![Figure 7. Schematic illustration of the transport and separation of photogenerated electrons in (a) TiO$_2$@C, (b) TiO$_2$-C, and (c) TiO$_2$-Cu@C composites.](image)

Conclusions
In conclusion, we have developed a simple and feasible electrostatic self-assembly method to control the synthesis of ternary TiO$_2$-Cu@C composites without noble metal catalysts. The composites exhibited highly efficient photocatalytic activity towards water decomposition into hydrogen. The optimum TiO$_2$-Cu@C0.5 hybrid achieved a high hydrogen evolution rate of 3911 μmol g$^{-1}$ h$^{-1}$, which is many times higher than that of pure TiO$_2$ and 1.6 times higher than that of TiO$_2$-Cu. We found that the CDs could not be used as catalysis active sites, but could be used as an electronic mediator, so the enhancement of activity was attributed to effective charge transfer. The formation of the interface between C-Cu and C-TiO$_2$ provides another route for electron transfer, which enables photogenerated electrons on TiO$_2$ to be transferred to metallic Cu through CDs, not just by direct transfer to metallic Cu. This rational design could further broaden the preparation of ternary nanocomposites for photocatalysis.

Contributions

GC and JX designed the project, organized the entire research, and revised the manuscript. JZ prepared the materials, did the photocatalysis, photocurrent, and EIS measurements. MZ, YY and WL were involved in interpretation of the result and commented on the manuscript. All authors reviewed the manuscript.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21501137) and Hubei Provincial Natural Science Foundation (2018CFB680). Dr. W. J. Li thanks the Australian Research Council for funding through Discovery Early Career Researcher Award (DECRA, No. DE180101478). The authors also thank Dr. Tania Silver for critical reading of the manuscript.
Conflict of Interest

The authors report no conflict of interest.

References

