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Abstract: This paper presents a bounding surface plasticity model that can be used to 5 

simulate complex monotonic and cyclic loading paths. A new mapping rule which only uses 6 

the last stress reversal point is introduced to describe the stress-strain behaviour of granular 7 

soils during loading and unloading. This mapping rule is easy to implement and is suitable for 8 

highly erratic cyclic loading condition, e.g. those induced by earthquake or traffic loading. 9 

The application and performance of the model is demonstrated using the results of 10 

experimental tests with various stress paths conducted under both monotonic and cyclic 11 

loading conditions. The study shows the efficiency of the new mapping rule in capturing the 12 

characteristic features of the behaviour of granular soils under various loading paths.  13 
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INTRODUCTION 18 

The concept of bounding surface plasticity was first introduced by Dafalias and Popov (1975) 19 

and Krieg (1975) to model nonlinear behaviour of materials under complex loading. In this 20 

approach, the plastic deformation at a stress point is calculated by defining the plastic 21 

modulus as a decreasing function of the distance of the stress point from its “image point” on 22 

a limiting surface called the bounding surface. This provides a smooth transition of stiffness 23 

from elastic to elastic-plastic state. By using a three-segmented bounding surface with a 24 

simple radial projection rule and a distance dependent additive plastic modulus, Dafalias and 25 

Hermann (1980) applied the theory of bounding surface plasticity to cohesive soils. Later, 26 

Bardet (1986) extended the application of the bounding surface models to nonlinear 27 

irreversible behaviour of sands, including strain softening and stress dilatancy observed in 28 

dense sands. This was achieved by defining the plastic modulus as a function of the mean 29 

effective stress and the stress ratio. However, the model proposed was based on the 30 

associativity of flow rule, and was unable to capture the post-peak strain-softening behaviour 31 

of loose sands under undrained shearing. Further developments of the bounding surface 32 

model were due to Crouch (1994) for 2D cases and Crouch and Wolf (1994a&b) for 3D cases, 33 

in which the combined radial and deviatoric mapping rules, non-associate flow rule, the 34 

bi-linear critical state line and the apparent normal consolidation line for sands were included. 35 

The shortcomings of this model were the complex shape of bounding surface, lack of 36 

continuity between the two mapping regions used in the model and the large number of model 37 

parameters. 38 

More recently, a more rigorous bounding surface model based on the concept of the critical 39 

state soil mechanics was developed at The University of New South Wales (UNSW) by 40 

Russell and Khalili (2004) to model the stress-strain behaviour of sands. Later Khalili et al. 41 

(2005 & 2008) extended the model to simulate the behaviour of sands subjected to cyclic 42 
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loading under saturated and unsaturated states including hydraulic hysteresis effects. In this 43 

model, hereafter referred to as UNSW constitutive model, the shape of the bounding surface 44 

was obtained from experimental observations of undrained stress path responses of soils at 45 

their loosest state. A mapping rule, passing through stress reversal points, was introduced to 46 

predict the stress-strain behaviour under loading and unloading. Compared with the classical 47 

bounding surface models, UNSW model was able to capture well the characteristic features of 48 

granular soils subjected to cyclic loading (e.g. the contraction during deviatoric unloading), as 49 

well as the behaviour of normally and over consolidated clayey materials.  However, the 50 

mapping rule adopted, despite its excellent performance in capturing the cyclic behavior of 51 

soils, could not be applied efficiently to highly variable loading paths due to its complex 52 

procedure and the storage and memory requirement in a boundary value problem. To tackle 53 

this problem, a single stress point mapping rule is introduced in this study which has a simpler 54 

procedure and is more amenable to application to complex loading paths. The performance of 55 

the new mapping rule is illustrated by comparing the results of simulation of the model using 56 

the two mapping rules. The new mapping rule is then employed to simulate the behaviour of 57 

different soils under various monotonic and cyclic loading paths.  58 

The novel aspects of the current work are threefold: 59 

 The model formulation is extended to three-dimensional stress space (i.e. p q    ). 60 

 A new mapping rule is introduced which has less complexity and brings more 61 

robustness and efficiency in numerical modelling of highly complex cyclic loading 62 

paths; e.g. earthquake loading. 63 

 A host of new simulations, for a variety of different stress paths, including 64 

conventional drained and undrained triaxial tests, constant mean effective stress tests, 65 

constant confining stress tests, anisotropically consolidated and anisotropic 66 

compression tests are presented to highlight the capabilities of the model. A single set 67 
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of parameters are used for each material in all simulations, though the experimental 68 

data are taken from different references in the literature.    69 

PRELIMINARIES 70 

Notation 71 

Soil mechanics sign is adopted throughout.  Compression is taken as positive and tension as 72 

negative.  For the sake of simplicity, all derivations are presented in the qp  plane in a 73 

three-dimensional stress space such that  74 

 ,
3

I
p


   23q J

 
(1)  75 

where 
TI   σ δ  is the first invariant of the effective stress tensor,  2

1

2

TJ  s s  is the second 76 

invariant of the deviator stress tensor,  
1

3

T s σ σ δ δ , and  is Kronecker delta. The 77 

corresponding strain conjugates are 78 

 ,v I   2

2

3
q J 

 

(2)  79 

where 
TI  δ  and  2

1

2

TJ  s s  are the first and the second invariants of the strain vector, 80 

respectively, and  
1

3

T s ε ε δ δ . 81 

The total strain increments are divided into elastic and plastic components as 82 

 
e p     (3)  83 
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where the superscripts e and p denote the elastic and plastic components, respectively. The 84 

volumetric strain,
 v , is related to the specific volume ( ) as 85 

 
0

ln( )v





  (4)  86 

where 0 01 e    is the specific volume at the reference mean effective stress,
 

1 e   , and e87 

and 0e  are the current void ratio and the void ratio at the reference point, respectively. The 88 

material behaviour is assumed isotropic and rate independent.   89 

Critical State 90 

The critical state is the ultimate condition towards which all states approach with increasing 91 

deviatoric shear strain. Figure 1 shows the Critical State Line (CSL) in the ln p   plane, 92 

approximated by two linear segments (after Been et al., 1991). More specifically, four 93 

parameters are used to define the critical state line (CSL) in the ln p   plane: 0 and 0  are 94 

the slope of the initial portion of the CSL and its specific volume at 1p kPa  , respectively; 95 

crp is the mean effective stress at the onset of particle crushing; and cr is the slope of CSL 96 

during the particle crushing stage. A dimensionless state parameter   is defined as a measure 97 

of consistency of the soil under its current state; it is positive on the loose side of CSL and 98 

negative on the dense side, and is defined as  99 

 cs     (5)  100 

where   is the specific volume at the current stress, p , and cs  is the specific volume at the 101 

critical state corresponding to p .  102 
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The CSL in the pq  plane is defined as a straight line passing through the origin. Following 103 

Sheng et al. (2000), the slope of the CSL, csM , is defined as a function of Lode angle, , 104 

  
 

1

44

max 4 4

2

1 1 sin 3
csM M




  

 
 
   
 

 (6)  105 

where   is defined as 

 

1 3

3

2

1 3 3
sin

3 2

J

J
 

 
  
 
 

, J2 and J3 are the second and third 106 

invariants of stress vector. Lode angle ranges from 
6


    for triaxial extension to 

6


    107 

for triaxial compression. Here,   is a function of the strength parameter of soil and can be 108 

given as 109 

 
3 sin

3 sin

cs

cs










  (7)  110 

where cs is the critical state internal frictional angle and is considered independent of 111 

crushing of particles. maxM  is the value of csM  for triaxial compression which is linked to the 112 

critical state friction angle and can be given as 113 

 max

6sin

3 sin

cs

cs

M








 (8)  114 

The proposed shape of the failure surface coincides with the Mohr-Coulomb failure surface at 115 

all vertices in the deviatoric plane. It is also noted that 1   recovers the von Mises failure 116 

surface.  117 

The Limiting Isotropic Compression Line (LICL) is defined as parallel to the CSL with a 118 

constant shift in p ln plane along the recompression line, as shown in Figure 1, Similar to 119 

the critical state line, the LICL is a reference line in the pq   space, which can be viewed as 120 
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locus of the loosest possible state for a soil under a given mean effective stress. Given the 121 

expression of CSL as 122 

  f p   (9)  123 

the LICL is expressed as 124 

     lnf p f p R       (10)  125 

where .p R p  , and R  is a model parameter.  126 

STRESS STRAIN RELATIONSHIP 127 

The incremental elastic strains are linked to the incremental stresses through 128 

 
e e σ D ε  (11)  129 

where 
e

D  is the elastic property matrix which can be defined as a function of the bulk 130 

modulus, K, and the shear modulus, G. 131 

The incremental plastic strain-stress relationship is written as 132 

 
1p T

h
ε mn σ   (12)  133 

where n is the unit vector normal to the loading surface at the current stress state, σ , m  is 134 

the unit direction of plastic flow at σ , and h  is the hardening modulus. Substituting (12) and 135 

(3) in (11)  the elastic-plastic stress-strain relationship is obtained as 136 

 
e T e

e

T eh

 
   

 

D mn D
σ D ε

n D m
  (13)  137 
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The bulk and shear elastic moduli are calculated assuming that unloading/reloading occurs 138 

along a   line in the p ln plane. The moduli are then defined as  139 

 
'p

K



  (14)

 

140 

 
 

3(1 2 ) '

2 1

p
G

 

 





 

(15)  141 

where   is the Poisson’s ratio.  142 

ELASTO-PLASTIC BEHAVIOUR 143 

The essential elements of a bounding surface plasticity model are: (i) a bounding surface for 144 

describing the limit states of stress; (ii) a loading surface on which the current stress state lies 145 

and a mapping rule to find the image point on the bounding surface; (iii) a plastic potential for 146 

describing the mode and magnitudes of plastic deformations, and (iv) a hardening rule for 147 

controlling the size of the bounding surface and the location of the loading surfaces.  148 

Following the work of Khalili et al. (2005), the domain of purely elastic response is assumed 149 

to be nil and all deformation is considered elastic-plastic. This is achieved by defining the 150 

hardening modulus, h, as a decreasing function of the distance between the stress state, σ , and 151 

an “image point”, σ  on the bounding surface.  During loading the size of the loading surface 152 

increases so that any unloading/reloading results in elastic-plastic deformation. Detailed 153 

definitions of the bounding surface, the loading surface and mapping rule, the plastic potential, 154 

and the hardening rule are given in the following sections. The stress conditions on the 155 

bounding surface are denoted using a superimposed bar throughout this notes.  156 
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Bounding Surface 157 

Accurate descriptions of the bounding surface are required in order to avoid complications in 158 

the stress-strain simulations of soil, particularly under undrained conditions. The shape of the 159 

bounding surface is best selected experimentally. It can be determined from the undrained 160 

response of the material at its loosest state. It should be mentioned that the undrained response 161 

of the material in the effective stress space follows the bounding surface when the 162 

contribution of elasticity to volume change is negligible. Examining a host of experimental 163 

data, Russell and Khalili (2004) and Khalili et al. (2005) suggested the following expression 164 

for the shape of the bounding surface: 165 

  
 

 ln
, , , 0

ln

N

c

c

cs

p pq
F p q p

RM p




   
     

 
 

 (16)  166 

The parameter cp  controls the size of the bounding surface and is a function of the plastic 167 

volumetric strain. The material constant R represents the ratio of cp  and the mean effective 168 

stress at the intercept of the bounding surface with the CSL in the pq  space. The constant 169 

N  controls the curvature of the bounding surface. The effects of different magnitudes of N 170 

and R on the three-dimensional shape of the bounding surface are illustrated in Figure 2.  171 

Loading Surface and Mapping Rule 172 

The loading surface is assumed to be of the same shape as the bounding surface. For first time 173 

loading these two surfaces are homologous about the origin of the stress coordinate system. In 174 

this case, the function for the loading surface takes the form of 175 

  
 

 ln
, , , 0

ln

N

c

c

cs

p pq
F p q p

M p R




   
       

  (17)  176 
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where cp  is the isotropic hardening parameter controlling the size of the loading surface as 177 

illustrated in Figure 3. The state of stress, σ , is always located on the loading surface. An 178 

image for the state of stress can be found on the bounding surface, σ , as shown in Figure 3. 179 

The centre of homology, σ  and σ are used to define the mapping rule. For unloading and 180 

reloading conditions, the centre of homology moves to the last point of stress reversal.   The 181 

point of stress reversal is identified when the product of the normal vector to the bounding 182 

surface )(n and the vector of the stress increment ( )e
σ becomes negative (Pastor et al, 1990), 183 

where e
σ  is calculated using the total strain as 

e D ε . The image of the stress point in the 184 

p q   plane is located using the Pegasus method (Dowell and Jarratt, 1972 and Sloan et al., 185 

2001).  Upon stress reversal, a new loading surface is formed with the new centre of 186 

homology, as shown in Figure 4a. To maintain similarity with the bounding surface, the 187 

loading surfaces undergo kinematic hardening during loading and unloading. This mapping 188 

rule is simpler and easier to be implemented as compared to the one used originally by Khalili 189 

et al. (2005). 190 

In order to locate the image point for unloading/reloading condition, Khalili et al. (2005) 191 

introduced the maximum loading surface at the point of stress reversal as the local bounding 192 

surface and formed a new loading surface at the centre of homology. The image point was 193 

then located sequentially by projecting the stress point onto a series of intermediate image 194 

points on successive local bounding surfaces each passing through a point of stress reversal 195 

(Figure 4b). The loading history of the soil was captured through the stress reversal points and 196 

the corresponding maximum loading surfaces. Application of such a complex mapping rule is 197 

not efficient in simulation of a boundary value problem with highly erratic cyclic loading 198 

paths, such as those that occur under earthquake loading conditions. The history of stress 199 

reversal points and the geometry of intermediate local bounding surfaces should also be 200 
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tracked during unloading/reloading conditions, which increases the memory requirement in a 201 

large boundary value problem. 202 

The new single stress point mapping rule, proposed in this study, locates the image point 203 

directly on the bounding surface, as shown in Figure 4a, without forming successive 204 

intermediate local bounding surfaces. This version of the mapping rule is easier to be 205 

implemented, does not require the history of previous loading surfaces, and is more suitable 206 

for simulation of high frequency cyclic loading, e.g. due to earthquake, vibration, traffic 207 

loading and blasting and real life applications where previous stress history of the soil is 208 

unknown. 209 

The unit normal vector at the image point defining the direction of loading is given using the 210 

general equation: 211 

 
F

F

 


 

σ
n

σ
  (18)  212 

The vector F  σ  is evaluated applying the chain rule of differentiation: 213 

 
F F p F q F

p q



    

        
  

            
 (19)  214 

Recalling the generalized definitions of the invariants ,p q and  , their derivatives with 215 

respect to σ  become 216 

 

1

3

p
 


δ

σ  (20)  217 

 

3

2 3

q I

q

  
    
σ δ

σ
 

(21)  218 
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3 3 2

3
22

33

22 cos3

J J J

JJ





  
   

     σ σ σ
 

(22)  219 

F p  , F q   and F   are evaluated by differentiating the generalized form of equation 220 

(16) with respect to p , q  and   221 

 
 

1

ln

N

cs

F N q

p p p RM p

 
   
   
 

 (23)  222 

 
   

1

( )

N N

cscs cs

F N q N q

q q M pM p M p  



   
          

 (24)  223 

 
 

 
 

4

4 4

1 cos33

4 1 1 sin 3

N

cs

F N q

M p

 

    

   
   

         

  (25)  224 

Plastic Potential 225 

The plastic potential defines the direction of plastic strain increments. Since plastic behaviour 226 

is characterized by the link between strain increments and stresses, the plastic potential is 227 

generally expressed using a plastic flow rule relating the plastic dilatancy ( p p

v qd   ) to the 228 

stress ratio /q p . In this work, the plastic potential )(g is defined as 229 

  
  1

, , , 1
1

A

cs

o

o

AM p p
g p q p tq

A p




   
     
    

      for 1A   (26)  230 

 

   , , , lno cs

o

p
g p q p tq M p

p
 

 
    

                     

for 1A   (27)  231 
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where 0p  controls the size of the plastic potential, though it is not required in the model since 232 

only derivatives of the )(g function are incorporated in formulations, and A is a material 233 

parameter. The direction of plastic flow is defined by: 234 

 
g

g

 


 

σ
m

σ
  (28)  235 

in which g  σ  is evaluated applying the chain rule of differentiation: 236 

 

g g p g q g

p q





      
  

          σ σ σ σ  

(29)  237 

pg  , qg  and g  are evaluated by differentiating the plastic potential with respect 238 

to p , q  and . 239 

  cs

g q
A M t

p p


 
  

   
  (30)  240 

 

g
t

q





  (31)  241 

 

4

4 4

3 (1 )cos3

4 1 (1 )sin3

g q
t

 

   

  
   

    
  (32)  242 

In the above equations t  is a scalar, the sign of which controls the direction of plastic flow in 243 

the deviatoric plane. At any stress point two vectors of plastic flow are identified, one 244 

corresponding to compressive loading ( m
) and the other to extensive ( m

) as shown in 245 

Figure 5. The direction of plastic flow is controlled by ,t which is determined based on the 246 

relative positions of the stress point, σ , and its image point, σ , by comparing the angle 247 
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between a given reference axis and the stress point ( )  and the angle between the reference 248 

axis and the image point ( ) : 249 

 1t            for / 2    
 

(33)  250 

 1t            for / 2    
 

(34)  251 

Hardening Modulus  252 

In the bounding surface plasticity, the hardening modulus h consist of two components 253 

 
b fh h h   (35)  254 

where bh  is the plastic modulus at σ  on the bounding surface, and 
fh  is plastic modulus at 255 

σ and defined as a function of the distance between σ  and σ . Applying the consistency 256 

condition at the bounding surface and assuming isotropic hardening of the bounding surface 257 

with plastic volumetric compression, the derivative of the bounding surface can be obtained 258 

as 259 

 

T

pc
vp

c v

pF F
F

p




  
  

    
σ

σ
 (36)  260 

Then, the flow rule will be 261 

 
p

v

g

p



 


 (37)  262 

Using the definition of the unit vector normal to the bounding surface, equation (37) can be 263 

rewritten as 264 

 0T

bF h   n σ   (38)  265 
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in which bh  is calculated as  266 

 
pc

b p

c v

mpF
h

p F


 

    σ
 (39)  267 

with 
p

g p
m

g

 


 σ

. Differentiating equation (16) with respect to cp yields to  268 

 
1

lnc c

F

p p R

 


 
 (40)  269 

For isotropic hardening rule, the evolution of cp  with p

v  is in turn given by 270 

 c c

p

v

p p

  

 


 
 (41)  271 

where   is the current slope of the LICL in the p ln . Substituting equations (40) and (41) 272 

into equation (39) yields 273 

 
  ln

p

b

m
h

R F



 


  σ
 (42)  274 

The modulus hf is defined such that it is zero on the bounding surface and infinity at the point 275 

of stress reversal, and can take from of  276 

 
 

 1c
f m p

c

pp
h k t

p


 

 

 
   

  
 (43)  277 

where cp   and cp  define the sizes of the bounding and loading surfaces, respectively, 
p  is 278 

the slope of the peak strength line in the q p plane, and mk  is a scaling parameter 279 

controlling the steepness of the response in the 
qq   plane. The slope of the peak strength 280 
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line is a function of the state parameter and the slope of the critical state line, which is given 281 

as  282 

  1p cst k M    (44)  283 

where k  is a material parameter. 284 

The scaling parameter mk  can be taken as a material constant for some soils, though it is 285 

strongly influenced by the initial state parameters and the loading direction (Khalili et al., 286 

2005). Russell and Khalili (2004&2006), examined a wide range of triaxial tests on granular 287 

materials and concluded that mk can be expressed as a function of the initial value of the 288 

dimensionless state parameter, 0  (equation 5) and initial confining pressure, 0p . In this 289 

study a general expression for mk is suggested as follows: 290 

 2

0 1 0 01.0 exp( ) ( )m mk k p
       (45)  291 

where 0mk , 1 and 2   are material parameters. 292 

APPLICATION 293 

To demonstrate robustness and application of the model, a series of comparative simulations 294 

is first performed using the new and the original mapping rules (Khalili et al., 2005). This is 295 

followed by a host of non-standard monotonic and complex cyclic simulations.   296 

Performance of the New Mapping Rule 297 

To examine the effect of the mapping rule on the performance of the model, cyclic responses 298 

of Hostun, Fuji River and Toyoura sands are investigated.  299 
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The results of the drained cyclic test simulation on a dense sample of Hostun sand using the 300 

original mapping rule (Khalili at al. (2005) and the simplified one are presented in Figure 6.  301 

Also shown in this figure are the experimental data reported by Saada et al. (1989). The initial 302 

conditions of the sample were 350p kPa   and 1.61  and the material parameters are 303 

selected as 0.003  , 0.1  , 1.31csM  , 0 0.028  , 0.24cr  , 0 2.037  , 2.3N  , 304 

7.5R   , 1.0A   and 2.0k   with 3.5mk   for the first time loading and 35.0mk   for 305 

unloading and reloading, similar to those used by Khalili et al. (2005). 306 

Figure 6 shows that the performance of the new mapping rule is as good as that of the more 307 

complex original mapping rule when compared with the results of the experimental data. Both 308 

mapping rules capture the stiffening of the material response during unloading and reloading, 309 

simulate the contraction of the sample during unloading and the subsequent dilation during 310 

reloading. A better match with the experimental data could have been achieved if the model 311 

properties were calibrated for the new mapping rule however this was avoided for the sake of 312 

consistency of the comparisons. 313 

Figure 7 shows the results of simulation of a cyclic drained test on loose Fuji River sand 314 

conducted by Tatsuoka and Ishihara (1974), where the variations of stress ratio versus 315 

deviatoric and volumetric strains are presented. In this test the amplitude of the cyclic loading 316 

increases gradually at each cycle. The initial conditions of the sample were 196p kPa   and 317 

1.74  . The basic material parameters are selected according to those used by Khalili et al. 318 

(2005), i.e.,  0.01  , 0.3  , 1.48csM  , 0 0.032  , 0.21cr  , 0 1.870  , 3.0N  , 319 

6.2R  , 1.0A   and 2.0k  ; with 0.13mk   for the first time loading and 8.0mk   for 320 

unloading and reloading.  321 

The results of the simulations show that both mapping rules capture the main features of the 322 

behavior of the sand under cyclic loading. The predictions of the two mapping rules are very 323 
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similar, except that the new mapping rule predicts a larger volumetric strain than the original 324 

mapping rule. However, when compared with the experimental data, the performance of the 325 

new mapping rule can be regarded to be as good as the original mapping rule.  Figure 7 shows 326 

that simplifications of the original mapping rule do not affect the performance of the model, 327 

in particular, in simulation of the contractive responses during loading and unloading and the 328 

stiffening of the behaviour with successive cycles. 329 

The effects of the two mapping rules on the response of the model are also shown in Figure 8, 330 

where the results of simulation for a drained cyclic test on Toyoura sand with constant mean 331 

effective stress (Pradhan et al. 1989b) are presented.  The material parameters and state 332 

variables are taken to be the same in both simulations, i.e., 98.1p kPa   , 1.845   333 

0.001  , 0.3  , 1.24csM  , 0 0.03  , 0.24cr  , 0 1.969  , 3.0N  , 5.8R   , 334 

1.0A   , 2.0k  ; with 1.0mk   for the first time loading and 3.0mk   for unloading and 335 

reloading. Once again both simulations result in very close match with the experimental data. 336 

Figure 8 shows noticeable differences in the volumetric strains predicted by the two mapping 337 

rules, especially under low cyclic load amplitudes; the volumetric strain is overestimated by 338 

the original mapping rule and underestimated by the new mapping rule, when compared with 339 

the experimental data. However, under higher cyclic amplitude the performance of the model 340 

with the new mapping rule is superior to that with the original mapping rule. 341 

A comparison of the results of the simulations of the model using the two mapping rules 342 

indicates that the simplification of the original mapping rule does not affect the performance 343 

of the model, especially when the results are compared with the experimental data. The new 344 

mapping rule has the advantages of being robust and simpler than the original one and 345 

therefore is recommended to be used for complex cyclic loading. 346 
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Further Validation 347 

To further examine the performance of the model with the new mapping rule a number of 348 

well documented cases from literature are selected and analyzed, such as tests on Nevada sand 349 

(Arulmoli et al., 1992) and Toyoura sand (Verdugo and Ishihara, 1996, and Pradhan et al., 350 

1989a).  The material parameters used for these simulations are listed in Table 1 and Table 2. 351 

The procedure to obtain the material parameters are described by Russell and Khalili (2004) 352 

and Khalili et al. (2005). 353 

Drained and Undrained Tests on Nevada Sand 354 

Nevada sand was used in VELACS project (Arulmoli et al., 1992) under both 1g laboratory 355 

conditions and in centrifuge experiments. The triaxial experiments reported in that project are 356 

used here for calibration purpose as well as for verification of the performance of the model. 357 

Kutter et al. (1994) and Chen (1995) have also reported the results of a series of triaxial and 358 

torsional shear tests on Nevada sand which are used in this study for definition of the material 359 

properties. Samples of the triaxial tests in VELACS project were 63.5mm  in diameter and 360 

prepared using dry pluviation method. The samples were subjected to a variety of non-361 

standard drained and undrained monotonic stress paths, among them are those of triaxial 362 

compression tests shown in Figure 9. The triaxial experiments were performed on both loose 363 

( 40%)rD  and dense ( 60%)rD  samples under different confining pressures. The material 364 

parameters are shown in Table 1and Table 2.  365 

The results of the simulation of CIDC tests (Figure 9) on loose as well as dense samples of 366 

Nevada sand are presented in Figure 10 and Figure 11, respectively. These tests were 367 

conducted under drained conditions where the samples were loaded isotropically under 3 368 

different confining pressures of 0 40,80,160p kPa  , followed by loading under constant mean 369 

effective stresses. The model captures the experimentally observed initial hardening 370 
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behaviour of loose sands accompanied by a volumetric contraction until the critical state is 371 

reached (Figure 10). For the dense sand the experimental data do not show a clear softening 372 

due the fact that the tests were conducted under constant mean effective stress and the model 373 

captures such a behaviour (Figure 11). Overall the prediction of the model is in strong 374 

agreement with the test data. 375 

The results of the simulation of CIUC tests (Figure 9) are presented in Figure 12 and Figure 376 

13, for loose and dense samples, respectively. These tests were conducted in undrained 377 

conditions under 3 different confining pressures. The model predicts stiffer response initially, 378 

but the overall response matches the experimental data very well, especially in q p plane. 379 

Figure 14 and Figure 15 show the results of simulation of CADC tests under drained 380 

conditions, during which samples of sand were first loaded isotropically to 0p , followed by a 381 

loading under constant mean effective stress, followed by a standard triaxial loading to a 382 

mean effective stress of 1p . The samples were then loaded to failure under constant mean 383 

effective stress and under constant deviatoric stress, as shown in Figure 9 by OO1A1A2C2 and 384 

OO1A1A2C4 stress paths, respectively. The tests were performed at relative densities of 385 

40%rD  and 60%. In both cases the model simulates the experimental behaviour very well. 386 

The main features of the response, including the peak strength in 1q plane as well as the 387 

initial contraction followed by the progressive dilation in 1 v plane were captured by the 388 

model. It is worth to mention that in CADC tests stress reversal occurs at point 2A  (refer to 389 

Figure 9). 390 

Drained and Undrained Tests on Toyoura Sand 391 

Toyoura sand has been used extensively by scholars for verification of different constitutive 392 

models (e.g. Khalili et al., 2005, Ling and Yang, 2006). In this study the experimental data on 393 
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Toyoura sand reported by Verdugo and Ishihara (1996) are used to verify the performance of 394 

the UNSW model. The material parameters obtained by calibration of the model with these 395 

tests are also used later to evaluate the performance of the model in simulating a different 396 

series of tests reported by Pradhan et al. (1989a). The material parameters used for simulation 397 

of these tests are shown in Table 1and Table 2. 398 

Verdugo and Ishihara (1996) performed a series of drained and undrained monotonic triaxial 399 

tests on Toyoura sand. The specimens were prepared using moist placement method. In the 400 

drained tests, two different confining pressures of 100  and 500kPawere used for specimens 401 

with three different void ratios, ranging from 0.81 to 0.996. The undrained tests were 402 

conducted under a wider range of confining pressures, from 100 to 3000 kPa with different 403 

void ratios corresponding to relative densities of 16%rD  to 64%, corresponding to 404 

consistencies from very loose to dense states for the soil under practical stress levels.  405 

The results of the simulations of drained tests under kPap 1000  and 500kPa  are shown in 406 

Figure 16 and compared with experimental data. While there is a slight discrepancy between 407 

the predicted performance and experimental data for the loose sample under the low confining 408 

pressure, i.e. in test 3, the model predictions for other samples are in excellent agreement with 409 

the observed data.   410 

The performance and capability of the model to simulate the undrained behaviour of sands on 411 

a wide range of initial conditions, including different relative densities and mean effective 412 

stresses, are investigated using 7 undrained tests reported by Verdugo and Ishihara (1996). 413 

The outcomes of these simulations are compared with the experimental data in Figure 17 for 414 

mean effective stresses vary from 100 to 3000 kPa . In general, the comparison shows 415 

satisfactory results, considering the fact that a single set of parameters is used for all 416 

simulations under a large range of confining pressures. 417 
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The parameters calibrated from the experiments of Verdugo and Ishihara (1996) are also used 418 

to simulate the drained behaviour of Toyoura sand reported by Pradhan et al. (1989a). The 419 

experiments were conducted under various stress paths, including tests to failure under 420 

constant axial stress, constant mean effective stress and constant radial pressure, as well as 421 

conventional triaxial test (CTC) as shown in Figure 18 422 

Figure 19 compares the results of simulations with the experimental data. The model captures 423 

all features of the soil behaviour for different stress paths, with some minor discrepancies 424 

where maximum large stress ratio is approached. This may be due to the fact that the Toyoura 425 

sand used by Pradhan et al. (1989a) was of a different batch from Verdugo and Ishihara 426 

(1996), and therefore requires slightly different parameters.  427 

 428 

Cyclic Drained tests on Toyoura sand 429 

Pradhan et al. (1989b) performed a series of drained triaxial cyclic tests on Toyoura sand. 430 

Four cyclic drained tests with constant mean effective stress are selected and used in this 431 

study. To highlight the robustness of the proposed model, the material parameters obtained 432 

from model calibration with the experimental tests conducted by Verdugo and Ishihara (1996) 433 

are used in these simulations. The state parameters and initial conditions of the samples are 434 

presented inTable 3. 435 

Figure 20 and Figure 21 show results of drained cyclic tests conducted under constant mean 436 

effective stresses on loose and dense samples of Toyoura sand. In these tests the amplitude of 437 

the shear strain increases during cyclic loading. These figures show that the model can 438 

simulate well the stress-strain response and the successive stiffening or softening of the 439 

samples with cyclic loading. The results of the simulation under higher stress levels match 440 

better with the experimental data. This may be due the fact that the model parameters are 441 
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obtained based on tests conducted on a range of stress levels, mostly greater than1000kPa , 442 

which are greater than those used in Pradhan et al. (1989b) experimental tests, which are all 443 

under100kPa .   444 

Figure 22 shows the results of simulation of a drained cyclic test with a constant mean 445 

effective stress on a very loose sample of Toyoura sand. In this test the amplitude of the shear 446 

strain decreases during cyclic loading. This figure also shows the results of a simulation 447 

performed by Ling and Yang (2006). The UNSW model captures the general behaviour 448 

observed in the experiment, especially in the 
q  plane. In 

qv   plane the simulation 449 

shows a lower volume change in the median cycles compared to the experimental data. Figure 450 

22 shows the superior performance of the model over that presented by Ling and Yang (2006). 451 

Figure 23 represents the results of simulation of a drained cyclic test on a very loose sample 452 

of Toyoura sand under a constant mean effective stress and small hysteresis loops of 453 

unloading and reloading. Once again, the model predicts the main features of the behaviour, 454 

both in 
q  plane and 

qv    plane. It is worth mentioning that a better match between the 455 

results of simulation and the test data could have been achieved if the model parameters were 456 

calibrated for the same test rather than taking from those calibrated for tests performed by 457 

Verdugo and Ishihara (1996).   458 

Cyclic Undrained tests on Fuji River sand  459 

Ishihara et al. (1975) conducted a series of undrained triaxial cyclic tests on loose samples of 460 

Fuji River sand to study the liquefaction phenomena. Loose samples were obtained by 461 

spooning freshly boiled sand into the mold filled with de-aired water. Two of these tests are 462 

selected for simulation to show the performance of UNSW model in capturing the undrained 463 

behaviour of granular materials. The material parameters and the initial conditions of the 464 

samples are listed in Table 1 and   465 
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Table 3, respectively. A constant value of mk is used in these simulations due to the narrow 466 

range of initial state parameters, as shown in Table 2. 467 

Figure 24 presents the results of the undrained test conducted on loose Fuji River sand under a 468 

cyclic loading with constant stress amplitude. Figure 25 shows the results for a test under 469 

irregular cyclic stress amplitude. In both simulations the predicted behaviour is in good 470 

agreement with the observed experimental data. The model captures the failure of the samples 471 

by liquefaction in which the effective normal stress decreases progressively until the stress 472 

path reaches the critical state and the material becomes unstable.  473 

CONCLUSION 474 

The UNSW bounding surface plasticity model has been proved to be a versatile constitutive 475 

model capable of simulating the behaviour of sands over a wide range of stresses under 476 

drained/undrained and monotonic/cyclic loading conditions. A relatively complex mapping 477 

rule was initially formulated for the model which makes application of the model to 478 

simulation of highly variable cyclic loading inefficient. In this study, a new mapping rule is 479 

formulated which is less complex and more efficient for simulation of complex monotonic 480 

and cyclic loadings of granular soils. The new mapping rule does not require a record of 481 

history of successive intermediate local bounding surfaces, as was required in the original 482 

mapping rule. Comparison of the results of simulations of the model using the original and the 483 

new mapping rules indicated that the simplification incorporated in the new mapping rule 484 

does not compromise the performance of the model. The robustness of the UNSW model with 485 

the new mapping rule was demonstrated through simulations of static and cyclic loading 486 

under drained and undrained conditions for different soils. The results of simulations were 487 

invariably in excellent agreement with experimental data. The model captures the 488 

characteristic features of the behaviour of different sands for a wide range of densities and 489 
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stresses, including the stress softening and dilatancy during drained loading of dense sands, 490 

liquefaction of loose sands under undrained loading conditions, and the progressive stiffening 491 

as well as hysteresis in the stress-strain relationships for cyclic loading.  The versatility of the 492 

model in simulation of particular sand was demonstrated using one set of material parameters 493 

for all tests conducted on the sand under different conditions and by different investigators.  494 
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Figure 1: Critical State Line (CSL) and Limiting Isotropic Compression Line (LICL) 565 
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Figure 3: Loading surface and mapping rule for first time loading 573 
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Figure 4: Loading surface and mapping rule for unloading/reloading 

(a) current study, (b) Khalili et al. (2005) 
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Figure 5: Vectors of plastic potential at σ  for compressive and extensive loading 580 
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(a) 

 

(b) 

 

Figure 6: Drained cyclic test on a dense sample of Hostun sand  

(a) 1q  plot and (b)
 1v  plot 
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(a) 

 

(b) 

 

Figure 7: Drained cyclic test on a loose sample of Fuji River sand  

(a) 
q  plot and (b)

 v  plot 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

St
re

ss
 R

at
io

, 
 

Deviatoric Strain, q 

Experimental data (Tatsuoka & Ishihara, 1974)

Khalili et al. (2005) (Old Mapping)

Model Simulation (New Mapping)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

V
o

lu
m

et
ri

c 
St

ra
in

, 
v 

Stress Ratio,  



36 

 

(a) 

 

(b) 

 

Figure 8: Drained cyclic test on a loose sample of Toyoura sand  

(a) 
q  plot and (b)

 v q  plot 
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(a) 

  

(b) 

  

Figure 10: Drained CIDC tests on loose samples of Nevada sand %)40( rD  

 (a) 1q plot and (b)
 1 v plot 
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(a) 

 

(b) 

 

Figure 11: Drained CIDC tests on dense samples of Nevada sand %)60( rD   

(a) 1q plot and (b)
 1 v plot 
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(a) 

 

(b) 

 

Figure 12: Undrained CIUC tests on loose samples of Nevada sand %)40( rD
 

(a) 1q plot and (b)
 
q p plot 
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(a) 

 

(b) 

 

Figure 13: Undrained CIUC tests on dense samples of Nevada sand %)60( rD
 

(a) 1q plot and (b)
 
q p plot 
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(a) 

 

(b) 

 

Figure 14: Drained CADC tests with constant p  on Nevada sand 

(a) 1q plot and (b)
 1 v plot 
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(a) 

 

(b) 

 

Figure 15: Drained CADC tests with constant q  
on Nevada sand 

(a) 1q plot and (b)
 1 v plot 
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(a) 

 

(b) 

 

Figure 16: Drained tests on Toyoura sand 

(a) 1q plot and (b)
 0/q p   plot 
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(a) 

 

(b) 

 

Figure 17: Undrained tests on Toyoura sand 
 

(a) 1q plot and (b)
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Figure 18: Stress paths used for tests on Toyoura sand (Pradhan et al., 1989a) 592 
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(a) 

 

(b) 

 

Figure 19: Drained tests with various stress paths on Toyoura sand 
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q  plot and (b)
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(a) 

 

(b) 
 

Figure 20: Drained cyclic test on a loose sample of Toyoura sand  

with increasing shear strain amplitude 

(a) 
q  plot and (b)

 v q  plot 
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(a) 

 

(b) 
 

Figure 21: Drained cyclic test on a dense sample of Toyoura sand  

with increasing shear strain amplitude 

(a) 
q  plot and (b) v  plot 
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(a) 

 

(b) 
 

Figure 22: Drained cyclic test on a very loose sample of Toyoura sand 

 with decreasing shear strain amplitude 

(a) 
q  plot and (b)

 v q  plot 
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(a) 

 

(b) 
 

Figure 23: Drained cyclic test on a very loose sample of Toyoura sand  

with small hysteresis loops 

(a) 
q  plot and (b)

 v q  plot 
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(a) 

 

(b) 
 

Figure 24: Undrained cyclic test with constant cyclic amplitude  

on a loose sample of Fuji River sand 

 (a) q p plot and (b)
 qq  plot 
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(a) 

 

(b) 
 

Figure 25: Undrained cyclic test with irregular cyclic amplitude 

 on a loose sample of Fuji River sand 

(a) q p plot and (b)
 qq  plot 
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Table 1: Material constants used in all simulations 627 

Soil Reference     csM  0  cr  

crp
 

)(kPa

 

0  N  R  k  A  

Nevada Sand 
Arulmoli et al. 

(1992) 
0.003 0.33 1.25 0.022 0.24 2000 1.910 1.5 3.0 2.0 1.5 

Toyoura Sand 

Verdugo and 

Ishihara (1996) 

& Pradhan et al. 
(1989a&b) 

0.008 0.3 1.24 0.033 0.24 2000 2.075 2.5 8.5 2.0 1.0 

Fuji River Sand 
Ishihara et al.  

(1975) 
0.01 0.3 1.48 0.032 0.21 1500 1.870 3.0 6.2 2.0 1.0 

 628 

  629 
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Table 2: Values of mk parameter used in different simulations  630 

Soil  

0mk  

1  
2  

First time 

loading 

Unloading & 

reloading 

Nevada Sand 6.2 115.8 0.95 0.34 

Toyoura Sand 1.2 76.0 1.05 0.3 

Fuji River Sand 2.0 18.0 0 0 

 631 

  632 
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Table 3: State parameters used in simulation of cyclic tests  633 

Soil Type Test Type 
Sample/Load 

Condition 
ID 0  0p  

(kPa) 

Toyoura Sand 
Drained 

p cst   

Loose 1 1.845 

98.1 

Dense 2 1.653 

Very Loose 3 1.865 

Very Loose 4 1.855 

Fuji River Sand 
Undrained 

cyclic 

Constant 
Amplitude 

1 1.735 212.6 

Irregular 

Amplitude 
2 1.749 156.0 

 634 

 635 

 636 


	Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials
	Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials
	Abstract
	Disciplines
	Publication Details

	tmp.1428976174.pdf.NwtSW

